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Spectral-domain optical coherence tomography (SDOCT) is the gold standard of imaging the eye in
clinics. Penetrationdepthwith suchdevices is, however, limited and visualization of the choroid,which
is essential for diagnosing chorioretinal disease, remains limited. Whereas swept-source OCT
(SSOCT) devices allow for visualization of the choroid these instruments are expensive and availability
in praxis is limited. We present an artificial intelligence (AI)-based solution to enhance the visualization
of the choroid in OCT scans and allow for quantitative measurements of choroidal metrics using
generative deep learning (DL). Synthetically enhanced SDOCT B-scans with improved choroidal
visibility were generated, leveraging matching images to learn deep anatomical features during the
training. Using a single-center tertiary eye care institution cohort comprising a total of 362 SDOCT-
SSOCT paired subjects, we trained our model with 150,784 images from 410 healthy, 192 glaucoma,
and 133 diabetic retinopathy eyes. An independent external test dataset of 37,376 images from 146
eyes was deployed to assess the authenticity and quality of the synthetically enhanced SDOCT
images. Experts’ ability to differentiate real versus synthetic images was poor (47.5% accuracy).
Measurements of choroidal thickness, area, volume, and vascularity index, from the reference SSOCT
and synthetically enhanced SDOCT, showed high Pearson’s correlations of 0.97 [95%CI: 0.96–0.98],
0.97 [0.95–0.98], 0.95 [0.92–0.98], and 0.87 [0.83–0.91], with intra-class correlation values of 0.99
[0.98–0.99], 0.98 [0.98–0.99], and 0.95 [0.96–0.98], 0.93 [0.91–0.95], respectively. Thus, our DL
generative model successfully generated realistic enhanced SDOCT data that is indistinguishable
from SSOCT images providing improved visualization of the choroid. This technology enabled
accurate measurements of choroidal metrics previously limited by the imaging depth constraints of
SDOCT. The findings open new possibilities for utilizing affordable SDOCT devices in studying the
choroid in both healthy and pathological conditions.
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The choroid, a vascular layer between the retina and sclera, plays a crucial
role in maintaining ocular health1,2. It is associated with various reti-
nochoroidal diseases like diabetic retinopathy (DR)3, age-related macular
degeneration (AMD)4, polypoidal choroidal vasculopathy (PCV)5, and
others6–8. Choroidal assessmentmetrics have evolvedover time, fromsimple
measurements like subfoveal thickness9 to more complex reconstructions
like vascularity index10. These metrics serve as objective biomarkers for
documenting choroidal status. Imaging the choroid is, however, challenging
because of the anatomical location of the layer11.

While ultrasonography methods are limited by poor-resolution
scans12, conventional angiography techniques with indocyanine green are
limited by their invasive nature and lengthy examination time11. Optical
coherence tomography (OCT) is the preferred clinic imaging method for
non-invasive eye examination13, with spectral-domain OCT (SDOCT)
beingwidely used in clinics.However, due to a progressive decrease of signal
towards the choroidal structures because of scattering effects in the retinal
pigment epithelium (RPE) and choriocapillaris layers, the choroidal region
and the choroidal scleral interface (CSI) cannot be visualized and defined
clearly. Therefore, the quantification of choroidal metrics from conven-
tional SDOCT scans remains limited. Enhanced depth imaging (EDI)
technology integrated into some SDOCT devices provides improved depth
scans14,15, but only longer wavelengths, as in swept-source OCT (SSOCT),
can fully visualize the choroid. SSOCT offers benefits like higher detection
efficiency, expanded imaging range, and less sensitivity roll-off with depth16.
Despite SSOCT’s potential in studying choroidal structures, its use is con-
strained to a smallminority of specialized centers due to cost, resources, and
expertise limitations, ultimately leading to a limited clinical appeal com-
pared to SDOCT devices. This highlights the need to explore alternative
solutions to study choroid morphology and vasculature.

The advancements in generative deep learning (DL) techniques may
offer a promising avenue to enhance choroidal visualization from conven-
tional SDOCTdata.GenerativeDLmodels can artificially create new images
based on real datasets and have shown potential in various applications
within ophthalmology in fundus andOCT imaging17–25. However, the use of
DL models for qualitative and quantitative assessment of retinal and
choroidal biomarkers is still restricted to EDI and SSOCT scans26–29. Hence,
the combination of SDOCTwithDLmay represent a cost-effective solution
bridging the gap between the advantages of SSOCT and the practicality of
SDOCT in clinical settings.

The objectives of this study were to (1) enhance the visualization of the
choroid from conventional SDOCT scans using a generativeDLmodel, and
(2) to assess whether the choroidal metrics extracted from the synthetically
enhancedSDOCTdatamatch themeasurements derived fromthe reference
SSOCT. Themotivation of this work was to improve the quality of deep eye
structures from SDOCT to study processes andmechanisms of the choroid
which were not assessable before in a clinical setting and opening new
possibilities for utilizing affordable SDOCT devices to study the choroid in
healthy and pathological conditions.

Results
A generative DL model was developed and evaluated with paired SDOCT-
SSOCT volumetric B-scans. After quality control and the SDOCT-SSOCT
eyes pairing, a meticulous pre-processing step (Supplementary Fig. 1) was
performed to match volume size and field of view between the two devices,
align the retina, and accurately register the image pairs (Supplementary
Fig. 2).We trained themodelwith a total of 589 eyes from362 subjects using
SDOCT as the input with poor choroidal visibility and matched the same
589 eyes fromSSOCTas a reference for choroidal enhancement.Among the
total 150,784 B-scan pairs used during the training process, 84,736 images
were from healthy subjects (56.2%, 410 eyes), 39,168 data had glaucoma
(26.0%, 192 eyes), and 26,880 had DR (17.8%, 133 eyes), as presented in
Table 1. In the test dataset, 146 independent eyes fromSDOCT,with strictly
no patient overlap with the training dataset, were used to generate synthe-
tically enhanced SDOCTdata. Specifically, froma total of previously unseen
37,376 SDOCTB-scans, new37,376 synthetically enhanced SDOCT images

were generated. The same distribution of normal, glaucoma, and DR cases
was maintained in the test dataset, including 20,224 images from healthy
subjects (79 eyes), 9,984 from glaucoma (39 eyes), and 7,168 from DR (28
eyes) patients (Table 1). The overview of the generative DL approach is
presented in Fig. 1.

Synthetically enhanced SDOCT image generation
The SDOCT volumes in the independent test set were input in the trained
generativeDLmodel and the corresponding synthetically enhanced SDOCT
images were successfully generated. The model results were evaluated for
veracity via manual review of each image and 100% of the images appeared
realistic to a layperson. Figures 2, 3, 4 illustrate samples of the synthetically
enhanced SDOCT images in comparison with the original SDOCT and the
reference SDOCT image to highlight the achieved choroidal improvement
from SDOCT and choroidal structural similarity with SSOCT. From a
qualitative analysis, realistic synthetic data with enhanced choroid were
generated for healthy, glaucoma and DR subjects. Supplementary Fig. 3
shows a comparison of enface images from 4 different eyes at different
depths to further demonstrate the improvement achieved by our DL-
generated images over the input SDOCT data from a different projection.

