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Healthcare datasets are becoming larger and more complex, necessitating the development of
accurate and generalizable AI models for medical applications. Unstructured datasets, including
medical imaging, electrocardiograms, and natural language data, are gaining attention with
advancements in deep convolutional neural networks and large language models. However,
estimating the generalizability of thesemodels to new healthcare settingswithout extensive validation
on external data remains challenging. In experiments across 13 datasets including X-rays, CTs, ECGs,
clinical discharge summaries, and lung auscultation data, our results demonstrate that model
performance is frequently overestimated by up to 20% on average due to shortcut learning of hidden
data acquisition biases (DAB). Shortcut learning refers to a phenomenon inwhich anAImodel learns to
solve a task based on spurious correlations present in the data as opposed to features directly related
to the task itself. We propose an open source, bias-corrected external accuracy estimate, PEst, that
better estimates external accuracy to within 4% on average by measuring and calibrating for DAB-
induced shortcut learning.

Through the advent of deep learning (DL), AI has made dramatic leaps in
accuracy for many challenging healthcare problems, with multiple models
stepping closer to wide-scale clinical deployment. However, generalization
to novel data remains a significant barrier, with multiple studies having
demonstrated that accuracy often decreases by large margins in novel
deployment1–5. At the same time, without access to external datasets,
identifyingwhat the external accuracy of amodel will be or themain drivers
of reductions in accuracy (e.g., data drift or overfitting) remains challenging.

A frequently proposed solution to increase model accuracy and gen-
eralizability is through extremely large datasets. Labeledmedical datasets of

over 10k patients are soughtwith the assumption that a large enoughdataset
will capture the necessary variability in both training and validation to be
representative of future performance. Although these datasets could be
collected prospectively and purposefully for the purpose of training an AI
model, most patients receive standard of care instead of participating in
clinical trials. Thus, most large datasets are collected through what we call
passive collection.

In passive collection, the data is gathered through routine clinical care
across as wide a net as possible. The advantage is that large-scale data
collection becomes fast, scalable, and straightforward. Instead of hundreds
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of patients, some datasets have grown to reach tens or even hundreds of
thousands of patients through this methodology. However, we believe that
there is a hidden problem with this method of dataset creation that, com-
bined with the limitations of modern DL models, is a root cause of model
generalization challenges in healthcare.

We hypothesize that a significant cause of the lack of generalizable AI
models stems from the shortcut learning of an under-reported data acqui-
sition bias (DAB) that naturally occurs during passive data collection, and if
we could estimate the impact that bias has on a model, we could use it to
better estimatemodel accuracyon external data andmeasure the quality of a
dataset for model building. Different hospital wards encounter varying
proportions of medical conditions and use different acquisition conditions,
hardware, or settings. These medical condition-specific acquisition para-
meters, although not perceptible to the human eye, are detectable by
machine learning (ML) algorithms.When data is collected through routine
care, these imperceptible signal changes are heavily correlated with disease
label, and get leveraged by the model as surrogates. Spurious features
manifest in AImodels through a process termed shortcut learning, wherein
a model learns a readily AI-visible indicator of a sample class instead of a
more subtle one that ultimately generalizes better to novel data6. For
example, inmedical imaging, the contrast of the image can be influenced by
medical imaging acquisition parameters. The model may then use the
contrast as a surrogate for predictions or decisions as a shortcut. Acquisition
parameters are not standardized and may vary from institution to institu-
tion orwithin an institution over time, and thus, if learned as shortcuts,may
negatively impact model generalizability. These DABs are analogous to
batch effects which arise from variation in data collection due to non-
biological factors7,8.

Batch effects are a well-studied issue in gene expression experiments
where the processing date and parameters of batches may play a larger role
in differentiating between disease groups than the underlying gene
expressions7,8. While methods exist to mitigate batch effects in molecular
biology, they remain largely unexplored in the broader field of AI. Parti-
cularly in their application to unstructured clinical data (images, electro-
cardiograms, medical charts, etc., as opposed to tabularized data)7–10.
Previous studies have pooled MRI datasets from multiple centers to build
larger datasets for their ML algorithms demonstrating that acquisition
parameters impact results in the context of traditional analysis methods11–13

and two studies have examined batch effects inDL limited tohistopathology
data14,15. A study using DL methods to detect COVID-19 in chest radio-
graphs found that shortcut learning of confounding data acquisition factors
impacted model performance when testing on external datasets and iden-
tified that collecting less confounded data was the most reliable way of
alleviating the issue5. Other traditional accuracy estimation approaches
include cross-validation, which estimates the variance in performance
across different samplings (folds) of thepopulation capturedby the available
data, but does not address DAB-induced performance degradation on
unseen external datasets as DAB will be equally distributed across the
available training and test folds.

The field lacks a comprehensive study investigating the impact of DAB
on DL models within the broader context of unstructured clinical data.
Additionally, as external datasets are often unavailable, a method is needed
to evaluate how DAB may affect model performance on said datasets
without requiring access to them. Furthermore, it is insufficient to simply
quantify the batch effects within a dataset irrespective of a model, as a
particular model architecture might be immune to a particular batch effect,
but not others. Therefore, a method is needed to quantify the degree of
DAB-induced shortcut learning (DABIS) under any given DL model. To
address these gaps, we propose a method to improve AI validation in
medical classification tasks on unstructured data without the need for an
external validation dataset or without explicit prior knowledge of bias in a
dataset, and apply the method to a wide array of data types.

Our study aims to elucidate a potential cause and quantify the sig-
nificant reduction in accuracy seen when medical AI models are externally
validated. We propose a method to better estimate the external accuracy of

AI models in healthcare on unstructured data through a straightforward
assumption that can be made without explicit prior knowledge of the DAB
in a dataset or an external validation dataset (i.e. the most general case).

