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Fundus fluorescein angiography (FFA) is a crucial diagnostic tool for chorioretinal diseases, but its
interpretation requires significant expertise and time. Prior studies have usedArtificial Intelligence (AI)-
based systems to assist FFA interpretation, but these systems lack user interaction and
comprehensive evaluation by ophthalmologists. Here, we used large language models (LLMs) to
develop an automated interpretation pipeline for both report generation and medical question-
answering (QA) for FFA images. The pipeline comprises two parts: an image-text alignment module
(Bootstrapping Language-Image Pre-training) for report generation and an LLM (Llama 2) for
interactive QA. The model was developed using 654,343 FFA images with 9392 reports. It was
evaluated both automatically, using language-based and classification-based metrics, and manually
by three experienced ophthalmologists. The automatic evaluation of the generated reports
demonstrated that the systemcangenerate coherent and comprehensible free-text reports, achieving
a BERTScore of 0.70 and F1 scores ranging from 0.64 to 0.82 for detecting top-5 retinal conditions.
The manual evaluation revealed acceptable accuracy (68.3%, Kappa 0.746) and completeness
(62.3%, Kappa 0.739) of the generated reports. The generated free-form answers were evaluated
manually, with the majority meeting the ophthalmologists’ criteria (error-free: 70.7%, complete:
84.0%, harmless: 93.7%, satisfied: 65.3%, Kappa: 0.762–0.834). This study introduces an innovative
framework that combines multi-modal transformers and LLMs, enhancing ophthalmic image
interpretation, and facilitating interactive communications during medical consultation.

Fundus fluorescein angiography (FFA) is a valuable diagnostic imaging
technique that uses the administration of a fluorescent dye to evaluate the
retinal circulation and visualize blood flow. Compared to other imaging
modalities such as fundus photography, FFA has significant advantages in
evaluating various vascular ocular diseases, such as diabetic retinopathy
(DR), central serous chorioretinopathy (CSC), and retinal vein occlusion
(RVO), as it provides more detailed and dynamic vascular images1. How-
ever, the increased level of detail in the images also means a more chal-
lenging interpretation. The interpretation of FFA images requires extensive
professional expertise and comprehensive training in ophthalmology,

which may lead to a shortage of qualified FFA reports in regions lacking
retinal specialists2. Additionally, ophthalmologists frequently dedicate a
substantial amount of time and effort to writing medical reports in con-
ventional clinical practice. There is an urgent need for intelligent tools to
effectively manage these challenges.

Image-to-text conversion technology holds the potential to bridge this
gap and has made significant strides in the realm of natural images3. Pre-
vious researchhas explored the applicationof these techniques in generating
reports using FFA image data4,5. However, these studies have limitations in
terms of comprehensive evaluation by ophthalmologists. Additionally, they
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have focused solely on report generation and overlooked the importance of
providing further explanation after generating the FFA reports, a critical
step in enhancing patient comprehension of clinical information and saving
valuable time for doctors. Due to the specialized nature of these reports,
patients often struggle to understand the content fully, leading to difficulties
in addressing consultation questions and necessitating additional face-to-
face consultations. In such cases, having a model that can handle general
consultationquestionswould bebeneficial, as itwould save valuable time for
doctors and enable more patients to receive professional medical services.

Recent astonishing advancements in large language models (LLM)
have brought forth new possibilities for addressing these challenges6. Pre-
vious studies have evaluated the performance of different LLMs in oph-
thalmic question-answering (QA) tasks. For instance, Cai et al.7 assessed the
performance of ChatGPT in ophthalmology using board–style questions
and found that ChatGPT-3.5 provided correct answers in 58.8% of the
questions,whileChatGPT-4.0 achievedahigher accuracyof 71.6%.Another
study showed that GPT4-V(ision) model falls short when addressing QAs
for ophthalmic images, with the best performance on Slit lamp images only
reaching an accuracy of 42.0%8. Llama 29, the latest development in open-
source LLMs, is renowned for its flexibility and scalability. It holds promise
in various medical applications10–12, including ophthalmology, where it can
offer valuablemedical advice and assistance for ophthalmic consultations13.
However, the performance of responses generated by LLMs in addressing
queries related to ophthalmology reports has not yet been evaluated. Cur-
rently, there is also no artificial intelligence (AI) system capable of effectively
integrating FFA image-text information and providing QA interactions.

