
npj | digital medicine Perspective
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-024-01094-9

An operational guide to translational
clinical machine learning in academic
medical centers

Check for updates

Mukund Poddar1,2,5, Jayson S. Marwaha 2,3,5, William Yuan2,3, Santiago Romero-Brufau 1,4,6 &
Gabriel A. Brat 2,3,6

Few published data science tools are ever translated from academia to real-world clinical settings for
which they were intended. One dimension of this problem is the software engineering task of turning
published academic projects into tools that are usable at the bedside.Given the complexity of the data
ecosystem in large health systems, this task often represents a significant barrier to the real-world
deployment of data science tools for prospective piloting and evaluation. Many information
technology companies have created Machine Learning Operations (MLOps) teams to help with such
tasks at scale, but the low penetration of home-grown data science tools in regular clinical practice
precludes the formation of such teams in healthcare organizations. Based on experiences deploying
data science tools at two large academic medical centers (Beth Israel Deaconess Medical Center,
Boston, MA; Mayo Clinic, Rochester, MN), we propose a strategy to facilitate this transition from
academic product to operational tool, defining the responsibilities of the principal investigator, data
scientist, machine learning engineer, health system IT administrator, and clinician end-user
throughout the process. We first enumerate the technical resources and stakeholders needed to
prepare for model deployment. We then propose an approach to planning how the final product will
work from data extraction and analysis to visualization of model outputs. Finally, we describe how the
team should execute on this plan. We hope to guide health systems aiming to deploy minimum viable
data science tools and realize their value in clinical practice.

In recent years, researchers have contributed innumerable data science
tools - clinical risk prediction models, medical image classification
algorithms, andmore - to themedical literature. Only a small fraction of
these tools, an estimated 10% or less, have been implemented in real-
world clinical settings where they can improve patient care1. Several
explanations have been proposed to explain this gap including limited
external validity, actionability, and reproducibility of published data
science tools2–4. One infrequently discussed reason is the difficulty of
putting these models, often developed in research laboratories, into a
production environment where they can consistently run in real-time
(Fig. 1). The act of transforming academic projects into real-world
instruments that end users such as physicians and nurses can access and

leverage at the bedside is a non-trivial software engineering task in large
health systems.

Other industries have addressed this problem by building teams,
resources, and protocols for translating promising in-silico academic
products into real-world practice. Many software companies have
“R2O” (research to operations) or “MLOps” (machine learning
operations) teams devoted to this task. Deployment in healthcare
settings presents a unique challenge because organizational resources
for this task are often constrained and the clinical data that powers
these tools is often 1) fragmented across multiple IT systems, 2) not
easily accessible from the organization’s data warehouse, 3) not cap-
tured in real-time ormissing, or 4) lacking structure.While online tools

1Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA. 2Department of Surgery, Beth Israel Deaconess Medical Center,
Boston,MA,USA. 3Department of Biomedical Informatics, HarvardMedical School, Boston,MA,USA. 4Department ofOtolaryngologyHead&NeckSurgery,Mayo
Clinic, Rochester, MN, USA. 5These authors contributed equally: Mukund Poddar, Jayson S. Marwaha.6These authors jointly supervised this work: Santiago
Romero-Brufau, Gabriel A. Brat. e-mail: gbrat@bidmc.harvard.edu

npj Digital Medicine | (2024) 7:129 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01094-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01094-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01094-9&domain=pdf
http://orcid.org/0000-0002-3833-7448
http://orcid.org/0000-0002-3833-7448
http://orcid.org/0000-0002-3833-7448
http://orcid.org/0000-0002-3833-7448
http://orcid.org/0000-0002-3833-7448
http://orcid.org/0000-0002-9922-0083
http://orcid.org/0000-0002-9922-0083
http://orcid.org/0000-0002-9922-0083
http://orcid.org/0000-0002-9922-0083
http://orcid.org/0000-0002-9922-0083
http://orcid.org/0000-0003-3928-5931
http://orcid.org/0000-0003-3928-5931
http://orcid.org/0000-0003-3928-5931
http://orcid.org/0000-0003-3928-5931
http://orcid.org/0000-0003-3928-5931
mailto:gbrat@bidmc.harvard.edu

like MDCalc and similar standalone smartphone applications have
been used to make risk calculators accessible to providers at the point-
of-care, applications lacking deep electronic health record (EHR)
integration are not suitable for complex ML models that require a
significant number of inputs and computing power to generate pre-
dictions. Some EHR providers provide a framework to allow easy
integration for ML models, but healthcare institutions may not use
them or find them unsuitable and require more bespoke solutions.