Experts qualitative assessment
The qualitative plausibility and authenticity of the synthetically enhanced
SDOCT images were assessed by three ophthalmologists: the experts, blind
fromany data information, were tasked to determinewhether the examined
images resembled real or synthetic SSOCT scans. The expert majority
correctly identified 47.5% of images as being synthetic SDOCT images or
real SSOCT images, with experts 1–3’ accuracy of 45.0%, 53.0%, and 56.5%,
respectively. Images from healthy subjects were correctly classified with an
accuracy of 52.1%, while glaucoma and DR showed a lower clinicians’
discriminative performance of 45.5% and 46.4%, respectively. Overall sen-
sitivities and specificities of the experts’majority were found to be between
44.4% and 54.2%. While the less experienced ophthalmologist (expert 1)
achieved the tasks with a performance below 50%, the expert with more
years of experience (expert 3) performed the tasks with slightly higher
accuracy of 56.5%, sensitivity of 61.2%, and specificity of 51.5%. Detailed
results are presented in Table 2 and further task-specific experts’ dis-
criminative performance is described in Supplementary Table 2. Overall,
these results suggest that the clinicians could not discern between synthe-
tically enhanced SDOCT and SSOCT.

Retinal quantitative assessment
The retinal thickness was marked from the inner limiting membrane per-
pendicular to the outer surface of theRPEand computedonSDOCTimages
and corresponding synthetically enhanced SDOCT images to assess whe-
ther the synthetic data effectively preserved the anatomical structure of the
retina layers (Fig. 5a). The mean retinal thickness for both SDOCT and
synthetically enhanced SDOCT images was 0.22 ± 0.02mm (minimum of
0.18mm and maximum of 0.26mm) with similar values across normal,
glaucoma, andDRstates (SupplementaryTable 3).The statistical agreement
between SDOCT and synthetically enhanced SDOCT retinal thickness
measurements was represented by a Pearson’s r of 0.95 [95% CI 0.93–0.96]
and an intra-class correlation (ICC) score of 0.97 [95%CI0.96–0.98].All the
correlations were statistically significant with P values < 0.001, showing
significant correlations also among individual normal, glaucoma and DR
states, with small mean squared errors (MAE) values between 0.003 and
0.005 (Table 3). These results indicate that synthetically enhanced SDOCT
images effectively preserved the SDOCT sub-foveal retina layers.

Choroidal quantitative assessment
An overview of the synthetically enhanced quantitative choroidal image
evaluation approaches is displayed in Fig. 5b. All the choroidalmetrics were
performed on SSOCT and corresponding synthetically enhanced SDOCT
images to evaluate whether the improved generated visualization of the
choroid was in agreement with the reference SSOCT. We considered
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choroidal thickness (CT), choroidal area (CA), and choroidal volume (CV)
as morphological metrics, and the choroidal vascularity index (CVI) as
vascularity metric.

The choroidal region was delineated from the outer surface of the RPE
to theCSI.ThemeanCT,CA, andCVforSSOCTandsynthetically enhanced

SDOCT images were 0.25 ± 0.08mm and 0.24 ± 0.08mm, 0.70 ± 0.18mm2,
and 0.71 ± 0.19mm2, 1.69 ± 0.54mm3 and 1.65 ± 0.51mm3, with similar
values across normal, glaucoma and DR states. Figure 6 and Supplementary
Table 3 illustrate the details of the choroid morphological metrics mea-
surement distributions. Overall, Pearson’s r and ICC scores were 0.97 [95%

Table 1 | Study participants and data used to develop the generative deep learning model

Train Test TOTAL

Data pairs All Normal Glaucoma DR All Normal Glaucoma DR All

Subjects no. 362 202 97 63 91 51 25 15 453

Eyes no. 589 331 153 105 146 79 39 28 735

Image no. 150,784 84,736 39,168 26,880 37,376 20,224 9984 7168 188,160

The table is representative of individual SDOCT datasets and individual SSOCT datasets and shows the data pairs’ details.
SDOCT Spectral-Domain Optical Coherence Tomography, SSOCT Swept-Source Optical Coherence Tomography, DR Diabetic Retinopathy.

Fig. 1 | Overview of the generative deep learning
approach: a pipeline for generating synthetically
enhanced SDOCT enhanced data. a All the OCT
images underwent a paired pre-processing step
before being deployed in the DL model to match
volume size and field of view between the two
devices, align the retina, and register the image pairs.
b During the training step, paired SDOCT and
SSOCT data were used and the deep-learning model
learned the deep anatomical features in the image
from SSOCT scans. c During the testing step,
SDOCT images were inputted into the trained deep
learning model and synthetically enhanced SDOCT
data was generated. SDOCT Spectral-Domain
Optical Coherence Tomography, SSOCT Swept-
Source Optical Coherence Tomography.
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CI 0.96–0.98] and 0.99 [95% CI 0.98–0.99] for CT, 0.97 [95% CI 0.97–0.98]
and 0.98 [95%CI 0.98–0.99] for CA, 0.95 [95%CI 0.92–0.98] and 0.97 [95%
CI 0.96–0.98] for CV. All the correlations were statistically significant with P
values < 0.001.MAE values were found to be 0.02, 0.04, and 0.10 for CT, CA,
and CV, respectively. Overall significant correlations among individual
normal, glaucoma and DR states were observed and are depicted in Table 3.
Figure 6 further shows the morphological choroidal metrics statistical
agreements from the synthetically enhanced SDOCT images with respect to
the SSOCT measurements, along with scatter plots and Bland-Altman
agreement plots. These results indicate that synthetically enhanced SDOCT
images effectively generated clinically plausible synthetic choroids from the
original SDOCT with no significant difference from SSOCT in terms of
morphological choroidal metrics.

We defined the CVI as the ratio of vascular luminal area (LA) toCA
and presented it as a percentage The mean CVI for SSOCT and syn-
thetically enhanced SDOCT images was 0.65 ± 0.08 and 0.66 ± 0.08,
with similar values across normal, glaucoma andDR states. Figure 6 and
Supplementary Table 3 illustrate the details of the vascularity metric
measurements. Overall, CVI Pearson’s r and ICC scores were 0.87 [95%
CI 0.83–0.91] and 0.93 [95% CI 0.91–0.95]. All the correlations were
statistically significant with P values < 0.001. MAE value for CVI was
found to be 0.03, and overall significant correlations also among

individual normal, glaucoma and DR states were observed (Table 3).
These findings indicate that synthetically enhanced SDOCT images
effectively generated plausible synthetic choroidal vasculature from the
original SDOCThidden choroidal vessels, with no significant difference
from SSOCT in terms of CVI (Fig. 6).