To maximize the AI-assisted interpretation of FFA images, our goal is
to develop a two-stage FFA-GPT system. By combining the capabilities of
image-text conversion models and LLMs, we aim to achieve FFA report
generation and subsequent interactiveQA, thereby reducing the reliance on
retinal specialists.

Results
The study flow chart is shown in Fig. 1. The final dataset used in the study
consisted of 654,343 FFA images paired with 9392 reports. Among these
images, 421,916 (64.5%,with 6312 reports)were for training, 76,900 (11.8%,
with 1052 reports) were for validation, and 155,527 (23.8%, with 2028
reports) were for testing. The age of the participants had a median value of
51 years, with an interquartile range of 36 to 62 years. Of the participants,
5190 (55.3%) were male. More detailed characteristics of the dataset can be
found in Table 1.

The eye conditions extracted from the original FFA reports encom-
passed a wide range of conditions commonly encountered in clinical
practice. The top five most prevalent conditions were media opacity

(11.5%), proliferative diabetic retinopathy (8.5%), macular edema (7.8%),
DR (7.7%), and cystoid macular edema (7.4%). Additionally, the dataset
included several rare diseases. A comprehensive overview of the main
conditions can be found in Table 2.

Automatic evaluation
The FFA-GPT model demonstrated satisfactory performance in
generating FFA reports on the testing set, as evaluated using both
language-based metrics and classification-based metrics (see Table 3).
For language-based metrics, the model achieved the following scores:
Bilingual Evaluation Understudy (BLEU)1 = 0.48, BLEU2 = 0.42,
BLEU3 = 0.38, BLEU4 = 0.34, Consensus-based Image Description
Evaluation (CIDEr)=0.33, Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) = 0.36, Semantic Propositional Image Caption
Evaluation (SPICE) = 0.18, and Bidirectional Encoder Representa-
tions from Transformers Score (BERTScore)=0.70. These metrics
assess the quality and similarity of the generated reports compared to
the reference reports. For the classification-based metrics, we
extracted conditions from the generated reports using a keyword-
matching approach and categorized them individually. We then
calculated the classification-based metrics for each condition based
on the keyword-matching results and ranked all the conditions
accordingly. The top-5 conditions with the highest F1 scores, which
were microaneurysm, DR, arteriosclerosis, laser spots, and scar, were
selected to demonstrate the model’s ability to classify multiple con-
ditions. These conditions exhibited high specificities, all above 0.94.
The accuracy ranged from 0.88 to 0.93. The F1 scores for these
conditions were 0.82, 0.80, 0.73, 0.66, and 0.64, respectively, indi-
cating a strong overall performance in disease classification. Based on
previous studies2,14–19, we also explored the classification performance
of nine commonly diagnosed conditions using FFA (see Supple-
mentary Table 1). It can be observed that the model exhibited
acceptable classification performance for DR and DR-related lesions,
such as microaneurysm and laser scar.

Furthermore, we conducted an investigation to examinehow changing
the number of input images impacts the performance of the model. The
number of input images ranged from 1 to 12.We observed that most of the
metrics gradually improved as the number of input images increased, while
BERTScore remains stable at around 0.70. However, the performance gains
reached a plateau when at least two images were provided, particularly for
the BLEU1, ROUGE, and SPICE metrics. The performance of the model
showed greater volatility whenmeasured by the CIDErmetric. Notably, the
optimal value of 0.36 was achieved only when the number of input images
exceeded 11 (see Supplementary Fig. 1).

Fig. 1 | Schematic diagram of this study. FFA
fundus fluorescein angiography, GPT generative
pre-trained transformer, BLIP bootstrapping
language-image pre-training.
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Manual evaluation
During the analysis of the clinical applicability of FFA-GPT by ophthal-
mologists, we observed promising quality in both the model-generated
reports and answers. Figure 2 showcases an example of the integrated
interface of our model.