This piece, assembled by a team of clinicians, informaticians, data
scientists, and software engineers that deployed academic projects into
production at multiple large health systems, aims to provide some
guidance to the deployment team on how to best make that translation.
We believe that the full team involved in the deployment would benefit
from having an understanding of the different roles and tasks that are
often required, but it is probably the principal investigator or team
champion that would benefit the most from the high-level view that we
present in this manuscript. Throughout the paper we reference an
example of translating a predictionmodel into clinical practice from the
authors. This model generated predicted risk of surgery within the next
6 months for chronic colon inflammation patients seen in a gastro-
enterologist’s office.

Ofnote, this document is focusedon the technical aspects of translating
research algorithms for clinical practice. There are numerous additional
steps that are not covered herein. Important elements include identifying
and proving clinical utility of a model, its development, and regulatory
requirements that often strongly impact an intervention’s scope, pace, and
form. In parallel to the development process described, the deployment and
clinical team should address the needed legal and policy requirements of
their institution.

Additionally, deploymentofdata science solutions into clinical practice
is often an iterative process that requires multiple feedback loops between
the development team and the end-user representatives at different levels,
including retraining after deployment due to gradual changes to standard of
care or abrupt shocks like COVID-195. For simplicity, we present a linear
process, but it is strongly advised to incorporate theflexibility for iteration at
different points. The iterative nature of the process also highlights one of the
reasons why it’s important to be thoughtful when building deployment
infrastructure.

Prerequisites for model deployment
Thepurpose of this guide is to help groupswithin health systems implement
tools that they already have the interest and resources to use and support.
Deployment should not be considered until the tool has, at least, nominal
institutional support. Details on how to meet these prerequisites can be
found elsewhere but are briefly summarized below2.

Clinical value proposition
Before deployment is considered, the value of a model must be explicitly
articulated and aligned with the priorities of the organization. Impacting
elements of the Institute for Healthcare Improvement Quadruple Aim is a
good benchmark for identifying clinical value6. A pathway to achieving this
value should be clearly identified including what clinical decision themodel
will impact (e.g. recommending curative surgery), what outputs need to be
delivered to the user (e.g. probability of outcome and visualizations of
prognosis for similar patients), who is the target of output (e.g. gastro-
enterologist), when it will be delivered (e.g. during anoutpatient encounter),
how users can take action on themodel’s output (e.g. recommend a consult
to the colorectal surgeon), and the target population (e.g. patients with
moderate-to-severe ulcerative colitis). Depending on the training dataset’s
design, the model might need to be fine-tuned to local clinical practice and
population.

Stakeholders
The translation process is multidisciplinary by nature, and different stake-
holders required to implement the model into production should have
opportunities to discuss their unique perspectives together (Table 1).
Multiple roles might be taken on by the same person based on skills and

Fig. 1 | The pipeline for making usable ML solutions; the focus of this piece is
highlighted in gray.

Table 1 | Index card for major stakeholders and their tasks

Role Main responsibility Tasks

Principal
Investigator

Maintain an overview of the project and coordinate tasks. Identify and convene relevant stakeholders for the project
Ensure smooth information flow among stakeholders across different
project phases and modules
Review that complete set of information is transferred during stage tran-
sitions
Vet the infrastructure constraints
Approve interface mock-ups
Weekly oversight of project timeline and budget

Machine-learning
engineer

Program a tool that pulls data, generates a prediction and delivers it to the
end user according to the needs

They are the primary drivers for all tasks in the paper

Data scientist Ensure the MLE is able to faithfully transcribe the model into a working
platform and modify the model as required