Discussion
The present work shows that deep structures of the posterior pole of the eye
can be visualized in SDOCT images by learning from SSOCT images. This
may change the way SDOCT images are used in clinics, particularly in
diseases affecting the choroid. Specifically, we demonstrated (1) that the
choroid visualization was significantly enhanced, as quantified by the high
correlations choroidal metrics values of synthetically enhanced SDOCT
data with respect to the measurements from SSOCT, and (2) that a gen-
erative DL method applied to SDOCT images can generate synthetically
enhanced SDOCT data indiscernible from the reference SSOCT, as deter-
mined by the low discriminative accuracy of clinical experts. This tech-
nology improved choroidal quantitative assessments in conventional
SDOCT used in clinics.

We propose the utilization of a generative DL model based on a GAN
architecture30 to enable the majority of clinicians using SDOCT to benefit
from enhanced choroidal assessment without requiring expensive and
specialized equipment. Synthetically DL-generated images can be
manipulated to adjust image quality and increase diversity of datasets,
overcoming implications for privacy laws and data sharing31,32. Generative
DL models have been recently deployed to reduce image variability across
OCT devices, resulting in successful improvement in image quality from

Fig. 2 | Examples of B-scans from different healthy eyes: paired SDOCT-SDOCT
with their corresponding synthetically enhanced SDOCT image. Evident
improvements in choroidal visualization were observed: previously obscured
SDOCTdeep structures became clearly visible in the synthetically enhanced SDOCT
images. Since the choroidal scleral interface was visible in the synthetically enhanced
SDOCT image, a visual comparisonwith SSOCT choroidal area could be performed,
revealing a match between the vascular structures in both modalities. SDOCT
Spectral-Domain Optical Coherence Tomography, SSOCT Swept-Source Optical
Coherence Tomography.

Fig. 3 | Examples of B-scans from different glaucomatous eyes: paired SDOCT-
SDOCT with their corresponding synthetically enhanced SDOCT image.
SDOCT Spectral-Domain Optical Coherence Tomography, SSOCT Swept-Source
Optical Coherence Tomography.
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time-domain OCT scans to approach that of SDOCT33, and have con-
tributed to reducing differences among SDOCT images derived from dif-
ferent vendors34. TheDLarchitecturesdeveloped for these tasks arebasedon
CycleGAN35, a type of GAN that allows learning a suitable translation
function between the different image domains without requiring paired
samples and using cycle consistency loss to help generate realistic and
coherent results. However, these networks consisted of complex ensembles
of CycleGANs comprising several discriminator and generator models and
considering different spatial windows, eventually requiring steps of data
pairing and meticulous pre-processing. Given that our dataset consisted of
well-paired OCT data from two different devices, collected from the same
patients during the same date of visit, we adopted a Pix2Pix GAN archi-
tecture, suitable for tasks where direct correspondences between input and
output images are available. Pix2Pix was designed with a conditional GAN
architecture allowing for precise control over the mapping between input
and output images and is characterized by superior computational simpli-
city, as well as more stable training dynamics36. Nevertheless, there is a
scarcity of studies specifically targeting the translation of SDOCT to SSOCT
and the application of generative DLmodels to enhance choroidal visibility
is an area that remained unexplored. Hence, our contribution was crucial to
understanding the generative DL potential for cross-modality choroidal
enhancement.

We included paired macula scans from normal subjects, as well as
glaucoma andDR. Examining the choroid in normal subjects, is essential to
establish baseline measurements and understand the physiological varia-
tions to recognize subtle changes that might indicate early signs of ocular
diseases, allowing for timely intervention and prevention37. In glaucoma,

Fig. 4 | Examples of B-scans from different diabetic retinopathy eyes: paired
SDOCT-SDOCT with their corresponding synthetically enhanced
SDOCT image. SDOCT Spectral-DomainOptical Coherence Tomography, SSOCT
Swept-Source Optical Coherence Tomography.
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studies examining the macular choroidal circulation are limited with con-
flicting results38, and allowing better visualization of macular choroidal
structuresmaybe crucial to assess the involvement in thepathogenesis of the
disease, offering valuable insights into glaucoma progression and aiding in
the monitoring of treatment efficacy. In DR, studying the choroid is of
paramount importance as alterations in its structure and blood flow have
been associated with disease severity and progression: enhanced choroidal
imaging can aid in identifying early vascular changes and guidepersonalized
therapeutic strategies to manage DR effectively39.

Through a visual comparison of SDOCT and DL-generated images,
evident improvements in choroidal visualization were observed: previously
obscured structures due to increased noise levels become clearly visible in
the synthetically enhanced SDOCT images from both cross-sectional
(Figs. 2, 3, and 4) and enface (Supplementary Fig. 3) projections. Since the
CSI was visible in the synthetically enhanced SDOCT image, a visual
comparison with SSOCT choroidal area could be performed, revealing a
match between the vascular structures in both modalities. To assess the
qualitative plausibility and authenticity of the synthetically enhanced
SDOCT images, a subset of SSOCT and synthetically enhanced SDOCT
data were presented for blind evaluation to three clinicians. The subset
comprises 50% of DR data to emphasize the evaluation of images where the
disease exhibits more pronounced manifestations. Sensitivities and speci-
ficities of clinical expert 3 (senior consultant) were higher in the task
involving the grading based on pairs of real-synthetic images in the DR

subset (Supplementary Table 2). Generally, clinicians could not accurately
discriminate the synthetically enhanced SDOCT images from the real data
(Table 2). Therefore, the synthetically generated SSOCT images closely
resembled the SSOCT images.

Through a quantitative analysis, we determined that retinal structure
was not compromised: with a Pearson’s r of 0.95 and an ICC score of 0.97
with respect to the original SDOCT, we demonstrated that the DL model
generated images with effectively preserved retinal thickness (Table 3).
Through further quantitative assessment of the synthetically generated
SSOCT images, we found that the choroidal metrics values match the high
correlationof the choroidalmetricswith the SSOCTdata.Choroidalmetrics
are objective biomarkers that can facilitate reproducible and reliable mea-
surements, allowing the documentation of the effects of ageing on the
choroid as well as pathological processes and response to pharmacological
intervention. Several studies have proposedCT andCA asmarkers to assess
disease conditions37 reporting themas indicators of ocular9,40,41 and systemic
health42–47. We obtained a strong significant agreement between syntheti-
cally enhanced SDOCT and SSOCTmeasurements fromPearson’s r of 0.97
and ICC up to 0.99: this indicates that the DLmodel generated images with
effectively enhanced choroidal thickness and area (Fig. 6, Table 3). Similar
findings were discovered when assessing the choroidal morphology from a
volumetric perspective. The DL model used for CV calculation was pre-
viously trained on PlexElite scans of non-flattened images: some outliers in
the correlation plots were expected given the diversity of our images set
(Fig. 6). Nevertheless, excellent agreement performance was reached
(Table 3, Fig. 6).

On the other hand, CVI allows vascular analyses of the choroid10,37,48,49

and has been assessed in studies on retinitis pigmentosa50, central serous
chorioretinopathy (CSC)51,52, branch retinal vein occlusion53, retinal
dystrophies54, and Alzheimer’s disease55. We analyzed CVI to gain further
insights beyondchoroidalmorphology andassess theproportionof vascular
LA within the choroid. Our study enabled precise CVImeasurements from
synthetically enhanced SDOCT data and demonstrated that they exhibited
no significant difference compared to measurements from SSOCT. These
measurements, which were not attainable from the original SDOCT data,
showed a high Pearson’s r of 0.87 and an ICC score of 0.93, highlighting the
reliability and consistency of our approach (Table 3, Fig. 6). Additionally,
novel automated techniques to enhance the efficiency of CVI estimation,
facilitating a faster calculation process yet providing accurate measure-
ments, will be explored56,57.