The quality of the reports generated by the FFA-GPT model is com-
parable to the ground truth reports. Fleiss’ kappa values indicate a good
agreement between the three graders for assessing report quality, with a
kappa value of 0.746 for completeness and 0.739 for accuracy, respectively
(see Supplementary Table 2). Figure 3A summarizes the scoring of each
rateron the generated reports in twodimensions.Onaverage across all three
raters, the generated reports with no incorrect content in 68.3% of cases,
indicating the accuracy of the reports in describing the anatomical location
of lesions andfluorescent imaging characteristics. Reportswithminor errors
accounted for 25.7%, while reports with significant errors accounted for
6.0%. These errors were mainly attributed to inaccuracies in describing
fluorescence-like features and misidentification of complex lesions, such as
choroidal mass. In terms of completeness, approximately 62.3% of the
generated reports had no missing content. In 31.0% of the reports, there
were minor instances of missing content, such as extremely small lesions.
However, 6.7% of reports had a significant amount of missing content,
primarily due to unclear imaging leading to false negatives. Examples of
different grades of generated reports are shown in Supplementary Fig. 2.

After thefirst stage evaluation of report generation,we identified 20out
of 31 conditions (approximately 64.5%) that received positive feedback in
the professional assessment. These cases meet the criteria to proceed
through the Guard mechanism and can be forwarded into the Generative
Pre-trained Transformer (GPT) module. The negative examples and their
manually adjusted versions through the Guard mechanism, as well as
subsequent QA examples based on these reports, are provided in Supple-
mentary Fig. 3. It can be observed that the unadjusted report missed
important lesions, andQAbased on the error report couldmislead patients.
This demonstrates that automatic report generation simply serves as an
assistance, the report distributed to patients cannot be fully automatic
without the supervision of ophthalmologists. Out of the 20 question sets, we
randomly selected 5 questions and combined them with the 20 approved
cases to create 100 QA pairs, representing 20 distinct diseases. This dataset
serves as the evaluation set for QA.

The evaluation results of the generated answers showed an average of
70.7% of the responses were virtually error-free, 24.7% had minor errors,
and 4.6% had major errors for accuracy. In terms of completeness, an
average of 84.0% of the answers provided complete responses to the ques-
tions related to the reports, 13.7% hadminor omissions, and only 2.3% had

significant omissions. Regarding the potential harm caused by the answers,
the majority (over 93.7%) were deemed safe. However, two answers were
identified as potentially causing severe harm. One answer suggested
incorrect hormone therapy for CSC patients, while another suggested
unreliable at-home light therapy for patients with RVO. In terms of satis-
faction, themodel achieved a satisfaction rate of 65.3%. The Fleiss’ kappa of
the three raters ranged from 0.762 to 0.834, indicating substantial to almost
perfect agreement among the raters, highlighting the reliability of the
scoring process. The scoring details of each rater for the generated answers
and the consistent results among them can be found in Fig. 3B and Sup-
plementary Table 3, respectively. Examples of generated answers with great
clinical significance in accuracy, completeness, harmfulness, and unsatisfied
are provided in Supplementary Table 4.

Discussion
In this study,wedevelopedadual-taskmodel for ophthalmic image analysis.
Firstly, we utilized a multimodal transformer to intelligently convert FFA
images into medical reports. Then, we implemented an LLM to facilitate
interactive QA. Through comprehensive automated and manual evalua-
tions, the system demonstrated reliable and satisfactory performance. This
research represents the demonstration of the large language model’s

Table 1 | Fundus fluorescein angiography dataset
characteristics

Total Train Validation Test P value

Population

No. 9392 6312 1052 2028

Age, med-
ian (IQR)

51 (36, 62) 51 (37, 62) 51 (36, 61) 50 (33, 62) 0.029

Sex, n (%) 0.115

Female 4202 (44.7) 2795 (44.3) 502 (47.7) 905 (44.6)

Male 5190 (55.3) 3517 (55.7) 550 (52.3) 1123 (55.4)

FFA images

No. 654,343 421,916 76,900 155,527

Phasea, n (%) <0.001

Arterial 39,844 (6.1) 27,738 (6.6) 4794 (6.2) 7312 (4.7)

Venous 372,725 (57.0) 239,211 (56.7) 43,778 (56.9) 89,736 (57.7)

Late 241,774 (36.9) 154,967 (36.7) 28,328 (36.8) 58,479 (37.6)

aArterial: 30 to 60 seconds; Venous: 1 to 5minutes; Late: 5 to 10minutes.
IQR=Interquartile Range, FFA=fundus fluorescein angiography.