Our approach has two parts: first, to estimate the degree of DABIS in a
dataset with a specific model; and then to calibrate the test set accuracy by
that amount.Toestimate theDABIS,weassume that reliablemedical signals
(i.e. those that will externally generalize) are based on spatial or temporal
relationships of the data within a sample (i.e. the structural and semantic
features) instead of the frequency of individual pixel brightness levels, or
letters. Consider the examples in Fig. 1B. The ECG, X-ray, or sentence are
individually readily understood by experts based on the local order of their
data points (i.e. the structure of the data), and are used to train AI models.
The same experts readily understand slightly different data from another
hospital as the nature of the structure and semantic features are unchanged
(PanelC); however, theAImodels lose significant accuracy. Thedatasets are
concatenations across different hospital acquisition pathways, with higher
ratios of sick patients naturally falling under a particular X-ray scanner, for
example. Compare panels B and D, the same samples have been randomly
shuffled, altering the data’s structural features and changing its semantic
meaning. An expert can no longer interpret the data, but an AI model
trained on the shuffled data has high accuracy implying that it is learning
something different than the experts. It is not learning structural and
semantic features relevant to clinical diagnoses/interpretation, but instead
learning other features from the data’s histogram such as first-order sta-
tistical and frequency features. We argue that structural and semantic fea-
tures are more reproducible across different hospital data pathways (e.g.
different scanners), and thus better represent model performance across
different hospitals, or over time within a hospital. For example, the ratio of
dark tobrightpixels in anX-ray shouldnot beused tomake adiagnosis since
it changes based on the field of view or brand of scanner, but rather the
model should rely instead on the structure of the patient anatomywithin the
image. Based on this assumption, we hypothesized that randomly shuffling
spatial and temporal components of the data will remove the most reliable
features (structural and semantic), forcing the AImodel to instead focus on
potential DAB, and giving us an estimate of the magnitude of their impact
on the model (Panel D). We further use the shuffled model accuracy to
better estimate accuracy for external datasets, when they are unavailable,
compared to current reporting methods through a calibration step (Panel
E). For a broad study of this phenomenon, we used a wide array of medical
data from multiple clinically diagnostic modalities and hospital networks.

Results
Dataset characteristics
We assembled data from 207,487 patients across five modalities of
unstructured data (X-Ray, computed tomography (CT), electrocardiogram
(ECG), lung auscultation, and clinical discharge summaries from electronic
health record (EHR) and 13 unique datasets (Table 1). We trained and
externally validated ourmodels on nine public and four internal datasets, as
described in (Table 1). All internal datasets were collected with institutional
approvals. To evaluate trained models on external validation datasets, we
had to ensure the training datasets and external datasets had the same target
labels and the same modality from a different site. For datasets that were
multiclass, we narrowed down the class labels to those that intersected
between the source and external validation datasets (Table 1). In the case of
the ECG datasets we further categorized the external validation dataset
labels into the super-classes of the source model dataset. The individual
dataset details are presented in theMethods section.Additional experiments
were also conducted with combinations of datasets denoted as A + B.

Baseline models
To assess the influence of DABIS on model performance, we trained a
common practice representativeDLmodel for each task with convolutional
neural network (CNN) models using either a DenseNet16 or an adaption of
VGGNet17 for spatial or temporal data, and a large language model (LLM)
for the natural language data in clinical discharge summaries. Specifically,
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we utilized BERT18, a bidirectional encoder pretrained with masked lan-
guage modeling, and fine-tuned it for clinical notes and discharge sum-
maries following Huang et al.19 and Jiang et al.20. Models were designed to
represent commonly used choices, not be custom designed for each pro-
blem. Each model was trained independently for the given dataset in the
normal fully supervised manner (details in Methods). We call these the
‘source’ datasets.

Estimation of bias from training data
The first step is to estimate the potential dataset bias that is learnable by the
model by using one or more data transforms to reduce meaningful signals
while preserving bias. We propose a highly general transform by randomly
shuffling all elements within each data sample along its structured axes, e.g.,
spatial, temporal, order of words, and order of letters within a word. Data
shuffling in this manner eliminates all structural and semantic features, i.e.
texture, or structure in anX-ray, orQRS complexes on an ECG, ormeaning
of a sentence, and renders the data uninterpretable to human experts.
Examples of an X-ray, an ECG, and a simple sentence are shown in Fig. 1B,
with corresponding shuffled samples in panel D. We hypothesize that if a
dataset is free ofDABwith respect to a particularmodel then therewill be no
hidden features left for a model trained on shuffled data to learn, and its
accuracy will be that of a purely random model. Conversely if there are
hidden DAB, the resultant trained model will have greater than random
accuracy. The only preserved information after shuffling are data histo-
grams, which we demonstrate as being unconsciously, at least to the
researchers, over-emphasized by the models. Random shuffling is repeated
for each iteration (epoch) through the entire dataset. We do not shuffle
across data channels, e.g. leads of an ECG, as we consider them to have
independent biases. A pseudocode algorithm is presented in Alg. 1. The

accuracy of thesemodelswhen trained and evaluated on shuffled data forms
our DABIS estimate, PDABIS.

Next, theDABIS estimate can be used to predict themodel accuracy on
an unseen external dataset by calibrating it as follows:

PEst ¼ PSource � PDABIS þ �O ð1Þ

where PEst is our estimated performance on external data, PSource is the
performanceof amodel trained in thenormalmanner on thedataset,PDABIS
is the performance of the model trained on shuffled data, and �O is the
accuracy of a purely randommodel. For our experiments we used the well-
reported area under the receiver operating curve (AUROC). The AUROC
treats all classes as equally probable and is thus invariant to the underlying
class distribution enabling fair performance comparisons across diverse
datasets with different target populations and diseases. For multi-class
problems, the average AUROC is reported. For AUROC we set �O ¼ 0:5,
indicating a randommodel. During the bias estimation and correction, we
similarly calibrate the ROC curves themselves. We present the pseudocode
of the entire process in Alg. 2.