In this study, we present an approach to translate SDOCT images into
choroid-enhanced images using a state-of-the-art DL image synthesis
technique, trained on a diverse dataset including normal, glaucoma, andDR
cases.While SDOCTdata is readily available in clinics, SSOCT scans are not
routinely performed and are only available to few specialized referral cen-
ters. Our proposed methodology yielded robust and flexible results, as
evidenced by the strong statistical agreements of choroidal metrics.
Although training a generative DL model may pose computational chal-
lenges, this limitation becomes negligible in practice since the algorithm
generated synthetically enhanced SDOCT data offline. Our study was
constrained by the availability of OCT scans from only two modalities,
Cirrus and PlexElite, obtained as paired data in the clinical study. The
scarcity of paired data involving differentmodalities andOCT devices from
differentmanufacturers limits the opportunity to investigate improvements
in OCT scans from one modality based on data from another. As a result,
investigations focusing on enhancing OCT scans using data from different
modalities during the same visit remain uncommon in the existing litera-
ture. Strategies for data collection and collaboration between different
clinical centers would be crucial to gather an adequate dataset for training
and validation. Collaborative efforts would facilitate the creation of a larger
and more diverse database, improving the DL model’s accuracy and
applicability.

Future work will aim to extend our approach to generate enhanced
choroidal data from eyes with various other diseases that impact the
choroid, such as CSC, PCV, and retinal vascular diseases. Additionally, we

Fig. 5 | Overview of the synthetically enhanced SDOCT quantitative image
evaluation approaches. a Retinal quantitative assessment was performed by com-
paring the measurements of the retinal thickness for the SDOCT data in the test set
(146 eye pairs) and the corresponding synthetically enhanced SDOCT (Synthetic).
b Choroidal quantitative assessment was performed by comparing the measure-
ments of the choroidal morphological metrics (thickness, area, volume) and vas-
cularity for the SSOCT data in the test set (146 eye pairs) and the corresponding
synthetically enhanced SDOCT (Synthetic). SDOCT Spectral-Domain Optical
Coherence Tomography, SSOCT Swept-Source Optical Coherence Tomograph.
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will focus on studying choroidal changes and exploring how our syntheti-
cally enhanced SDOCT data can improve the assessment of these changes
compared to standard clinical data. By including a broader range of ocular
pathologies, we can assess the generalizability and robustness of our syn-
thetic enhancement technique in diverse clinical scenarios. Beyond oph-
thalmology, our DL approach could enhance OCT image quality across
variousmedical fields, such as dermatology, where high-resolution imaging
is pivotal for diagnosing skin conditions. Extending the potential of our
image-to-image methodology to diverse medical imaging modalities and
applications, includingmultimodal imaging settings, could contribute to the
broader landscape of medical DL research and facilitate advancements in
diagnostic imaging and patient care. For instance, in magnetic resonance
imaging, where scan quality and contrast are crucial for accurate diagnosis,
our frameworkcould generate enhanced images andaid in thedetectionand
characterization of abnormalities from conventional machines operating at
low magnetic field strengths.

To ease the requirements for paired data and preserve the fine
disease feature details when considering scans from eyes with chorior-
etinal conditions, the integration of diffusion models58 in the enhanced
image generation process will be explored. Furthermore, unsupervised
domain adaptation59 recent advances may also offer an opportunity to
overcome generalizability limitations when dealing with unseen or out-
of-distribution data60. We will focus on the adoption of our approach in
real-world scenarios, considering rigorous validation and standardiza-
tion to enhance the credibility and acceptance of the synthetic data in

clinical decision-making, providing user-friendly interfaces and a
computationally efficient solution.

Methods
This study included data from normal, glaucoma, and DR participants
derived from a clinical study performed at the Singapore Eye Research
Institute in Singapore, a single-center tertiary eye care institution.All studies
complied with the tenets of the Declaration of Helsinki and were approved
by the SingHealth Centralized Institutional Review Board. Written
informed consent was obtained from all the participants.

Study participants
Study participants were enrolled from the Singapore Imaging EyeNetwork,
a clinical cross-sectional study, and collected between 2018 and 2021 from
Chinese, Malay, and Indian patients aged above 21 years. Supplementary
Table 1 describes the demographics of the study participants. Normal eyes
were defined as individuals free from clinically relevant eye conditions such
as glaucoma/-suspect/self-report glaucoma61,62 and retinopathies63. Glau-
comatous eyes were defined as having a pathological optic disc appearance
with a corresponding glaucoma hemifield test outside normal limits; pri-
mary open-angle glaucoma, primary angle-closure glaucoma, normal ten-
sion glaucoma, and ocular hypertensionwere included62. DRwas defined as
present if any characteristic lesion as defined by the Early Treatment Dia-
betic Retinopathy Study severity scale was found64. Patients with co-
diagnosis of clinically relevant eye diseases such as retinal diseases and

Fig. 6 | Distribution and statistical agreements of choroidal metrics between
SSOCT and Synthetically Enhanced SDOCT. The boxplots illustrate the details of
the distribution of choroidal metrics calculated for SSOCT and synthetically
enhanced SDOCT data (Synthetic) in the test set (146 eye pairs) for choroidal
thickness, area, volume, and vascularity index; T tests were performed to find the
significant difference between the groups in a pairwise comparison. All the boxplots
represent the total range of values with interquartile ranges, where the central line

indicates the median and the white dot defines the median. Error bars indicate the
95% confidence intervals. The scatter plots and Bland-Altman plots show the cor-
relation of the choroidal metrics calculated between SSOCT and DL synthetically
generated SDOCT data (Synthetic) in the test set (146 eye pairs). SDOCT Spectral-
Domain Optical Coherence Tomography, SSOCT Swept-Source Optical Coherence
Tomography, DR Diabetic Retinopathy, n.s. not significant, *** = P > 0.001.; a.u. =
arbitrary unit.
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AMD65, or significant media opacity, were excluded from recruitment as
theymight interfere with the aim of the study.We excluded participants for
poor image quality and incomplete or missing data. We finally included a
total of 453patients (253healthyparticipants, 122glaucomapatients, and78
diabetic retinopathy patients).

OCT imaging—spectral-domain OCT
The OCT imaging was first performed using an SDOCT (Cirrus 5000, Carl
Zeiss Meditec, Dublin, California, USA) characterized by a light source
wavelength of 840 nm, scanning speed of 68,000 A-scan/s, axial and
transverse resolution in tissue of 5 μmand15 μmrespectively. Each SDOCT
data volume consisted of 245A-scans and 245B-scanswith a field of viewof
3mm× 3mm× 2mm.