Table 2 | The main eye conditions extracted from the fundus
fluorescein angiography reports (total N = 9392)

Conditions N (%)

Media opacity 1078 (11.5%)

Proliferative diabetic retinopathy 802 (8.5%)

Macular edema 729 (7.8%)

Diabetic retinopathy 720 (7.7%)

Cystoid macular edema 699 (7.4%)

Congenital retinal fold 374 (4.0%)

Choroidal neovascularization 338 (3.6%)

Branch retinal vein occlusion 288 (3.1%)

Severe nonproliferative diabetic retinopathy 232 (2.5%)

Uveitis 225 (2.4%)

Unremarkable changes 225 (2.4%)

Central serous chorioretinopathy 206 (2.2%)

Diabetic maculopathy 182 (1.9%)

Diabetic macular edema 182 (1.9%)

Pathologic myopia 175 (1.9%)

Nonproliferative diabetic retinopathy 164 (1.7%)

Central retinal vein occlusion 157 (1.7%)

Wet age-related macular degeneration 153 (1.6%)

Polypoidal choroidal vasculopathy 149 (1.6%)

Retinal dystrophy 116 (1.2%)

Retinitis pigmentosa 111 (1.2%)

Vasculitis 110 (1.2%)

Epiretinal membrane 109 (1.2%)

Familial exudative vitreoretinopathy 106 (1.1%)

Vitritis 106 (1.1%)

Panuveitis 92 (1.0%)

Intermediate uveitis 67 (0.7%)

Myopia 59 (0.6%)

Age-related macular degeneration 54 (0.6%)

Choroidal mass 52 (0.6%)

Retinal telangiectasia 51 (0.5%)
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potential as an assistant for generating medical reports and enabling QA
tasks to enhance FFA image interpretation.

Previous studies have developed AI models based on FFA image
data. Some of these studies have focused on detecting multiple
conditions in FFA images, such as DR15,16 and CSC14. Other studies
have aimed to automatically generate FFA reports to address gaps in
ophthalmic image-to-text conversion. Li et al.5 introduced a cross-
modal clinical graph model for generating ophthalmic reports using
330,461 images. Lin et al.4 introduced contrastive pre-training to
medical report generation based on datasets with multi-modalities,
including FFA. Compared to these studies, FFA-GPT offers several
advantages. Firstly, our model combines disease classification and

report generation capabilities, accurately identifying retinal condi-
tions, particularly DR, and generating coherent and comprehensible
free-text reports. However, further improvements are required to
enhance the model’s performance in classifying conditions other than
DR. Secondly, to evaluate the expertise of our model, we collected
clinically annotated reports as references and involved ophthalmic
experts to assess the professional performance of the model in terms
of accuracy and completeness. Over 60% of the reports met the
clinical requirements, whereas Li et al.‘s study only achieved 44.7%.
Additionally, our model can accept a random number of input
images, which is more feasible in real-world applications. Lastly, in
the actual clinical setting, patients often have many questions even

Fig. 2 | Demonstration of the integrated interface of our model. FFA fundus fluorescein angiography, GPT generative pre-trained transformer, OD right eye.