Next we compared our estimated external accuracy, PEst, to the accu-
racy obtained on amatched external dataset, PExt (where available). Table 2
shows the source dataset model test set accuracy, estimated DABIS, the
resultant estimated external accuracy, the obtained external dataset accu-
racy, the difference between source and external accuracies, the difference
between estimated and external accuracy, and the accuracy obtained when
running a model trained on shuffled source data on shuffled external data.
Using the above technique, we also estimated the ROC curves in Fig. 2. For
example, with the MIMIC-CXR dataset, we measure the AUROC of a
DenseNet at 0.85. However, theMIMIC-CXRmodel only achieved 0.73 on

Fig. 1 | Data acquisition induced bias in AI systems in healthcare.Data collection
and existing/proposed AI development and validation workflows in healthcare.
A Datasets for deep learning are commonly collected across different healthcare
pathways (emergency, respirology, obstetrics, cardiology, etc.) or care networks, and
each pathway or hospital uses slightly different data acquisition hardware and
protocols. BModels are reported to have clinical-level accuracy, but they do so by
learning hidden non-semantic and non-structural cues from the acquisition path-
way C The performance does not generalize to other hospitals with different data

acquisition pathways.We hypothesize that this is because themodels have learned to
use subtle data acquisition features as surrogates of diagnoses. DWe randomly
shuffle the data within each patient sample to suppress structural and semantic
information. If datasets were unbiased, resultant models would have near zero
accuracy, but their performances are higher than anticipated. E In our proposed
workflow, data acquisition bias induced shortcut learning (DABIS) estimated using
signal shuffling enables the reporting of calibrated accuracy measures that are more
reflective of external validation accuracy.
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the CXP dataset. This is a substantial drop in performance, indicating that
the AI learned multiple shortcuts that failed to generalize outside of the
original institution. Other dataset pairs yielded similar conclusions. In each
case, there was a marked performance drop on the external dataset that is
well estimated by equation (1). Specifically, there was a significant potential
performance drop of 23% acrossmultiple datasets andmodalities. This 23%
reduction in performance is calculated by subtracting our average PDABIS
estimate of 73% by 0.5, as any AUROC above random, i.e. 0.5, repre-
sents bias.

We further evaluated a scenariowhere two datasets (MIMIC-CXR and
CheXpert) were combined, observing a combined bias (PDABIS) of 0.61.
Other clinical-ML studies have combined datasets frommultiple hospitals,
either with or without federated learning, to improve generalizability ofML
models. To experiment with this we combined different pairs of datasets,
(CXR and CXP), and (CXR and NIH). Our results demonstrate that
combining twodatasets does notmitigate bias. TheCNNwas instead able to
learn and apply the distinct biases of each dataset, perhaps by first identi-
fying the dataset the sample belongs to and then applying the corresponding

Table 1 | Dataset Characteristics

Database #Patients #Samples Modality #Classes Classes (Evaluated classes are in bold)

MIMIC-CXR 65379 377095 X-Ray 14 No Finding, Enlarged Cardiomediastinum, Cardiomegaly,

CXP 64540 223414 X-Ray Lung Opacity, Lung Lesion, Edema, Consolidation,

MIMIC-
CXR+CXP

98964 300000 X-Ray Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion,

MIMIC-
CXR+NIH

62545 172562 X-Ray Pleural Other, Fracture, Support Devices

NIH 30763 111788 X-Ray 15 Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion, Emphysema, Fibrosis,
Hernia, Infiltration, Mass, No Finding, Nodule, Pleural Thickening, Pneumonia, Pneumothorax

COVID-Kaggle 10192 21165 X-Ray 4 COVID Positive, Normal, Lung Opacity, Viral Pneumonia

COVID-Internal 2962 10731 X-Ray 2 COVID Positive, Normal

ILD-Diag 3182 4394 CT 2 ILD, No ILD

ILD-Plan 503 503 CT 2 ILD, No ILD

PTB-XL ECG 18885 21837 ECG 5 Conduction Disturbance, Hypertrophy, Myocardial Infarction, ST/T Change, Normal ECG

LUDB 157 157 ECG 2 Conduction Disturbance, Hypertrophy

ICBHI 97 866 Auscultation 2 Normal, Abnormal

JUST 243 243 Auscultation 2 Normal, Abnormal

MIMIC-III 4292 26244 EHR 2 Readmission, no readmission

EHR-Int 6292 7263 EHR 2 Readmission, no readmission

Total unique: 207487 805700

Details of datasets sizes and label classes used in experiments. All datasets were split by 80/20 with the exception of external validation only datasets: COVID-Internal, LUDB, and JUST. All dataset splits
occurred at thepatient level.PublicDatasets:MIMIC-CXR (Medical InformationMart for IntensiveCare-Chest X-ray),MIMIC-III, StanfordCheXpertChest X-rays (CXP), COVID-Kaggle,National Institute of
Health (NIH) X-ray dataset, Physikalisch-Technische Bundesanstalt-XL ECG (PTB-XL), Lobachevsky University Electrocardiography Database (LUDB), International Conference on Biomedical Health
Informatics (ICBHI 2017), Jordan University of Science and Technology Faculty of Computer and Information Technology & King Abdullah University Hospital (JUST). Internal Datasets: Interstitial Lung
Disease CT (ILD-Diag, and ILD-Plan), COVID Internal(COVID-Int), Electronic Health Record (EHR-Int) clinical discharge summaries.