OCT imaging—swept-source OCT
Subsequently, with a time gap in the order of minutes, the second imaging
was conducted using a prototype SSOCT system (PlexElite 9000, Zeiss
Meditec, Dublin, California, USA) with a central wavelength scanning laser
of 1,050 nm, system operation speed of 100,000 to 200,000 A-scan/s, and
axial and lateral resolutions in tissue of 6.3 µm and 20 µm respectivelyEach
SSOCT data volume consists of 300 A-scans and 300 B-scans covering a
3mm x 3mm x 3mm volume.

OCT data pairing
A review software (Zeiss Meditec, Dublin, California, USA) was used to
extract the B-scans.We included in our study paired OCT data acquired by
deploying a 3mm x 3mm scanning protocol centered at the fovea. The
proprietary signal strength extracted from the two OCT devices, docu-
mented using a scale from 1 to 10, was utilized as a quality index for
preliminary data inclusion/exclusion. Only OCTwith signal strength 6 and
above were considered according to the manufacturer’s recommendation.
Subsequently, one trained ophthalmic technician scanned all the partici-
pants and manually reviewed the quality of the scans. Scans were excluded
from further analysis if one ormore of the following criteria weremet: poor
clarity images, weak or inconsistent signal intensity across the scan caused
by obstacles, and excessive motion artifacts. The SDOCT-SSOCT image
pairingwas performed at eye level. If the SDOCTand SSOCT scans for both
patient eyes met the eligibility criteria above mentioned, both eyes were
included in the study; if only one patient eyemet the eligibility criteria, only
the eligible eye was included in the study.

Retinal thickness
The thickness of the retinawasmanuallymeasured at the centerof the fovea.
To determine the foveal pit, we scanned through several B-scans to establish
the thinnest retina layer, and the neighboring twoB-scanswere averaged for
the segmentation of the choroidal-scleral boundary66. The subfoveal retinal
thickness was marked from the inner limiting membrane perpendicular to
the outer surface of the RPE. The thickness, measured with a customized
caliper function (MATLAB R2020b, MathWorks, MA, USA) by an OCT
expert (V.B.), was presented in a pixel unit and subsequently converted to
millimeters via axial digital sampling to match the scanning field of view.

Choroidal thickness
The thickness of the choroid was manually measured at the center of the
fovea, determining the foveal pitwith theprocedurepreviouslydescribed for
retinal thickness66. The CT was perpendicularly marked from the outer
surface of the RPE to the CSI and manually measured with the same
function utilized for retinal thickness by the OCT expert (V.B.). Similarly,
CT was converted to millimeters via axial digital sampling.

Choroidal area
The area of the choroid was computed from the central foveal OCT scan of
each volume after image brightness and contrast adjustment to allow amore
precise selection ofCAboundaries, usingFiji software (Image J 1.54b; http://
imagej.nih.gov/ij/). To calculate CA, we used the RPE-Bruch’s membrane

estimation derived from the pre-processing step and manually delineated
the CSI using a polygon tool. The pixel area was converted to millimeters2

via axial and transverse digital sampling tomatch the scanning field of view.
This step wasmanually performed to ensure precise CA segmentation, as it
is directly followed by the CVI estimation.

Choroidal volume
The volume of the choroid was automatically calculated for each eye. The
3D CVmeasure was performed with a DL model67 which utilizes a U-Net-
based architecture68 fused with a multi-task learning approach to segment
the choroid from three-dimensional OCT aggregating the spatial context
from adjacent cross-sectional slices. The resulting pixel volume was con-
verted tomillimeters3 via volumetric digital sampling tomatch the scanning
field of view.

Choroidal vascularity index
The vascularity index was computed using Fiji software after the segmen-
tation of the CA from the central foveal OCT scan of each volume. We
defined CVI as the ratio of vascular LA to CA and presented it as a
percentage37. To calculate LA, image binarization was performed using
Niblack’s auto-local thresholding technique69,70, and a color threshold tool
was applied to automatically delineate the LA (dark pixels). Finally, CVIwas
computed by dividing LA by CA10,37.

OCT images paired pre-processing
After the SDOCT-SSOCT eyes pairing step, the images underwent pre-
processing to be deployed in the generativeDLmodel (Fig. 1a). The detailed
data pre-processing framework can be found in Supplementary Fig. 1. First,
cropping and 3D Lanczos interpolations71,72 were performed to match
volume size and field of view between SDOCT and SSOCT scans. Lanczos
interpolation technique uses a sinc function as a convolution kernel to
achieve high-quality resampling while minimizing aliasing artifacts and
preserving fine details. Second, a de-speckling algorithm based on aniso-
tropic diffusion filtering was applied to enhance the quality of the scans and
an automated RPE location estimation was used to flatten the retina and
align the corresponding OCT pairs. Third, a customized intensity-based
enface registration was performed for each SDOCT-SSOCT pair to further
fine-align the field of view. In Supplementary Fig. 2 we describe the regis-
tration accuracy analysis. A further step of cropping and field of view
adjustments was applied to obtain the final dataset. Each OCT eye pair
finally consisted of 256 scans per volume and 256×256 pixels images, cov-
ering a field of view of 2.6mm× 2.6mm× 2mm.

Generative DL model development
Out of the 735 eyes satisfying the inclusion criteria, we used 589 eyes for the
training of theDLmodel (150,784 images) and 146 independent eyes to test
the DL model (37,376 images) and generate the synthetically enhanced
SDOCT data. There was strictly no overlap with patients between the train
and test set.We used a generativeDLmodel based on Pix2Pix architecture30

for image synthesis to automatically translate SDOCT scans to choroidal-
enhanced images based on SSOCT. The model learned deep anatomical
features from SSOCT and applied choroid properties to SDOCT images.
During the training process, SDOCT and SSOCT images were loaded
pairwise into themodel. Pix2Pix is a generative adversarial network (GAN)
designed for image-to-image translation and requires paired andwell-pixel-
wise aligned images. Briefly, theDL architecture is comprised of a generator
model which takes as input SDOCT images and creates new plausible
choroidal-enhanced SDOCT images, and a discriminator model that clas-
sifies images as real (SSOCT) or fake (synthetic), to determine whether the
synthetic data is acceptable transformation of the SSOCT image (Fig. 1b).
The twomodels are trained simultaneously in an adversarial process where
the generator seeks to better fool the discriminator and the discriminator
tries to better identify the counterfeit images30. Specifically, the generator
used in this work is a Resnet-9 architecture which makes use of residual
connections73 and is composed of three encoding blocks, nine residual
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blocks and three decoding blocks. Each encoding block consists of a con-
volution, followed by instancenormandRelu layers and eachof the residual
blocks follows the convolution-InstanceNorm-ReLU-Dropout-convolu-
tion-InstanceNorm residual connection structure. The discriminator con-
sists of 5 layers anduses a patch-wisemethod that only penalizes structure at
the scale of patches. While most complex discriminators in GAN archi-
tectures utilize the whole image for establishing a synthetic or real (0 or 1)
value, our PatchGAN tries to classify if eachN ×N patch in an image is real
or synthetic with the advantage to be applied to arbitrarily large images,
utilize fewer training parameters, and run faster. In thiswork,we use a patch
size of 70 × 70. Supplementary Fig. 4. shows the diagrams of the generator
and discriminator with the details of each block. One single generative DL
modelwas trained for normal, glaucoma, andDR. data. The development of
the generativeDLmodelwas done inPython (Python Software Foundation,
DE, USA) and trained for approximately 24 hours and 15 epochs using a
GeForce RTX 2080 Ti GPU; Adam optimizer with a learning rate of
−0.0001 was set. After training was completed, an independent SDOCT
dataset consisting of the samedisease distribution as the trainingdatasetwas
used to generate the synthetically enhanced SDOCT data (Fig. 1c).