Table 3 | Model performance in the test set (155,527 images with 2028 reports)

A

BLEU1 BLEU2 BLEU3 BLEU4 CIDEr ROUGE SPICE BERTScore

0.48 0.42 0.38 0.34 0.33 0.36 0.18 0.70

B

Conditions Accuracy Specificity Precision Sensitivity F1 score

Microaneurysm 0.91 0.96 0.76 0.89 0.82

Diabetic retinopathy 0.93 0.97 0.74 0.88 0.80

Arteriosclerosis 0.88 0.94 0.69 0.77 0.73

Laser spots 0.91 0.95 0.63 0.69 0.66

Scar 0.90 0.95 0.63 0.66 0.64

A. Language-based metrics. B. Multi-class condition classification by participant.
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after receiving the report, which require ophthalmologists’ explana-
tions. FFA-GPT not only generates reports but also provides inter-
active explanations in the second stage, making it a comprehensive
solution. Future research should focus on enhancing the quality and
accuracy of the generated reports, thereby further minimizing the
time for manual intervention. This can be achieved by incorporating
more diverse data and investigating and comparing different archi-
tectural choices to identify the optimal framework5,20. Moreover,
prospective clinical trials could be considered to validate the model’s

effectiveness in improving report efficiency within real-world clinical
settings.

Doctor-patient interaction is a crucial aspect of healthcare21. Patients
often have limited knowledge ofmedical concepts and terminology, and it is
the doctor’s responsibility to communicate complex medical information
understandably while addressing the patient’s needs and concerns. Con-
versational large language models like ChatGPT and Llama 2 offer an
alternative approach for effective AI-human interaction and collaboration.
The integration of LLMs into the image-to-text conversion framework

Fig. 3 | Human evaluation. A Report generation. B Question answering. O Ophthalmologist.
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offers several advantages. Firstly, the LLM functions as an intelligent sche-
duler, activating the image readingmodule basedon the context. This allows
for the combination of text reports, which contain crucial details of patient
FFA imaging results, with theworld knowledge of theGPTmodule in LLM.
This effectively mitigates LLM’s hallucinations and generates optimal
answers. Secondly, following a comprehensive evaluation, we demonstrated
that the LLM can effectively handle general inquiries related to ophthalmic
image reports. The scarcity of high-quality medical QA data poses a real-
world challenge. By incorporating the LLM into the report generation
model, we introduced a solution for ophthalmic QA without the need for
additional QA training. This approach avoids the issue of insufficient
datasets and optimizes the utilization of computational resources. Thirdly,
our two-stage framework offers greater interpretability than an end-to-end
one. The separate generation process allows for increased transparency, and
the embedded guard mechanism can assess the quality of the generated
reports before their release. This ensures that only reports that have been
rigorously reviewed and refined bymedical professionals aremade available
for patients’ use in QA. This assures our system to interact with end-users
whilemaintaining its social responsibility. Continued efforts in empowering
LLMs with ophthalmic knowledge, such as incorporating retrieval-
augmented generation techniques to include more resources for addres-
sing ophthalmic tasks, will contribute to enhancing the model’s applic-
ability. Additionally, improving the interpretability of the model would be
beneficial.

Previous studies have demonstrated thatAI assistance canbe beneficial
in reducing diagnostic time and improving radiologists’ performance22,23. In
daily clinical care, our proposed FFA-GPT offers an automated pipeline for
interpretingFFA images, both in thepre-andpost-explanation stages. In the
stage of generating specialized reports from FFA images, our model shows
potential in generating preliminary reports to assist ophthalmologists in
interpreting ophthalmic images. It has the potential to reduce diagnostic
errors caused by difficulties and fatigue, thereby improving medical effi-
ciency for ophthalmologists. Furthermore, in the stage of communicating
with patients after generating specialized reports, our system is expected to
assist patients in explainingmedical concepts andprocedures of FFAreports
in simplified terms, potentially making it easier to understand. It can be
embedded in applications and accessed through a mobile interface in the
future. This enables us to provide additional information on common eye
health issues and offer decision support during the consultation. However,
the application of this model in a clinical environment requires careful
consideration of ethical issues. Firstly, although our model safeguards
patient data privacy through techniques such as de-identification and local
model deployment, it is imperative to ensure that patients are fully informed
and provide consent for the utilization of their data in AI model analysis
during future prospective validation. Secondly, to enhance the interpret-
ability of the model, future research development may consider incorpor-
ating techniques like Concept Relevance Propagation24 or visualization
methods, thereby facilitating clinicians’ understanding of how the model
analyzes images and makes assessments. It is also important to emphasize
that suchmodels are currently in the early stages andare intended to serve as
auxiliary tools to assist ophthalmologists in improving their work efficiency
and accuracy, rather than replace their judgment and decision-making.
Therefore, the guard mechanism is crucial to promptly detect and correct
model errors, ensuring clinical supervision and reviewofmodel outputs and
minimizing the risk of misdiagnosis, thus ensuring feasibility and safety.