Document the modeling process: data sources, pre-processing steps,
model inference, outputs and interpretation
Make changes to the model based on evolving needs

Clinician or user
representative

Ensure the model output is valuable to the end user Confirm availability of model inputs at time of prediction generation
Ensure interpretability of model outputs and their relevance given clinical
needs
Provide feedback on application interface

Information
Technology

Serve as technical expert on data sources, infrastructure hosting and best
practices

Help connect to and pull data from the data warehouse
Vet hardware constraints for the platform
Help host the platform

https://doi.org/10.1038/s41746-024-01094-9 Perspective

npj Digital Medicine | (2024) 7:129 2

technical complexity in the context of the project, but a team should include
the following roles:
• Principal Investigator/Project Champion who understands the clinical

and institutional context
• Data Scientist who knows how the model was built
• Machine Learning Engineer (MLE) who will put the model into

production
• Clinicians/Users who will best know what is required for the model

outputs to be useful
• Data engineers/Information Technology team who understand the

data sources and EHR vagaries
The various team members require constant communication given

the interwoven roles and expertise needed to deploy a complex tool. The
MLE typically has limited insight into the decisions made earlier or the
model development, most often by a clinical developer and data scientist.
A data scientist may not know technical requirements and best practices
necessary for model deployment. A data engineer primarily cares about
data security and limiting stress to the data infrastructure and may not
prioritize the project. The principal investigator needs a global view of the
process to know what challenges are involved and how to budget time.
Users have domain knowledge, but may not understand or care for
technical details. The model needs to be interpretable by them given their
requirements and context.

Timely data availability
Necessary data inputs at the health system should be available on or before
the time that the prediction is needed. For example, if the point-of-care
model uses an encounter’s prescriptionmedication as an input, there needs
to be a process to capture such data during the encounter itself. In the case of
our ulcerative colitis model, we had users input this data via a form, as
prescription data was not available in real-time from other sources. Of
course, data sources that directly integrate into the clinical workflow are
preferable, but may often not be available during early stages or stepwise
clinical integration.

Operational home
Although itmaynot always bepossible in advance, it is important toplan for
the maintenance of the implemented model and identify an operational
home where a team takes responsibility for uptime, at least for the current
anticipated project horizon (e.g. during the initial pilot). Stakeholders
should be available as needed for the project’s initial duration to tackle data
science problems (such as performance degradation and dataset drift - see
“Post-Deployment Considerations” section for more details on this)5 and
changes to clinical workflows.

Planning for deployment
Prior to building a deployable tool, it is essential for the MLE to have a
complete understanding of the requirements and specifications of the
desired end product. This is only possible once all prerequisites in the prior
section have been met, as each stakeholder provides distinct and com-
plementary information on the vision for the final product.

We propose that the MLE approach the task of gathering
requirements or specifications in a inverted extract, transform, load
(ETL) fashion (Table 2). Many digital health tools follow the standard
ETL framework, where data is extracted from the source (e.g. the EHR),
transformed in some clinically meaningful way, and loaded onto a
dashboard for clinicians to view. In contrast, working backwardsmay be
helpful in the planning and designing phase. First, clinician end-users
should be engaged to understand the tool’s purpose and what infor-
mation needs to be loaded into the tool to fulfill its purpose. Then, the
data scientists and PI should be engaged to understand what data inputs
and transformations are needed to generate this desired information.
Finally, the PI should engage the health system’s data and IT engineers
to map the necessary inputs to data elements collected by the health
system and identify where they reside in the organization’s data

repository. This is an iterative process that requires multiple discussions
with each stakeholder.

Another important task at this stage is for the PI to decide whether this
tool’s deployment process should lay the groundwork for deployment of
future data science tools as well by establishing a data pipeline, or instead
serve as a bespoke process with the goal of simply bringing this one tool to
production. Platforms meant to support multiple future data science tools
should be built with modules that are reusable7, have the ability to take in
more data as parameters instead of hardcoding, and allow flexibility for
extensions. Building platforms requires more time, coding, careful design
and experience, so for teams that are attempting their first model deploy-
ment, our recommendation is to start by limiting the scopeof deployment to
the initial project. Over subsequent iterations, the tool can be evolved into a
platform.