Table 2 | Comparison of Source Data Model Performance, Estimated External Validation Performance, and Observed External
Validation Performance on 13 Datasets and 5 Modalities

Source Dataset PSource PDABIS PEst Ext. Dataset PExt Δ(PSource, PExt) Δ(PEst, PExt) Shuffled Ext.

CXR 0.85 [0.85-0.85] 0.63 0.73 [0.72-0.73] CXP 0.73 [0.73-0.74] 0.12 0.00 0.50

CXR 0.85 [0.85-0.85] 0.63 0.73 [0.72-0.73] NIH 0.76 [0.76-0.77] 0.09 -0.03 0.51

CXP 0.79 [0.79-0.79] 0.57 0.72 [0.72-0.73] CXR 0.77 [0.77-0.77] 0.02 -0.05 0.45

CXP 0.79 [0.79-0.79] 0.57 0.72 [0.72-0.73] NIH 0.76 [0.76-0.77] 0.03 -0.04 0.50

CXR+CXP 0.82 [0.82-0.82] 0.61 0.72 [0.71-0.72] NIH 0.77 [0.77-0.78] 0.05 -0.05 0.51

CXR+NIH 0.85 [0.84-0.85] 0.68 0.67 [0.66-0.67] CXP 0.69 [0.69-0.69] 0.16 -0.02 0.50

COVID-Ext 0.99 [0.98-0.99] 0.80 0.68 [0.67-0.69] COVID-Int 0.64 [0.63-0.65] 0.36 0.04 0.53

ILD-Diag 0.95 [0.93-0.96] 0.85 0.60 [0.58-0.62] ILD-Plan 0.66 [0.59-0.73] 0.29 -0.06 0.52

PTB-XL ECG 0.90 [0.89-0.91] 0.88 0.52 [0.52-0.53] LUDB 0.70 [0.62-0.79] 0.21 -0.18 0.60

ICHBHI 0.97 [0.90-1.00] 0.91 0.57 [0.50-0.67] JUST 0.60 [0.38-0.81] 0.37 -0.03 0.51

MIMIC-III 0.72 [0.68-0.76] 0.63 0.59 [0.54-0.63] EHR-Int 0.58 [0.56-0.60] 0.14 0.01 0.51

Average: 0.87 0.73 0.64 0.68 0.20 -0.04 0.52

Results of AUROCmodel performanceandbias estimates on validation and external datasets including 95%confidence intervals [A-B].PSource, PDABIS, PEst, PExt, are the source,DABIS, calibratedexternal
estimate, and external AUROCs, respectively. Where a dataset appears in multiple rows, averages are calculated first across instances of the dataset, then across all datasets.Δ refers to the difference in
AUROCbetween two estimates. Values in theΔ(PEst, PExt) column that are boldedhighlight instanceswhere ourDABISestimate outperforms theΔ(PSource, PExt) column.MIMIC-CXRwas shortened toCXR
in this Table. Est. and Ext. refer to estimated and external, respectively. Shuffled Ext. refers to results obtained by validating models trained on shuffled source datasets on shuffled external datasets.
Reporting AI model accuracy without external validation overestimates model performance by 20%, whereas our method underestimates it by 4% on average.
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per-hospital biased model shortcuts. For the (CXR and CXP) combination
we used theNIHX-ray dataset as a third holdout set, and noted an observed
drop inperformanceby5%(0.82 to 0.77). BypairingMIMIC-CXRandNIH
datasets, and using the CheXpert as the external dataset role we again
observed a lack of generalizability. Interestingly the NIH dataset was con-
sistently easier to generalize to than MIMIC-CXR or CheXpert, potentially
owing to less complex cases.

Finally, we investigated our assumption that our shuffled data trans-
form represents true shortcuts. We trained a model on shuffled data and
tested that model on shuffled external validation data. The average shuffled
model accuracy was 52% (Table 2), implying that 2% of our estimated
DABIS did generalize to external datasets.

Discussion
The findings of our study can be summarized as follows: data from 207,487
patients were collected across five modalities from 13 clinical datasets.
Validationofmodelsonexternaldatasetsdetermined that traditional training
and evaluation methods overestimated accuracy on average by 20% due to
hiddenDABIS. In contrast, through estimation ofDAB andmodel shortcuts
our proposedmethod predicts external datasetmodel performance towithin
an average of 4% of measured performance across a multitude of datasets,
tasks, andmodalities (X-Rays, CTs, ECGs, clinical discharge summaries, and
auscultation data). Additionally, we demonstrate that significant DAB exists
in various large passively collected open-source medical datasets. For
example, patients with presumed (but unconfirmed) interstitial lung disease

Fig. 2 | Comparison of source data model receiver operator curves (ROC), esti-
mated external validation ROC, and observed external validation ROC on 13
datasets and 5 modalities.Model receiver operator characteristic curves on source
(a, c, e, g, i, k,m, o, q) and external validation datasets (b, d, f, h, j, l, n, p, r, s, t).
Source dataset figures include the corresponding DABIS estimate (gray) and the

external dataset figures include our estimated curves (yellow). Shaded regions depict
the 95% confidence interval. Notice that the ROC curves on the external test datasets
(green) aremuch better approximated by our predicted curves (yellow) than they are
by the traditional source test dataset curves (red). MIMIC-CXR was shortened to
CXR in this figure.
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may be biased toward specific or optimized imaging protocols that are
intended to confirm the diagnosis, versus unsuspected cases that receive
generic screening protocols. Taken together, our results shed light on a
hidden driving factor for the lack of generalizability of AI models across a
broadspectrumofunstructuredclinical databydemonstrating the significant
capacity of AI to learn misleading features from shortcuts.