This research has several limitations. Firstly, there are potential risks
associated with the generated medical models. Although our research has
undergone comprehensive evaluations from multiple perspectives, vali-
dating the accuracy and correctness of the generated content still poses
challenges. The phenomenon of hallucination stemming from LLM still
exists in ourmodel. Therefore, arming theLLMwithophthalmic knowledge
and improved guard mechanismsmay be important for future work in this
regard. Secondly, multi-modal medical imaging has become one of the
important trends in thefieldofmedicine today, providingbroader space and
opportunities for the development of AI. Our model is currently limited to

FFA images, and future research should focus on developing multi-modal
imaging models. Lastly, our model lacks a fully external dataset for valida-
tion and instead relies on temporal-split data. Further evaluation and
optimization of the model’s generalizability are needed for different spatial
data and entirely new data.

In conclusion, this study introduces an innovative approach that
combines amulti-modal transformer and an LLM to establish a connection
between ophthalmic imaging and automated report generation, as well as
facilitate interactive QA. The FFA-GPT system shows promising potential
to enhance the interpretation and reporting of ophthalmic images, offering
an important reference for the development of other image-based AI
systems.

Methods
Dataset
Data for this study were retrospectively collected from a tertiary hospital in
China from November 2016 to December 2019. To ensure patient privacy
and adhere to ethical principles outlined in the Declaration of Helsinki, all
patient data were anonymized. The study was approved by the Institutional
Review Board of the Hong Kong Polytechnic University, and individual
consent for retrospective analysis was waived. The dataset encompassed a
broad spectrum of eye conditions, including DR, RVO, and CSC. The FFA
images were captured using Zeiss FF450 Plus and Heidelberg Spectralis
cameras from Heidelberg, Germany, with a resolution of 768 × 768 pixels.
We excluded low-quality FFA images by extracting vessels25, where images
with detectable vessel area ratios less than 0.005 were excluded. To facilitate
external validation, the dataset was divided into training, validation, and
testing subsets based on temporal splits. Specifically, images captured before
June 2019 were allocated for training, while the remaining images captured
after June 2019 were used for validation and testing. This temporal split
strategy simulates a study where a model is developed using past data and
subsequently validated and tested on future cases. It serves as a form of
external validation, contributing to the robustness of the findings26.

Development of FFA-GPT
We utilized the Bootstrapping Language-Image Pre-training (BLIP) fra-
mework as the image-text aligningmodule. BLIP is a pretrainedarchitecture
thathasbeen trainedonavast dataset ofnatural images,which facilitated the
acquisition of effective feature representations for both images and text27.
Notably, the BLIPmodel demonstrates exceptional proficiency in encoding
long-range dependencies, making it well-suited for handling intricate
ophthalmic images and longer sequences of ophthalmic reports. Further-
more, the BLIPmodel possesses the capability to filter out noisy data during
the training process, which substantially enhances the quality of large-scale
training datasets. The framework comprises two key components: a visual
transformer28 serving as the image encoder, and Bidirectional Encoder
Representations from Transformers (BERT)29 serving as the language
encoder and decoder.

To fine-tune the pre-trained BLIP model, we employed a dataset
consisting of FFA images and their corresponding Chinese reports. During
the training process, we randomly selected 1-9 images from each case as
input for the model, ensuring a balanced representation of the arterial,
venous, and late phases of FFA. All images were resized to 320×320 pixels.
For the fine-tuning process, the model was trained with two NVIDIA Tesla
V100GPUs. The initial learning ratewas set to 0.00002, with aweight decay
of 0.05. We utilized AdamW30 optimizer with a cosine learning rate sche-
dule. The fine-tuning was performed for 50 epochs and the whole training
time was 3 days. Themodel with the highest BLEU1 score on the validation
set was selected for testing.