The end product of this preparation phase should be an architecture
diagram that enumerates the technologies, frameworks, tools, and con-
nections powering the tool and its underlying data flow. This includes any
cloud technologies and data stores used, wireframe diagrams, and mock
screenshots of the end application.

Building a deployable tool
General Infrastructure considerations
With an inverted-ETL deployment plan in place, the team is now ready to
deploy the tool. This section provides step-specific guidance to the ML
engineer on this process, from pulling data, to processing data into the
model, to presenting model outputs. Throughout the process of deploy-
ment, the following issues below should remain inmind andbe addressed at
each step.

Infrastructure selection. An option of cloud infrastructure, hosted
infrastructure, native infrastructure, or some combination thereof can be
considered to run the complete application. This decision is strongly
influenced by overarching organizational requirements and existing
infrastructure. For example, at one of the authors’ institutions, on-
premises cloud infrastructure is strongly recommended, and there is little
to no support for other types of infrastructure. However, if multiple
options are viable, choosing cloud infrastructure would be most prefer-
able as it would help manage usage volume uncertainties during the pilot
and provide turnkey support for security and best practices8.

Information security. Information security and the corresponding
committee approvals that the institution may require should be a long-
itudinal consideration insteadof a costly afterthought. In thepast, failure to
get data security clearance has caused us to significantly delay go-live. At
each stage of the system, only theminimumnecessary amount and type of
data shouldbe captured andmadeavailable.Access authorizationmight be
necessitated depending on the sensitivity of the application, in which case
being able to use the existing organizational IT will be most helpful.

Best practice adherence. Following standard software development
best practices of baking in debuggability, logging, and documentation in
the code will lead to a more sustainable andmonitored system over time.
During the design and build phases, theMLE shouldmake note of critical
software units where tests are required to ensure functionality8. Inter-
mediate outputs for our batch processing were persisted on disk storage
along with summary statistics like counts and means of important fea-
tures being written to logs. Much thought was put into descriptive error
messages for code exceptions for debuggability.

Generating inputs (pulling and connecting the data)
The goal of this module is to convert a query that was run once to create the
training dataset into a reusable pipeline delivering data to the model. The
major stakeholders for this module are the data engineer, the data scientist,
and the MLE. The data scientist contributes the following information:
1. Data Sources: A list of the databases and tables required.

https://doi.org/10.1038/s41746-024-01094-9 Perspective

npj Digital Medicine | (2024) 7:129 3

2. Query to Generate Dataset: The queries used on tables to extract data
pertaining to the project. For privacy and security purposes, only the
strictly required data should be accessed with the query.

3. Data warehouse contacts/documentation: The tasks will require
knowledge about accessing the databases in a structuredmanner. Any
documentation that can help learn about it or contact details for people
who can serve as a resource helps keep in check the engineering effort.

This stage requires the data engineer and the MLE to complete the
following tasks:
1. Create the Infrastructure to run this periodically/in real-time:The ideal

infrastructure should be able to pull data during run time using an
Application Programming Interface (API). However, the existing
infrastructure might not accommodate APIs, in which case a script
should be able to downloaddata at a predetermined frequency (hourly/
daily/weekly), and subsequently trigger the pipeline that consumes the
information.

2. Identify credentials and software/drivers to use the infrastructure:
Different databases will require different drivers and libraries to
interface with the programming language of your choice.

Inputs to outputs (processing the data into the model)
The goal of this module is to make amodel work within identified resource
and time constraints. The major stakeholders for this module are the MLE,
data scientist, and the end users or a product manager. The team needs the
following information and artifacts for this module’s development:
1. Preprocessing Code: The code that takes the raw data from the data-

base and makes it into the form required for the model. Also included
are checks on the data validity and completeness.

2. Model: The program that feeds the chosenmodel the inputs and post-
processes the outputs as required for further consumption. For a batch
processing system, this needs to output a file that can be consumed by
downstream systems.

3. Input file examples: An example set of inputs that can be expected for
the model. This allows for integration tests from the very start.