Clinician image evaluation
Weevaluated thequalitative plausibility and authenticity of the synthetically
enhanced SDOCT images providing a subset of SSOCT and corresponding
synthetically enhanced SDOCT data to 3 ophthalmologists for visual eva-
luationandmanual grading (Expert 1:R.J., ophthalmologist resident; Expert
2: J.S., senior staff registrar with >5 years of experience in ophthalmology;
Expert 3: G.S.W.T, senior retina consultant with >15 years of experience in
ophthalmology). First, from the 146 eye pairs in the independent test set, a
total of 100 randomly selected single images (50 SSOCTand50 synthetically
enhanced SDOCT images) were presented to the clinicians. The experts
were asked to report whether they believed each imagewas real or synthetic.
Second, a total of 100 randomly selected SSOCT-synthetic image pairs were
inspected: the clinical experts were asked to report which of the 2 images in
each pair was real (SSOCT). For the two tasks, a total of 30 images from
normal eyes, 25 glaucoma, and 50 DR were used. Expert majority predic-
tions and overall task predictions for all images were also calculated. Indi-
vidual experts’ predictions and the experts’ majority predictions were
compared with the ground truth. The images were prepared on a digital
grading form and the clinicians were allowed to review the images at a
setting and time of their convenience. No prior information regarding the
data distribution was given to avoid any bias.

Retinal and choroidal metrics evaluation
Retinal and choroidal metrics were computed for the independent test set
data and extracted as mentioned in a previous section. Retinal thickness
measurements were manually performed on SDOCT images and corre-
sponding synthetically enhanced SDOCT images to assess whether the
synthetic data effectively preserved the anatomical structure of the retina
layers; statistical agreement and error between the two sets ofmeasurements
were subsequently computed. All the choroidal metrics were performed on
SSOCT and corresponding synthetically enhanced SDOCT images to
evaluatewhether the improved generated visualization of the choroidwas in
agreement with the reference SSOCT. Statistical agreement and error
between the two sets of CT, CA, CV, and CVI measurements were subse-
quently computed. Figure 5 showshow the retinal and choroidalmetrics are
extracted respectively from SDOCT, SSOCT and the corresponding
synthetic data.

Statistical analysis
Evaluation metrics for clinical experts’ ability to discern between synthetic
and real SSOCT images were accuracy, sensitivity, and specificity. We
quantified the retinal thickness preservation of the synthetically enhanced
SDOCT data over SDOCT images and the choroidal enhancement of the
synthetically enhanced SDOCT data over SSOCT images by comparing the
agreement of CT, CA, CV, and CVI with scatter plots and Bland-Altman

plots. We computed Pearson’s correlation coefficients (r), ICC scores, and
MAE values to quantify the agreement with real OCT and synthetically
enhanced SDOCT data. Confidence interval values of 95% were generated
using bootstrap (5000 iterations) and P values were calculated using F-test
with scores less than 0.001 considered statistically significant. All the sta-
tistical analysis was done using Python and the scikit-learn library.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The de-identified patient data and any data that support the findings of this
study may be shared on reasonable request to the corresponding author,
subject to approval from the SingHealth Centralised Institutional
Review Board.

Code availability
Any custom code used to implement the deep learning model detailed in
this paper and all data analysis scripts will be made available upon rea-
sonable request to the corresponding author and establishment of data
sharing agreement between institutions.

Received: 27 September 2023; Accepted: 23 April 2024;

References
1. Nickla, D. L. & Wallman, J. The multifunctional choroid. Prog. Retinal

Eye Res. 29, 144–168 (2010).
2. Spaide, R. F. The Choroid. In Pathologic Myopia (eds. Spaide, R. F.,

Ohno-Matsui, K. & Yannuzzi, L. A.) 139–159 (Springer International
Publishing, Cham, 2021).

3. Tan, B. et al. Combining retinal and choroidal microvascular metrics
improves discriminative power for diabetic retinopathy. Br. J.
Ophthalmol. 107, 993–999 (2023).

4. Koh, L. H. L., Agrawal, R., Khandelwal, N., Sai Charan, L. & Chhablani,
J. Choroidal vascular changes in age‐related macular degeneration.
Acta Ophthalmol. 95, e597–e601 (2017).

5. Chung,S. E., Kang,S.W., Lee, J.H. &Kim,Y. T.Choroidal thickness in
polypoidal choroidal vasculopathy and exudative age-related
macular degeneration. Ophthalmology 118, 840–845 (2011).

6. Kitaya, N. et al. Features of abnormal choroidal circulation in central
serous chorioretinopathy. Br. J. Ophthalmol. 87, 709–712 (2003).

7. Grossniklaus, H. E. & Green,W. R. Choroidal neovascularization.Am.
J. Ophthalmol. 137, 496–503 (2004).

8. Ikuno, Y. & Tano, Y. Retinal and choroidal biometry in highly myopic
eyes with spectral-domain optical coherence tomography. Investig.
Ophthalmol. Vis. Sci. 50, 3876–3880 (2009).

9. Gupta, P. et al. Choroidal thickness and high myopia: a case–control
study of young C hinese men in Singapore. Acta Ophthalmol. 93,
e585–e592 (2015).

10. Betzler, B. K. et al. Choroidal vascularity index: a step towards
software as amedical device.Br. J. Ophthalmol. 106, 149–155 (2022).

11. Invernizzi, A. et al. Imaging the choroid: from indocyanine green
angiography to optical coherence tomography angiography. Asia-
Pac. J. Ophthalmol. 9, 335–348 (2020).

12. Sobottka, B., Schlote, T., Krumpaszky, H. G. & Kreissig, I. Choroidal
metastases and choroidal melanomas: comparison of
ultrasonographic findings. Br. J. Ophthalmol. 82, 159–161 (1998).

13. Huang, D. et al. Optical coherence tomography. Science 254,
1178–1181 (1991).

14. Spaide, R. F., Koizumi, H. & Pozonni, M. C. Enhanced depth imaging
spectral-domain optical coherence tomography. Am. J. Ophthalmol.
146, 496–500 (2008).

https://doi.org/10.1038/s41746-024-01119-3 Article

npj Digital Medicine |           (2024) 7:115 10



15. Margolis, R. & Spaide, R. F. A pilot study of enhanced depth imaging
optical coherence tomography of the choroid in normal eyes. Am. J.
Ophthalmol. 147, 811–815 (2009).