To measure bias, we identified a heterogenous DABIS metric to esti-
mate external dataset accuracy in unstructured data using one or more
source datasets. We demonstrate that AI model results can be calibrated by
measuring their bias tomore reliablypresentmodel accuracy inpublications
with and without external data, and to improve the search for novel models
that are less susceptible to DAB. While our algorithm does not completely
capture all bias, our DABIS estimationmethod brings us an average of 16%
closer than currentmethods, improving our understanding of accuracy and
bias within medical AI models and datasets.

There are several limitations in this study that should be considered.
Although focusing on DAB, it is also important to evaluate potentially
discriminative biases within datasets as AI algorithms can potentially per-
petuate inequalities and socioeconomic disparities21. Furthermore, future
research is encouraged on other unstructured dataset modalities such as
ultrasound, magnetic resonance imaging (MRI), positron emission tomo-
graphy (PET) scans and wearables. With 866 samples our smallest source
dataset is still reasonably large in the broader context of healthcare research.
For smaller source datasets cross-validation could be used to better estimate
PSource, and PDABIS, with PEst calculated from the means across folds.

A related area of study is in detecting distribution shifts post-model
deployment22. Distribution shifts, in particular covariate shifts, occur when
there are notable alterations in the input features of the dataset between
training and external deployment. DABs that change (either over time, or
between hospitals) are both examples of covariate shifts. The shortcut fea-
tures (DAB) shift, while the reproducible features (what we argue are more
structural or semantic in nature) remain more fixed. There are other
examples of covariate shifts, such as when a hospital changes from CT to
MRI, that are not associated with DAB and our algorithm would not mea-
sure or anticipate them. There are already studies detecting and under-
standing distribution shifts in the literature post-model deployment. In
contrast to other works, our model’s focus is designed as a pre-deployment
method to predict how themodel will respond to potential shifts in DAB. In
deployment, our model should be paired with post-deployment methods
that monitor for non-DAB changes, including label shifts.

While our model focuses on DAB, it is also important to note that
demographic information such as age, race and gender can lead to under-
lying model biases that may influence the AI model to taking shortcuts23.
However, we note that in addition to inter-hospital scanner variations,
demographic biases could also be present asDABIS and thus are potentially
accounted for in PEst. For example, sex impacts both disease prevalence and
patient size andwould thus be learnable to an extent by the shuffledmodels.
Incorporatingdemographicsdirectly intoourDABIS estimatemay improve
its explainability in understanding the source of DAB, and is a direction for
future work.

Our proposed shuffling bias transform assumes no prior knowledge of
the bias in a dataset, and it is important to consider its limitations in shortcut
detection. Anything that changes the histogram of the data for one disease
class of patients more often than another disease class will be well detected.
These could be visible or invisible biases to the human eye. Examples of
invisible biases include scanner setting variations, whereas visible biases
include a ruler or ECG leads on anX-ray. Each of these biases creates unique
histogram features consistent across patients where they are prevalent. This
also assumes that such biases in these examples have a greater influence on
the histogram compared to diseases, otherwise the model might falsely
mistake disease features for biases (see next paragraph). Our results strongly
support that our assumptions hold for various unstructured datasets, dis-
eases, and modalities. Although our model is capable of detecting invisible
and visible biases that modify the data histogram, it does not measure them
separately and therefore cannot differentiate between these two types of

biases. Biases that are structural in nature, but do not change the histogram,
would be undetected. For such datasets, other data transforms would be
needed to obscure the human-intelligible signal while preserving the bias.
Many additional transformers are possible with specialized knowledge of
the task, like masking out the lungs in images for a pneumonia detection
model. In such cases, algorithm 2 still holds by replacing our shuffling
method with another transform and thus still provides a way to better
estimate external accuracy.

Our accuracy estimation algorithm makes two key assumptions: that
features suppressedby thebias transformwill not generalize to external data,
and the best effort is made to learn the bias with said model. The first
assumption explains how our algorithm tends to underestimate model
accuracy on external data in Table 2, some reproducible medical signal
remains in the shuffled image that still generalizes to external data. Vali-
dating our shuffled models on shuffled external datasets shows that on
average 2%of theDAB is itself reproducible atmultiple hospitals. However,
it is debatable if such features are desirable or shortcuts. Obesity is a risk
factor for cardiomegaly, but could also be distinctly observable in an X-ray
histogram, and thus learnable in the shuffled image. If obesity were elimi-
nated in a novel population, an AI model that relied upon it would lose
accuracy, making highly accurate models without surrogates more desir-
able. For the second assumption, one could fail to appropriately tune
hyperparameters and claim no bias exists. In these instances open science
and data remain a powerful mitigation tool.

In contrast to current reporting procedures, our algorithm tends to
underestimate model accuracy on external data. There are two potential
causes: we slightly overestimate the DAB (as discussed above), or themodel
gravitates towards an unbiased feature instead (this could explain the 2% of
our external accuracy estimation error not accounted for by DAB over-
estimation in the shuffled model column). Models are naturally more
shortcut-resilientwhen the true signal is easier to detect than theDAB, e.g., a
model to detect prostheticmetal hips on pelvic CT.However, it is important
to specify that our method is not a strict lower bound of external perfor-
mance.Model accuracywill be overestimated in the presence ofDAB that is
undetectable by the bias transform, but that still causes a shortcut, as may
potentially be the case in MIMIC-III.

Generally,weobserved thatmodel accuracywaswell correlatedwith its
DABIS estimate (Spearman’s rank correlation 0.80), but not with the dis-
crepancy between our estimated accuracy and the true external accuracy
(Spearman’s rank correlation 0.24). Together these imply that models
claiming higher accuracy may be primarily due to DABIS, but that our
method is well positioned for low and high bias datasets alike.