4. Output file examples: The expected outputs for the above set of inputs.
This is required to ensure results from the integration tests.

5. Tests: Unit tests9 for the pre-processing and post-processing modules
and validation datasets for the model itself to detect changes in model
accuracy. Without tests, any step in this process could result in
undetected errors that cascade through the system and become

Table 2 | Specific questions to address in inverted extract, transform, load (ETL) order before the tool-building process is begun

Inverted-
ETL
Phase

Consideration Example 1: Example 2

Load What clinical question will the tool
answer?

Clinicians sought a tool that would help them decide whe-
ther an IBD patient would benefit from an elective
colectomy.

Clinical teams wanted a tool to help identify deteriorating
patients in real-time and facilitate coordination (e.g.., nur-
sing, physicians, APPs).

In what clinical scenario will it
be used?

The tool was designed for use when evaluating a patient in
the office.

The tool will be active for inpatient general care floors.

What information is useful to the end-
user, and how should it be
presented?

Clinicians specifically wanted to know:
1) the predicted likelihood that a patient would need a

colectomy within the next 6 months
2) their illness severity trajectory over the last fewoffice visits
3) their projected risk of surgery over time
4) what typically happens to patients with similar illness

severity.We iterated over severalwireframediagrams and
mockups with clinician, PI, and data scientist input.

The final design that was implemented included alerts sent
in real-time to nursing and provider pagers with the fol-
lowing information:
1) Which patients were at risk of deterioration (clinic num-

ber, patient room)
2) who had been alerted.

Care team members were expected to communicate
with each other and evaluate the patient. Follow-up
alerts were sent if the patient’s risk continued to be
elevated.

Who will access the information? The tool should be accessible to gastroenterologists and
colorectal surgeons within our health system who evaluate
IBD patients; it should not be accessible to anyone beyond
our institution. Therefore, we chose to host our tool on a
hospital server within its firewall.

The information was delivered to the nurse and providers
taking care of the patient (primary RN, charge RN, service
pager, and eventually attending pager).

Transform What data outputs does the model
provide?

The model provides the predicted likelihood that a patient
will need a colectomy within the next 6 months.

The model only provided binary information: an alert if the
patient was considered at risk.

What data inputs are needed to pro-
duce the desired output?

The model takes a patient’s current and past medication
history, demographics, comorbidities, procedures, and
recent symptoms as inputs.

Themodel used clinical data as predictors (vital signs, labs,
medications, nursing evaluations, etc.), as well as other
information to filter alerts (e.g., “comfort cares only” status,
patient location).

What is the required time between
the data being generated and the
outputs being presented to the user?

For ourmodel, most data inputs were readily available in the
hospital’s data warehouse except for prescription medica-
tion changes made at the point of care. Therefore, this data
was captured by directly asking the clinician to enter what
they prescribed.

This was a time-sensitive use case, themaximum delay we
allowed was in the order of 15 minutes, so the system
would run every 15minutes.

Extract What data elements collected by the
hospital correspond to the inputs
needed?

Encounter details, medication history, demographics, pro-
cedures, comorbidities, and symptoms are encoded in
various clinical terminologies (e.g., ICD-10, RxNorm, CPT).

Some examples: there were around 10 different variables
for blood pressure (depending on measurement type,
patient position, etc.) Patient location was determined
using 2 different system (the administrative Admission-
Discharge-Transfer system as well as the location asso-
ciated with automatic vital signs measurements).

Where are these data elements found
in the hospital’s data warehouse?

We had several meetings with IT and database adminis-
trators at our health system to identify the tables that con-
tained our desired data elements.

The data elements needed to run the final production
system (both for prediction and for alert filtering) were
stored in several different systems and had to be
coordinated.

Two examples are provided from the authors’ experience deploying a surgical prediction model for ulcerative colitis patients (Example 1) and a prediction model for inpatient clinical deterioration among
general medical/surgical patients (Example 2)15.

https://doi.org/10.1038/s41746-024-01094-9 Perspective

npj Digital Medicine | (2024) 7:129 4

progressively harder to detect. Tests also serve as effective guardrails for
theMLE toensure that each software component theywritefits into the
intended vision for the data model conceptualized by the data science
team. Given the lack of tests during themodel development phase, the
MLE might also be required to write the tests.