It’s important to note that currently, automatic report generation is
intended to assist doctors, rather than to produce reports that can be directly
released to patients. Therefore, we included a guard mechanism for quality
control of generated reports to reduce the risk of disseminating harmful
information. This mechanism necessitates human evaluation and con-
firmation. Only reports that pass this confirmation or have been corrected
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by doctors can proceed to the next step. This guardmechanism is open to be
optimized and updated to enhance efficiency.

Although theBLIPmodel canbeused for furtherQA tasks, it requires a
large amount of reliable QA training data and significant computational
resources, which makes the training and continuous optimization chal-
lenging (see Supplementary Table 5). To enable QA without the need for
fine-tuning and to facilitate interactive interpretation of the generated
reports, we incorporated the advanced open-source large language model,
Llama 29 in the second step as the GPT module to enable QA. Specifically,
this was achieved by giving instructions of ‘Please answer the following
question based on the given FFA report’. We formulated a series of typical
questions related to FFA reports, drawing on our clinical experience and
followingmethods similar to those used byMomenaei et al.31. The question
lists we created contain a total of 20 items covering a range of topics,
including a summary of the reports, disease definitions, etiology, visual
impact, prevention measures, further examinations, treatment options,
prognosis, complications, and FFA testing information such as timing,
specific phases, and post-test instructions (See Supplementary Table 6).
Given that Llama 2 primarily excels in handling English data, we incorpo-
rated a translation plugin to create a connection between the two modules.
These questions, alongwith the English translation of the generated reports,
were then fed into the Llama 2 model for testing.

Automatic evaluation of FFA-GPT
We conducted the automatic evaluation of the generated reports using
language-based metrics and classification-based metrics32. The language-
basedmetrics used in this study includeBLEU,CIDEr,ROUGE, SPICE, and
BERTScore. BLEU33 is a widely used automatic metric for evaluating the
quality of machine translations and scores by calculating the overlap of
n-grams between the generated text and reference texts. An n-gram is a
contiguous sequence of ‘n’ words from a given sample of text. Given that
many ophthalmic terms are compoundwords often composed of up to four
words, we calculated BLEU1, BLEU2, BLEU3, and BLEU4 as evaluation
metrics. CIDEr34 is developed for image captioning evaluation. It evaluates
not just the presence of relevant words but also how frequently those words
are used in similar contexts, providing higher scores for words that are both
pertinent and rare. In our context, it helps to ensure that the terminology
used is not only appropriate but also indicative of the distinctive features in
the images, which is crucial for medical reporting. ROUGE35 focuses on the
longest common subsequence between the generated text and reference
texts, suitable for evaluating model performance at the sentence or para-
graph level. Ophthalmic reports often require coherent descriptions of
complex clinical information, and ROUGE helps to understand how well
the model maintains coherence throughout the information presented.
SPICE36 differs from BLEU by focusing on semantic accuracy in image
caption generation rather than mere word or phrase matching, providing a
comprehensive assessment of generated description quality. BERTScore37

utilizes the pre-trained BERT model to compute the semantic similarity
between generated and reference text. It excels at assessing semantic match
within the overall context, providing a nuanced and semantically oriented
evaluation of model performance.

The classificationmetrics were employed to supplement the language-
based metrics, providing a more comprehensive evaluation of the model’s
ability to accurately identify diseases. Initially, we manually constructed a
keyword dictionary for ophthalmic conditions. This dictionary included
standardmedical terms, rootwords, prefixes, and synonyms associatedwith
each condition (sample shown in Supplementary Fig. 4). We then utilized
this dictionary to automatically identify, extract, and standardize disease
condition terminology present in the FFA reports. During the keyword-
matching process, we also considered the presence of negations.We utilized
regular expressions to check if the word was prefixed or followed by nega-
tion words such as ‘not observed’, ‘no apparent’, ‘without’, and ‘not sup-
ported’, and refrained from extracting the related disease terms. We
employed a precisematching strategywhile considering negation terms and
themapping is case-insensitive. These standardized terms were also used to