While combining multiple datasets for model training and validation
would ideally yield the best model, models can learn to identify the data
source and fit to the associatedDABof that source, resulting in a substantial
drop in performance upon external validation3. Federated learning is an
emerging ML technique that enables privacy preservation and keeps data
onsite while allowing the AI model exposure to a more diverse dataset24. A
large federated COVID-19 study, validated data using data from 20 hos-
pitals achieving an AUC of over 0.92 on their model with strong general-
ization to independent sites, demonstrating that DABIS can potentially be
overcome with federated learning and sufficient data. However, federated
learning would not help address systemic biases or those that are common
amongst institutions. Although we encourage the exploration of federated
learning techniques, we further recommend having completely held-out
datasets from independent hospitals for validation and using our proposed
approach tomeasure potential bias across the training institutions.Our data
indicates that combining different datasets yields different generalizability,
implying a nuanced relationship that needs further study.

Although there are no universally accepted laws in regard to ML
practices, groups are starting to join to build guidelines. Point four of theML
guiding principles recently published by the U.S. FDA, Health Canada and
the UK’s Medicines and Healthcare Products Regulatory Agency25 states
that training and testing sets should be non-intersecting and that data and
acquisition site factors should be considered. Our proposed method
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provides a means to specifically quantify how those factors may impact a
model, which could greatly improve regulatory analysis.

In conclusion, we have provided key insights to AI model accuracy
degradation on external datasets and are the first to develop simple yet
powerful methods to estimate shortcut learning of data acquisition biases
within unstructured datasets and calculate the expected accuracy of resul-
tant models on external datasets. With our findings, methods, and recom-
mendations we aim to both enable and promote the safer integration of AI
models into clinical workflows. By providing a means to quantify this
problemwe also pave the way for research into new solutions in the form of
new models or dataset processing methods that mitigate these biases.

Methods
Datasets
Thirteen datasets of unstructured data were used in this study including
both previously published datasets and unpublished internal datasets. We
trained our models on public datasets: MIMIC-CXR (Medical Information
Mart for Intensive Care-Chest X-ray)26, MIMIC-III27, Stanford CheXpert
Chest X-rays (CXP)28, COVID-Kaggle29, Physikalisch-Technische Bunde-
sanstalt-XL ECG (PTB-XL)30, and the International Conference on Bio-
medicalHealth Informatics (ICBHI 2017) respiratory sounddatabase31; and
a novel Interstitial Lung Disease CT (ILD) dataset from two disjoint
acquisition pathways (ILD-Diag, and ILD-Plan). We externally validated
ourmodels usingdatawith the samemodality fromadifferent site including
the National Institute of Health (NIH) X-ray dataset32, Lobachevsky Uni-
versity Electrocardiography Database (LUDB)33, the respiratory sound
database from the Jordan University of Science and Technology Faculty of
Computer and Information Technology & King Abdullah University
Hospital (JUST)34, and novel COVID-19 X-ray, ILD, and EHR datasets
from within our hospital network. Our models, sample size, training, and
testing split are outlined in (Supplementary Table 1) and included in our
online repository.Dataset details follow. For further information seeoriginal
dataset publications.

Publicdatasets.MIMIC-CXR:MIMIC-CXR(Medical InformationMart
for Intensive Care-Chest X-ray)is a set of 377,110 chest X-rays by Beth Israel
Deaconess Medical Center collected between 2011 - 2016. The data was
acquired from routine care over 5-years, with the same labels. From 14
disease classes and fromwhich we select the 5 classes Cardiomegaly (64,346
X-rays), Edema (36,564 X-rays), Consolidation (14,675 X-rays), Atelectasis
(65,047 X-rays), and Pleural Effusion (76,957 X-rays).

MIMIC-III: MIMIC-III is an electronic health record (EHR) database
of de-identified health data from the Beth Israel DeaconessMedical Center.
This dataset has over 40,000 patients and contains data on vital signs,
laboratory measurements, medications, fluid balance, chart notes from
healthcare providers, procedure codes, diagnostic codes, imaging reports,
length of stay in the hospital, survival data, etc. The data was acquired from
routine care over 11 years between 2001-2012. In this study, we focus on
predicting 30-day readmission using clinical discharge summaries19. Stan-
ford CXP: Stanford CheXpert Chest X-rays (CXP) is a recently released
cohort of a set of 224,316 chest X-rays from Stanford Hospital. The data is
acquired from routine care over 5-years, with a diverse set of labels (No
Finding, Enlarged Cardiom., Cardiomegaly, Lung Lesion, Lung Opacity,
Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Plural
Effusion, Pleural Other, Fracture, and Support Devices). From this diverse
set of labels we selected 5 classes Cardiomegaly (27,000 X-rays), Edema
(52,246 X-rays), Consolidation (14,783 X-rays), Atelectasis (33,376 X-rays),
and Pleural Effusion (86,187X-rays).NIH: The National Institute of Health
(NIH)-14 dataset since its original publication is now a set of 112,120
frontal-view de-identified X-rays released in png format. It consists of labels
from14 disease classes and fromwhichwe select the 5 classes Cardiomegaly
(2763 X-rays), Edema (2295 X-rays) Consolidation (4645 X-rays), Atelec-
tasis (11,529 X-rays), and Pleural Effusion (13,276 X-rays) which are
common with the MIMIC-CXR and the Stanford CXP dataset for evalua-
tion. The original train-test splits released by the authors have been retained