This stage requires the MLE to complete the following tasks with help
from the data scientist and health system IT experts:
1. Define Constraints: Various constraints will apply to the model’s

running that need to be adhered to for practical reasons. Some of them
relate to the hardware available (computing power available, GPU
requirements), running time (need to make predictions in less than
3 seconds from user input), scalability (number of parallel requests to
be handled) and reproducibility (a set of user inputs should always
return the same prediction).

2. Ensure model meets constraints: In an interactive process, the system
needs to be developed, benchmarked, and modified to fit in above
constraints.

3. Make desired logic changes: As the application is developed and
becomes more usable by an end user, stakeholders will request mod-
ifications to the underlying model or for different pieces of data to be
shown or obscured. Without a robust suite of tests, this is the hardest
task for anMLE as they will have low confidence inmaking changes to
code theydidnotwrite or completely understand. It is thus also the task
determining a model’s long term adoption.

Outputs to insights (how to present the model outputs)
Over this stage, we aim to make the model usable by end users. This
might mean creating just a metric or notification visible on an existing
system, or building a dashboard accessible through other systems.
Based on the interface desired, a team consisting of a web/mobile app
developer, health system IT specialist, machine learning engineer, data
scientist, and end users might be required. The team needs to decide the
level of EHR interface integration desired and whether mobile devices
need special support. The end users need to specify what information
(metrics, notifications, graphs, etc) they need through the app to ensure
a usable and useful interface is created. While more information being
revealed is generally desired, over-exposure to details drives down
adoption10.While any successful adoption requires seamless integration
with existing EHR systems, a pilot program could benefit from a quick

but usable de-novo front-end before investing into further EHR inte-
gration. The following tasks will help create a clean, modular, and re-
usable application:
1. Create mock-ups for the interface: A rough wire-frame diagram helps

the end-users and developers align on the vision for the application
interface. This should incorporate design guidelines and cues from
existing apps in the healthcare system to prevent friction for users
(Fig. 2).

2. Create backend APIs for servingmultiple front-ends: The backend is a
platform that should allow for different front-ends to be bolted on
without requiring any changes. An API-oriented framework for the
platform helps with this as well as scalability and testing11,12.

3. Make a scalable, portable, reliable app: The application should be able
to scale with realistic adoption numbers and be portable enough to be
moved with trivial human effort. A reliable application is very
important for healthcare settings as clinicians cannot rely on a system
that might go down at crucial junctures or fails in unexpected and
drastic ways. Standard software development best practices should be
adhered to for a trulyusable system.These also allow theback-end tobe
integrated with the EHR front-end easily if the pilot is successful13.

4. Front-end to serve the most important use-case: While building this,
the team should choose an appropriate tech stack to allow code
reusability when being adopted into the EHR in case of a successful
pilot program.

Post-deployment considerations
Once an application is developed and deployed, a pilot programwould help
validate the application and its clinical value. A pilot that is successful in
demonstrating measurable clinical value should then be followed by plan-
ning for long-term maintainability to ensure adoption and ongoing use. A
detailed explanationof long-term issues to keep inmind such as dataset shift
and performance degradation can be found elsewhere14, but a handful of the
primary concerns worth highlighting here are:
1. Dataset or model drift: Healthcare data, like all real-world data, are

subject to fundamental changes that alter their expecteddistributions, a
phenomenon known as dataset shift5. When there is a discrepancy
between thedistributionof the data amodelwas trainedonand the one
it is implemented on, performance suffers. One example of this
phenomenon was the introduction of new ICD-10 diagnosis codes
during the coronavirus pandemic. Prediction models trained on

Fig. 2 | Screenshot of our application showing sur-
gical referral for a patient.

https://doi.org/10.1038/s41746-024-01094-9 Perspective

npj Digital Medicine | (2024) 7:129 5

diagnosis code datasets prior to the pandemic saw their performance
suffer from 2020 onwards as the distribution of codes significantly
changed, as did the fundamental relationships between codes. Dataset
shift can also be introduced by changes in technology, policy,
behaviors, or demographics5.When this is suspected, the data scientist
should investigate if the new population is different from the training
population and consider re-training the model.