evaluate the accuracy of disease identification in the generated reports.
Based on the results of this keyword-matching process, we calculated clas-
sification metrics, including accuracy, sensitivity, specificity, precision, and
F1 score. Accuracy is themost commonly usedmetric in classification tasks,
representing the proportion of correctly predicted classifications out of the
total predictions38. Sensitivity measures the proportion of actual positives
correctly identified by the model. High sensitivity is crucial in medical
diagnostics to ensure timely management of diseases by minimizing false
negatives. Specificity is theproportionof actual negatives correctly identified
and high specificity helps to ensure that only patients who truly have the
disease receive further diagnosis and treatment. Precision indicates the
proportion of positive identifications made by the model that are actually
correct. F1 score is the harmonic mean of sensitivity and precision and
provides a more comprehensive assessment of model performance, espe-
cially in situations of class imbalance14,15,18,19.

Manual evaluation of FFA-GPT
To ensure the integrity and precision of our assessment, we conduct a
humanevaluationof reports generated byourmodel. For this evaluation,we
randomly selected a subset of 100 images from the test set, and their cor-
responding generated reports were assessed by three experienced ophthal-
mologists (X.C., P.X., and Z.Z.) with an average of over five years of clinical
experience. We followed a similar evaluation approach as Singhal K et al.39,
focusing on two aspects: incorrect content and missing content. The aspect
of incorrect content evaluates the model’s accuracy in report generation by
determiningwhether the generated text contained any content that it should
not. On the other hand, the aspect of missing content evaluates the model’s
completeness in report generation by determining whether the generated
text omitted any information that it should include.

The ophthalmologists independently rated the quality of the generated
reports compared to the ground-truth reports for accuracy and complete-
ness using a 3-level quality evaluation scale: ‘No,’ ‘Yes, little clinical sig-
nificance,’ and ‘Yes, great clinical significance.’ To reduce the variability
among the raters and ensure reliable results, we calculated Fleiss’ kappa40.
Fleiss’ kappa is a measure of interrater agreement used to assess the con-
sistency among multiple raters in a categorical classification task. It takes
into account both the observed agreement and the agreement expected by
chance, providing a statistical measure of agreement beyond random
chance. The interpretation of its values varies as follows: 0-0.2 indicates
slight agreement, 0.2-0.4 indicates fair agreement, 0.4-0.6 indicates mod-
erate agreement, 0.6-0.8 indicates substantial agreement, and 0.8-1.0 indi-
cates almost perfect agreement.

The answers to the report-related questions were also assessed by the
three ophthalmologists using the same method mentioned in the manual
evaluationof report generation.As there is noground truth for theQApairs,
the evaluation criteria in this part are based on current scientific consensus
and the ophthalmologists’ clinical experience. In addition to accuracy and
completeness, we added two dimensions of harmfulness and satisfaction to
the evaluation criteria39. Specifically, accuracy considered the correct iden-
tification of medical terms in the answers and the consistency with relevant
medical recommendations and consensus. Completeness took into account
not only direct answers to the inquiries but also necessary additional details
relevant to clinical practice. The evaluation of harmfulness is due to the
clinical recommendations that may prompt patients to take actual actions
involved in the QA process, and the lack of human supervision. The raters
considered the potential physical or mental health-related harm that may
result from the actions prompted by the generated answer. The severity of
harm was referenced by the Agency for Healthcare Research and Quality
(AHRQ) common formats, and three options were provided: ‘No harm,’
‘Moderate or mild harm,’ and ‘Death or severe harm.’ based on the antici-
pated impacton vision andphysical health41. The severity of harmcausedby
answers is distinguished based on its direct or indirect impact on the
patient’s future vision and physical health. It is important to note that while
our rating was based on the AHRQ scale, it should be considered as a
subjective assessment. The evaluation of satisfaction is crucial because
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relying solely on technical metrics, such as accuracy, may not fully capture
users’ genuine needs and expectations. Also, the satisfaction assessment
offered three options: Satisfied, Fair, and Unsatisfied. The inter-rater
agreement was also calculated using Fleiss’ kappa, which is the samemetric
used in the evaluation of the generated reports.

Code availability
Code is available at https://github.com/salesforce/BLIP and https://github.
com/meta-llama/llama.
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