in our experiments too with no overlap occurring between the two sets.
COVID-19 Kaggle: The COVID-19 Radiography Database from Kaggle is
a database of chest X-rays images from 3616 COVID-19 positive images,
10,192 normal, 6012 lung opacity(non-COVID) and 1345 viral pneumonia
images. For label alignment we used only COVID-19 positive and normal
images. This dataset was curated from researchers at Qatar University,
Doha, Qatar, and the University of Dhaka, Bangladesh and collaborators
from Pakistan and Malaysia. PTB-XL: The Physikalisch-Technische Bun-
desanstalt XL(PTB-XL) ECG dataset is a large dataset of 21837 clinical 12-
lead ECGs from18885 patients of 10 second length recordedon Schiller AG
devices over 7-years from 1989-1996 with labels of Normal ECG, Myo-
cardial Infarction, ST/T Change, Conduction Disturbance, and Hyper-
trophy. Fromthe5 classesweutilizedConductionDisturbance (4907ECGs)
and Hypertrophy (2655 ECGs). LUDB: Lobachevsky University Electro-
cardiography Database (LUDB) database consists of 10-second 12-lead
ECG signal records acquired on a Schiller Cardiovit AT-101 cardiograph.
They collected ECGs from200 patients with various cardiovascular diseases
between 2017-2018 at the Nizhny Novgorod City Hospital No 5. To per-
form external validation on the PTB-XL model we filtered for patients that
had cardiovascular diseases that fell into the “conduction disturbance” (66
ECGs) or “hypertrophy” (142 ECGs) classes which are classes also found in
the PTB-XL ECG dataset. From the 200 Lobachevsky ECG dataset, 157
patients were selected for external validation for having an overlapping
diagnosis with the PTB-XL ECG dataset. There were 91, 15, and 51 patients
classified as hypertrophy, conduction disturbance and both hypertrophy an
conductiondisturbance, respectively. ICBHI: The InternationalConference
on Biomedical Health Informatics (ICBHI) dataset is a publicly available
audio samples dataset from the ICBHI 2017RespiratoryChallenge31 thatwe
used as our training dataset. This has 5.5 hours of respiratory data from 126
patients with 6898 respiratory cycles, acquired from the Respiratory
Research and Rehabilitation Laboratory (Lab3R). There were a total of 35
normal samples and831 abnormal samples. JUST: The JordanUniversity of
Science and Technology Faculty of Computer and Information Technology
and King Abdullah University Hospital (JUST) dataset is a second set of
audio data for evaluation comes from the King Abdullah University Hos-
pital in Jordan. This can be considered as equivalent to the field acquired
data, with data from 112 patients being captured via a Bluetooth attached
electronic stethoscope34. These have been annotated for pulmonary lung
conditions. There were a total of 105 normal samples and 138 abnormal
samples. For label alignment between the two sets of data, we reduce the
labeling to normal vs abnormal.

Internal datasets. All internal datasets were collected with institutional
approvals and consent was waived due to the retrospective nature of the
study, and was determined to be minimal risk to patients. ILD-Diag:
Interstitial Lung Disease (ILD) diagnostic CT image volumes were collected
from the Joint Department of Medical Imaging (JDMI) including Sinai
Health System, Toronto Western Hospital, Princess Margaret Cancer
Centre, Toronto General Hospital, and Women’s College Hospital. Diag-
nostic CT images were acquired between 2010 and 2018. Image volumes are
predominately 3 mm slice-thickness, but where that was unavailable the
image volume with slice-thickness nearest 3 mm was taken. In total there
were 3028 samples without ILD and 1366 abnormal samples with ILD
gathered for AI training. All 1366 abnormal samples with ILDwere double-
read by a cardiothoracic radiologist with 15 years of experience for con-
firmation. ILD-Plan: For external accuracy assessment of the ILD model
radiotherapy CT simulation images were acquired between 2004 and 2015
for all patients undergoing stereotactic body radiation therapy planning for
lung cancer at Princess Margaret Cancer Centre. These radiotherapy
simulation images were acquired on independent scanners in a separate
hospital department, with distinct imaging protocols and hardware (e.g. 2
mm slices, respiratory-correlated image reconstruction, modified patient
positioning). There were no other exclusion criteria. For this external
accuracy dataset, there were 448 samples without ILD and 55 abnormal
samples.COVID-Int: Chest X-ray images acquired at theUniversityHealth
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Network from the beginning of the COVID-19 pandemic in March 2020
thru to November 2020. All images were included for which a patient had a
COVID-19 polymerase chain reaction (PCR) test. Sampleswere determined
positive for COVID-19 based on ground truth by PCR tests. Of the images
acquired, 5131 were acquired on a fixed chest X-ray and 5600were acquired
on a portable chest X-ray. Therewere a total of 3409COVIDpositive X-rays
and 7322normalX-rays.EHR-Int: Electronic health record (EHR) data that
includes raw text of clinical discharge summaries of patients was collected
during January 2020 to August 2020 from University Health Network
hospitals (TorontoWesternHospital, PrincessMargaretCancerCentre, and
Toronto General Hospital). There were 6278 no readmission samples and
986 readmission samples.