2. Lost data connections: This should be suspected when either the
data source breaks down, or the structure of the data input changes
(for example, the way medications are recorded changes). The
machine learning engineer should be attentive to such changes
after deployment.

3. Workflow or clinical practice changes conflict with the system: for
example, a new treatment is developed as an alternative to surgery that
changes the decisions the model was focused on. Alternatively, if new
relevant inputs appear (e.g. a new drug that can reduce the expected
need for surgery). The PI or clinical champion should remain on the
lookout for such paradigm shifts in care post-deployment and adjust
the model accordingly.

Conclusion
Translating academic data science tools into production in large health
systems is a complex task that requires the engagement of multiple stake-
holders within the organization. This piece is intended to guide health sys-
tems aiming to deploy a minimum viable data science tool for the first time;
once an organization has enough tools in production, it may justify invest-
ment in building platforms and assembling Machine Learning Operations
teams dedicated to this task. The Office of the National Coordinator for
Healthcare IT (ONC) Final Rule, which required health systems to make
Fast Healthcare Interoperability Resources (FHIR)-based application pro-
gramming interfaces (APIs) available for transmitting and retrieving clinical
data as of December 31, 2022, was an encouraging development that will
hopefully make the US healthcare data ecosystem more interoperable and
therebymake it easier to deploy such tools. In themeantime, research teams
should keep this task inmind from the beginning tomaximize the likelihood
that their efforts are eventually used to improve patient care.

Received: 29 January 2023; Accepted: 29 March 2024;

References
1. Neilley, V. What health care must learn from meteorology about the

importance of R2O. STAT https://www.statnews.com/2022/03/31/
what-health-care-must-learn-from-meteorology-about-the-
importance-of-r2o/ (2022).

2. Marwaha, J. S., Landman, A. B., Brat, G. A., Dunn, T. & Gordon, W. J.
Deploying digital health tools within large, complex health systems:
key considerations for adoption and implementation. npj Digital Med.
5, 1–7 (2022).

3. Zhou, Q., Chen, Z.-H., Cao, Y.-H. & Peng, S. Clinical impact and
quality of randomized controlled trials involving interventions
evaluating artificial intelligence prediction tools: a systematic review.
npj Digital Med. 4, 1–12 (2021).

4. Marwaha, J. S. & Kvedar, J. C. Crossing the chasm from model
performance to clinical impact: the need to improve implementation
and evaluation of AI. npj Digital Med. 5, 1–2 (2022).

5. Finlayson, S. G. et al. The Clinician and Dataset Shift in Artificial
Intelligence. N. Engl. J. Med. 385, 283–286 (2021).

6. Bodenheimer, T. & Sinsky, C. From triple to quadruple aim: care of the
patient requires care of the provider. Ann. Fam. Med. 12,
573–576 (2014).

7. Understanding Code Reuse and Modularity in Python 3.
GeeksforGeeks https://www.geeksforgeeks.org/understanding-
code-reuse-modularity-python-3/ (2017).

8. Al-Marsy, A., Chaudhary, P. & Rodger, J. A. A Model for Examining
Challenges and Opportunities in Use of Cloud Computing for Health
Information Systems. Appl. Syst. Innov. 4, 15 (2021).

9. unittest— Unit testing framework— Python 3.10.4 documentation.
https://docs.python.org/3/library/unittest.html (2024).

10. Tzeng, S.-W. & Zhou, Y. Design Guidelines for an Integrated PHR
System: An Approach for UI Designers to Break Down Individual-
Level Barriers to PHR Adoption. Universal Access in Human-
Computer Interaction. Applications and Services for Quality of Life
553–562 (2013).

11. Apiary.How toBuild anAPI, https://apiary.io/how-to-build-api (2024).
12. Tutorial - User Guide - Intro - FastAPI, https://fastapi.tiangolo.com/

tutorial/ (2024).
13. 30 best practices for software development and testing. https://

opensource.com/article/17/5/30-best-practices-software-
development-and-testing (2017).