16. DrexlerW., Fujimoto J. G.Optical coherence tomography: technology
and applications. Springer Science & Business Media; (2008).

17. Costa, P. et al. End-to-end adversarial retinal image synthesis. IEEE
Trans. Med. Imaging 37, 781–791 (2017).

18. Burlina, P. M., Joshi, N., Pacheco, K. D., Liu, T. A. & Bressler, N. M.
Assessment of deep generative models for high-resolution synthetic
retinal image generation of age-related macular degeneration. JAMA
Ophthalmol. 137, 258–264 (2019).

19. Liu, Y. et al. Prediction of OCT images of short-term response to anti-
VEGF treatment for neovascular age-related macular degeneration
using generative adversarial network. Br. J. Ophthalmol. 104,
1735–1740 (2020).

20. Bellemo V., Burlina P., Yong L., Wong T. Y., Ting D. S. W. Generative
adversarial networks (GANs) for retinal fundus image synthesis.
Springer: 289-302; 2019.

21. Lee, H., Kim, S., Kim, M. A., Chung, H. & Kim, H. C. Post-treatment
prediction of optical coherence tomography using a conditional
generative adversarial network in age-related macular degeneration.
Retina 41, 572–580 (2021).

22. Zheng,C. et al. Assessment of generative adversarial networksmodel
for synthetic optical coherence tomography images of retinal
disorders. Transl. Vis. Sci. Technol. 9, 29–29 (2020).

23. Wang, Z. et al. Generative adversarial networks in ophthalmology:
What are these and how can they be used? Curr. Opin. Ophthalmol.
32, 459 (2021).

24. Kumar, A. J. S. et al. Evaluation of generative adversarial networks for
high-resolution synthetic image generation of Circumpapillary optical
coherence tomography images for glaucoma. JAMA Ophthalmol.
140, 974–981 (2022).

25. Wong,D. et al. Evaluationof generated syntheticOCT images indeep‐
learning models for glaucoma detection. Acta Ophthalmologica 100,
https://doi.org/10.1111/j.1755-3768.2022.0131 (2022).

26. Zheng, G. et al. Deep learning algorithms to segment and quantify the
choroidal thickness and vasculature in swept-source optical
coherence tomography images. J. Innovat. Opt. Health Sci. 14,
2140002 (2021).

27. Vupparaboina, K. K., Nizampatnam, S., Chhablani, J., Richhariya, A. &
Jana, S. Automated estimation of choroidal thicknessdistribution and
volume based on OCT images of posterior visual section. Comput.
Med. Imaging Graph. 46, 315–327 (2015).

28. Chen M., Wang J., Oguz I., VanderBeek B. L., Gee J. C. Automated
segmentation of the choroid inEDI-OCT imageswith retinal pathology
using convolution neural networks. Springer:177-184; 2017

29. Vupparaboina, K. K. et al. Automated choroid layer segmentation
based on wide-field ss-oct images using deep residual encoder-
decoder architecture. Investig. Ophthalmol. Vis. Sci. 62,
2162–2162 (2021).

30. Isola P., Zhu J.-Y., Zhou T. & Efros A. A. Image-to-image translation
with conditional adversarial networks. Preprint at https://doi.org/10.
48550/arXiv.1611.07004, 1125–1134 (2017).

31. Chen, J. S. et al. Deepfakes in ophthalmology: Applications and
realism of synthetic retinal images from generative adversarial
networks. Ophthalmol. Sci. 1, 100079 (2021).

32. Coyner, A. S. et al. Synthetic medical images for robust, privacy-
preserving training of artificial intelligence: Application to
retinopathy of prematurity diagnosis. Ophthalmol. Sci. 2,
100126 (2022).

33. Lazaridis, G. et al. OCT signal enhancement with deep learning.
Ophthalmol. Glaucoma 4, 295–304 (2021).

34. Romo-Bucheli, D. et al. Reducing image variability across OCT devices
with unsupervised unpaired learning for improved segmentation of
retina. Biomed. Opt. express 11, 346–363 (2020).

35. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks. Preprint at
http://arxiv.org/abs/1703.10593 (2020).

36. Pang, Y., Lin, J., Qin, T. & Chen, Z. Image-to-image translation:
Methods and applications. IEEE Trans. Multimed. 24,
3859–3881 (2021).

37. Agrawal, R. et al. Choroidal vascularity index as ameasure of vascular
status of the choroid: measurements in healthy eyes from a
population-based study. Sci. Rep. 6, 21090 (2016).

38. Lun, K. et al. Investigating themacular choriocapillaris in early primary
open-angle glaucoma using swept-source optical coherence
tomography angiography. Front. Med. 9, 999167 (2022).

39. Adhi, M., Brewer, E., Waheed, N. K. & Duker, J. S. Analysis of
morphological features and vascular layers of choroid in diabetic
retinopathy using spectral-domain optical coherence tomography.
JAMA Ophthalmol. 131, 1267–1274 (2013).

40. Lindner, M. et al. Choroidal thickness in geographic atrophy
secondary to age-related macular degeneration. Investig.
Ophthalmol. Vis. Sci. 56, 875–882 (2015).

41. Young, M., Fallah, N. & Forooghian, F. Choroidal degeneration in
birdshot chorioretinopathy. Retina 35, 798–802 (2015).

42. Kim, J. T., Lee, D. H., Joe, S. G., Kim, J.-G. & Yoon, Y. H. Changes in
choroidal thickness in relation to the severity of retinopathy and
macular edema in type 2 diabetic patients. Investig. Ophthalmol. Vis.
Sci. 54, 3378–3384 (2013).

43. Wong, R. L., Zhao, P. & Lai, W. W. Choroidal thickness in relation to
hypercholesterolemia on enhanced depth imaging optical coherence
tomography. Retina 33, 423–428 (2013).

44. Ahn, S. J., Woo, S. J. & Park, K. H. Retinal and choroidal changeswith
severe hypertension and their association with visual outcome.
Investig. Ophthalmol. Vis. Sci. 55, 7775–7785 (2014).

45. Sızmaz, S. et al. The effect of smoking on choroidal thickness
measured by optical coherence tomography. Br. J. Ophthalmol. 97,
601–604 (2013).

46. Ünsal, E. et al. Choroidal thickness in patients with diabetic
retinopathy. Clin. Ophthalmol. 8, 637–642 (2014).

47. Lee, H. K., Lim, J.W. & Shin,M. C. Comparison of choroidal thickness
in patients with diabetes by spectral-domain optical coherence
tomography. Korean J. Ophthalmol. 27, 433–439 (2013).

48. Iovino,C. et al. Choroidal vascularity index: an in-depthanalysis of this
novel optical coherence tomography parameter. J. Clin. Med. 9,
595 (2020).

49. Agrawal, R. et al. Exploring choroidal angioarchitecture in health and
disease using choroidal vascularity index. Prog. Retinal Eye Res. 77,
100829 (2020).

50. Abdolrahimzadeh, S., Di Pippo, M., Ciancimino, C., Di Staso, F. &
Lotery, A. J. Choroidal vascularity index and choroidal thickness:
potential biomarkers in retinitis pigmentosa. Eye 37,
1766–1773 (2023).