Data processing
Chest-X-rays: For the X-ray datasets MIMIC-CXR,CXP,NIH, the
samples were downsized to 320 × 320 pixels for input into the CNN.
During the data download, a few files were corrupted and these were
removed during the data processing stage (1 from CXP and 15 from
MIMIC-CXR datasets). ECG: All 12-lead ECG data were in the lead
order of [’i’, ’ii’, ’iii’, ’avr’, ’avl’, ’avf’, ’v1’, ’v2’, ’v3’, ’v4’, ’v5’, ’v6’], with a
sampling rate of 1000. COVID-X-rays: The COVID-X-rays were
obtained from two sources. The external (public) set was obtained from
Kaggle35 and were made available in png format. The samples for the
internal dataset were obtained as DICOM files and the array repre-
sentation was used. The samples were resized to 256 × 256 and fed into
the CNN. ILD: The data samples were resampled to 256 × 256x128
(height x width x depth) voxels from corresponding digital imaging and
communications in medicine (DICOM) data files before being fed into
the CNN. Auscultation Data: The audio samples were trimmed to
5 seconds and converted into mel-spectrogram images. This was then
resized to 224 × 224 to be fed into the CNN. For label harmonization
between the ICBHI and JUST datasets, normal/healthy labeled data was
considered as “Normal" and samples with labels asthma, COPD,
Pneumonia were considered as “Abnormal" and this was reduced to a 2
class classification problem. EHR: Clinical discharge summaries
required the following pre-processing steps: conversion of words into
lowercase, removal of line breaks and carriage returns, de-identification
of personally identifiable info found inside brackets, removal of special
characters such as “=,–", and usage of the SpaCy36 sentence segmenta-
tion package. The text was split into subsequences of 318 words and
tokenized using BERT18 tokenizer. All data, except for the discharge
summary data, was normalized based on mean and standard deviation
based on population (ECGs were normalized per lead) prior to input
into the AI models.

Model architecture and training parameters
X-ray models: To evaluate DABIS in chest x-rays we used a DenseNet-121
CNN model for classification of disease targets. We used Adam optimizer
with a learning rate set to 1e− 4 and beta values set to (0.9, 0.999). The
models were trained for 10 epochs with learning rates being reduced by a
factor of 10 in case of no AUC improvement on the validation set every bE3c
epochs where E is the number of epochs. For smaller datasets where con-
vergence was not achieved in 10 epochs ie. there was improvement to AUC
on the validation set on the 10th epoch, the trainingwas allowed to continue
training for 50 epochs. ECG model: To evaluate DABIS in ECG, a simple
five layer convolutional neural networkmodel that was based onVGG-1617

architecture was used for classification of disease targets. Training was
performed for 50 epochs with the same optimizer settings as that of the
X-Ray model training. CTmodel: For the ILD Dataset, a 3D variant of the
VGG network was used with each 2D convolution layer replaced with a 3D
convolution. It consistent of 14 layers including a fully connected layer. The
configuration for the layers is as [4, ’M’, 8, ’M’, 16, 32, ’M’, 32,32, ’M’, 64, 64,
’M’], with ’M’ representing a 3D maxpooling layer and the numbers
representing the number of filters in each convolution layer. Auscultation
model: A ResNet-34 model was used to classify the lung sounds data. The

final fully connected layer had two output nodes for the normal and
abnormal classes respectively. EHR models: To evaluate DABIS in elec-
tronic health record data, we used the ClinicalBERT large language model
for sequence classification on BERT tokenized text from clinical discharge
summaries19. ClinicalBERT is aBidirectional EncoderRepresentations from
Transformers model18 fine-tuned for medical text classification tasks.

Algorithm 1. Data Shuffling
Input: Data Tensor D of dimension B ×C ×H ×W
Output: Shuffled Data Tensor D of dimension B ×C ×H ×W
1: for sample s in batch B do
2: permutation_idx←Random Permutation(H,W)
3: for channel ch in channels C do
4: Randomly permute in-place D[s, ch, permutation_idx]
5: end for
6: end for
7: return D

Algorithm 2. Estimate External Accuracy
1: function TRAIN_AND_TEST (model, dataloaders)
2: Define loss function and optimizer
3: Initialize early stopping counter to zero
4: Initialize best AUC to zero
5: Train the model:
6: for each epoch do
7: for each batch in the train dataloader do
8: Make a forward pass through the model
9: Compute the loss
10: Backpropagate the gradients and update the weights
11: end for
12: Evaluate the model on the validation dataloader
13: Compute the AUC on the validation set
14: if the AUC is better than the current best AUC then
15: Update the best AUC
16: Save the model weights
17: Reset the early stopping counter to zero
18: else
19: Increment the early stopping counter by 1
20: end if
21: if the early stopping counter reaches a pre-definedmaximum then
22: Stop training and return the best model weights
23: end if
24: end for
25: Evaluate the model on the test dataloader
26: Compute the AUC on the test set
27: return AUC on the test set
28: end function
29: function ESTIMATE_EXTERNAL_ACC (SourceData)
30: Create non-overlapping train, validation, and test sets
31: Create train, validation, and test dataloaders
32: Define model and initialize parameters
33: PSource←TRAIN_AND_TEST (model, dataloaders)
34: Reset model parameters
35: Update dataloaders to apply Data Shuffling on each batch
36: PDABIS←TRAIN_AND_TEST (model, dataloaders)
37: Set �O 0:5 ⊳(performance of a purely randommodel, .5 since it

is AUROC)
38: PEst  PSource � PDABIS þ �O
39: returnPEst
40: end function

Model performance
Performance for multi-class models were evaluated using Area Under the
Receiver Operating Characteristic Curve (AUROC) in a “One vs All”
method. The AUROC can be understood as the probability of correctly
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classifying a random pair of samples as class one versus two.We calculated
the confidence intervals using 1000 bootstraps and the data resampling
function from roc-utils37.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
TheMIMIC-CXR, MIMIC-III, CXP, NIH, COVID-Kaggle, PTB-XL ECG,
LUDB, ICBHI and JUST datasets are all publicly available. Requests for the
raw images and associated Digital Imaging and Communications in Med-
icine data in the ILD,COVID, andEHR Internal datasets should be directed
to C.M.

Code availability
Analysis code for building dataset splits, training models, estimating bias,
and creating estimated ROC curves is available at https://github.com/
mcintoshML/Data-Bias-Analysis.
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