14. Feng, J. et al. Clinical artificial intelligence quality improvement:
towards continual monitoring and updating of AI algorithms in
healthcare. npj Digital Med. 5, 1–9 (2022).

15. Brufau, S. R. et al. Clinical implementation of a machine learning
system to detect deteriorating patients reduces time to response and
intervention.medRxiv, https://doi.org/10.1101/2021.10.10.
21264823 (2021).

Acknowledgements
USNational Library of Medicine; Harvard University. G.A.B. and J.S.M. was
supported by grants from the CRICO/Risk Management Foundation of the
Harvard Medical Institutions and a Blavatnik Biomedical Accelerator Pilot
Grant of Harvard University. J.S.M. was supported by a grant from the
National Library of Medicine/National Institutes of Health (T15LM007092)
and the Biomedical Informatics and Data Science Research Training (BIRT)
Program of Harvard University. M.P. was supported by the Harvard Data
Science Initiative (HDSI)PublicServiceDataScienceGraduateFellowshipof
Harvard University.

Author contributions
Deployment Design: M.P., J.S.M., S.R-.B., G.A.B., Input on challenges and
prerequisites: M.P., J.S.M., S.R-.B., G.A.B., Critical revision: M.P.,
J.S.M., G.A.B.

Competing interests
The authors declare no competing interests.

Ethics approval
This is a perspective piece that does not involve human subjects and hence
does not require IRBapproval. Themachine learningmodel was trained and
deployed with approval of Beth Israel Deaconess Medical Center, Boston.

Additional information
Correspondence and requests for materials should be addressed to
Gabriel A. Brat.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41746-024-01094-9 Perspective

npj Digital Medicine | (2024) 7:129 6

https://www.statnews.com/2022/03/31/what-health-care-must-learn-from-meteorology-about-the-importance-of-r2o/
https://www.statnews.com/2022/03/31/what-health-care-must-learn-from-meteorology-about-the-importance-of-r2o/
https://www.statnews.com/2022/03/31/what-health-care-must-learn-from-meteorology-about-the-importance-of-r2o/
https://www.statnews.com/2022/03/31/what-health-care-must-learn-from-meteorology-about-the-importance-of-r2o/
https://www.geeksforgeeks.org/understanding-code-reuse-modularity-python-3/
https://www.geeksforgeeks.org/understanding-code-reuse-modularity-python-3/
https://www.geeksforgeeks.org/understanding-code-reuse-modularity-python-3/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://apiary.io/how-to-build-api
https://apiary.io/how-to-build-api
https://fastapi.tiangolo.com/tutorial/
https://fastapi.tiangolo.com/tutorial/
https://fastapi.tiangolo.com/tutorial/
https://opensource.com/article/17/5/30-best-practices-software-development-and-testing
https://opensource.com/article/17/5/30-best-practices-software-development-and-testing
https://opensource.com/article/17/5/30-best-practices-software-development-and-testing
https://opensource.com/article/17/5/30-best-practices-software-development-and-testing
https://doi.org/10.1101/2021.10.10.21264823
https://doi.org/10.1101/2021.10.10.21264823
https://doi.org/10.1101/2021.10.10.21264823
http://www.nature.com/reprints

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41746-024-01094-9 Perspective

npj Digital Medicine | (2024) 7:129 7

http://creativecommons.org/licenses/by/4.0/

	An operational guide to translational clinical machine learning in academic medical centers
	Prerequisites for model deployment
	Clinical value proposition
	Stakeholders
	Timely data availability
	Operational�home

	Planning for deployment
	Building a deployable�tool
	General Infrastructure considerations
	Infrastructure selection
	Information security
	Best practice adherence
	Generating inputs (pulling and connecting the�data)
	Inputs to outputs (processing the data into the�model)
	Outputs to insights (how to present the model outputs)
	Post-deployment considerations

	Conclusion
	References
	Acknowledgements
	Author contributions
	Competing interests
	Ethics approval
	Additional information