51. Agrawal, R. et al. Choroidal vascularity index in central serous
chorioretinopathy. Retina 36, 1646–1651 (2016).

52. Imamura, Y., Fujiwara, T.,Margolis,R. &Spaide,R. F. Enhanceddepth
imaging optical coherence tomography of the choroid in central
serous chorioretinopathy. Retina 29, 1469–1473 (2009).

53. Pant, P. et al. Longitudinal Assessment of the Choroidal Vascularity
Index in Eyeswith Branch Retinal Vein Occlusion-AssociatedCystoid
Macular Edema. Ophthalmol Ther 12, 2103–2115 (2023).

54. Wei, X. et al. Choroidal structural analysis and vascularity index in
retinal dystrophies. Acta Ophthalmol. 97, e116–e121 (2019).

55. Robbins, C. B. et al. Subfoveal choroidal thickness and choroidal
vascularity index on spectral‐domain optical coherence tomography
in Alzheimer’s disease: Neuroimaging/New imaging methods.
Alzheimer’s Dement. 16, e042040 (2020).

56. Muller, J., Alonso-Caneiro, D., Read, S. A., Vincent, S. J. & Collins, M.
J. Application of deep learningmethods for binarization of the choroid

https://doi.org/10.1038/s41746-024-01119-3 Article

npj Digital Medicine |           (2024) 7:115 11

https://doi.org/10.1111/j.1755-3768.2022.0131
https://doi.org/10.1111/j.1755-3768.2022.0131
https://doi.org/10.48550/arXiv.1611.07004
https://doi.org/10.48550/arXiv.1611.07004
https://doi.org/10.48550/arXiv.1611.07004
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593


in optical coherence tomography images.Transl. Vis. Sci. Technol.11,
23 (2022).

57. Ibrahim, M. N. et al. Improved 3D Modeling of choroidal Haller’s
sublayer vasculature based on swept-source OCT scans using
Phansalkar thresholding. Investigative Ophthalmol. Vis. Sci. 64,
1131 (2023).

58. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models.
Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

59. Ganin Y., Lempitsky V. Unsupervised domain adaptation by
backpropagation. PMLR:1180-1189 (2015).

60. Li, R., Jiao, Q., Cao, W., Wong, H.-S. & Wu, S. Model adaptation:
Unsupervised domain adaptation without source data. In
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition 9641–9650 (2020).

61. Mills, R. P. et al. Categorizing the stage of glaucoma frompre-diagnosis
to end-stage disease. Am. J. Ophthalmol. 141, 24–30 (2006).

62. Spaeth, G. L. & Shields, M. B. The stages of glaucoma. Am. J.
Ophthalmol. 141, 147–148 (2006).

63. Wong, T. Y. et al. Prevalence and risk factors for diabetic retinopathy: the
Singapore Malay Eye Study. Ophthalmology 115, 1869–1875 (2008).

64. Ting, D. S. W., Cheung, G. C. M. & Wong, T. Y. Diabetic retinopathy:
global prevalence, major risk factors, screening practices and public
health challenges: a review. Clin. Exp. Ophthalmol. 44, 260–277 (2016).

65. Kawasaki, R. et al. Prevalence of age-relatedmacular degeneration in
a Malay population: the Singapore Malay Eye Study. Ophthalmology
115, 1735–1741 (2008).

66. Lin, E. et al. Are choriocapillaris flow void features robust to diurnal
variations? A swept-source optical coherence tomography
angiography (OCTA) study. Sci. Rep. 10, 11249 (2020).

67. Cahyo, D. A. et al. Multi-task learning approach for volumetric
segmentation and reconstruction in 3D OCT images. Biomed. Opt.
Expr. 12, 7348–7360 (2021).

68. RonnebergerO., FischerP., BroxT.U-net:Convolutional networks for
biomedical image segmentation. Springer: 234-241 (2015).

69. Sonoda, S. et al. Luminal and stromal areas of choroid determined by
binarizationmethodof optical coherence tomographic images.Am. J.
Ophthalmol. 159, 1123–1131.e1 (2015).

70. Sonoda, S. et al. Choroidal structure in normal eyes and after
photodynamic therapy determined by binarization of optical
coherence tomographic images. Investig. Ophthalmol. Vis. Sci. 55,
3893–3899 (2014).

71. Lanczos,C. A precision approximation of the gamma function. J. Soc.
Ind. Appl. Math. Ser. B: Numer. Anal. 1, 86–96 (1964).

72. Moraes, T., Amorim, P., Da Silva, J. V. & Pedrini, H. Medical image
interpolation based on 3D Lanczos filtering. Comput. Methods
Biomech. Biomed. Eng. Imaging Vis. 8, 294–300 (2020).

73. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image
Recognition. Preprint at http://arxiv.org/abs/1512.03385 (2015).

Acknowledgements
Thisworkwas fundedbygrants from theNationalMedicalResearchCouncil
(CG/C010A/2017_SERI; OFLCG/004c/2018-00; MOH-000249-00;

MOH-000647-00; MOH-001001-00; MOH-001015-00; MOH-000500-00;
MOH-000707-00; MOH-001072-06; MOH-001286-00), National Research
Foundation Singapore (NRF2019-THE002-0006 and NRF-CRP24-2020-
0001), A*STAR (A20H4b0141), the Singapore Eye Research Institute &
Nanyang Technological University (SERI-NTU Advanced Ocular
Engineering (STANCE) Program), and the SERI-Lee Foundation (LF1019-1)
Singapore.

Author contributions
V.B. designed the study, conducted the experiments required for validating
the idea of the project (data collection, data pre-processing, deep learning
model development, main outcome measures generation, data post-
processing, choroidal metrics measurement, analysis of the results, and
statistical analysis), wrote the manuscript and designed its figures. A.K.D.
co-designed thestudy,developed thedeep learningmodeland reviewedthe
results andmanuscript.S.S. facilitated thechoroidal volumemeasurements.
S.J., J.R., andT.G. assessed the syntheticdata.CJ,WD,TB, LX, XX,AR, and
TDwere involved in the ideation of the project and reviewed the results and
manuscript. YLandSLprovided the initial project direction, co-designed the
study, provided research funding, and reviewed the results andmanuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-024-01119-3.

Correspondence and requests for materials should be addressed to
Liu Yong or Leopold Schmetterer.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41746-024-01119-3 Article

npj Digital Medicine |           (2024) 7:115 12

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1038/s41746-024-01119-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optical coherence tomography choroidal enhancement using generative deep learning
	Results
	Synthetically enhanced SDOCT image generation
	Experts qualitative assessment
	Retinal quantitative assessment
	Choroidal quantitative assessment

	Discussion
	Methods
	Study participants
	OCT imaging—spectral-domain�OCT
	OCT imaging—swept-source�OCT
	OCT data pairing
	Retinal thickness
	Choroidal thickness
	Choroidal�area
	Choroidal�volume
	Choroidal vascularity�index
	OCT images paired pre-processing
	Generative DL model development
	Clinician image evaluation
	Retinal and choroidal metrics evaluation
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




