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Meniscal injury represents a common type of knee injury, accounting for over 50% of all knee injuries.
The clinical diagnosis and treatment of meniscal injury heavily rely on magnetic resonance imaging
(MRI). However, accurately diagnosing the meniscus from a comprehensive knee MRI is challenging
due to its limited andweak signal, significantly impeding theprecisegradingofmeniscal injuries. In this
study, a visual interpretable fine grading (VIFG) diagnosis model has been developed to facilitate
intelligent and quantified grading of meniscal injuries. Leveraging a multilevel transfer learning
framework, it extracts comprehensive features and incorporates an attributional attention module to
precisely locate the injured positions. Moreover, the attention-enhancing feedbackmodule effectively
concentrates on and distinguishes regions with similar grades of injury. The proposed method
underwent validation on FastMRI_Knee and Xijing_Knee dataset, achievingmean grading accuracies
of 0.8631 and 0.8502, surpassing the state-of-the-art gradingmethods notably in error-proneGrade 1
and Grade 2 cases. Additionally, the visually interpretable heatmaps generated by VIFG provide
accurate depictions of actual or potential meniscus injury areas beyond human visual capability.
Building upon this, a novel fine grading criterionwas introduced for subtypes ofmeniscal injury, further
classifying Grade 2 into 2a, 2b, and 2c, aligning with the anatomical knowledge of meniscal blood
supply. It can provide enhanced injury-specific details, facilitating the development of more precise
surgical strategies. The efficacy of this subtype classificationwas evidenced in 20 arthroscopic cases,
underscoring the potential enhancement brought by intelligent-assisted diagnosis and treatment for
meniscal injuries.

The knee joints represent intricate articulations within the human body,
playing a pivotal role in multi-directional movements such as weight-
bearing, lower limb flexion, and extension. Notably, knee joints are highly
susceptible to injury, with meniscal injuries constituting the most prevalent
type, accounting for approximately 50% of all cases1. Meniscal injuries can
lead to pain, swelling, restricted knee mobility, significantly curtailing a
patient’s physical activity. Timely and accurate diagnosis of meniscus is
crucial for preserving meniscus function. Presently, magnetic resonance
imaging (MRI) stands as the primary diagnostic modality due to its high
tissue resolution.

To ensure appropriate treatment of meniscal injuries, precise grading
methods based on knee MRI have been proposed to distinctly assess the
injury severity2–4. Commonly utilized clinical grading systems for meniscal
injuries include the Fischer5 and Mink6 criteria. Fischer’s grading system is
presented in Table 1. However, an increasing number of doctors are ques-
tioning the practice of making the diagnosis and the choice of surgical
approach with subjective grading based on MRI, because doctors have
different cognition of qualitative grading criteria and lack of repeatability.
Moreover, meniscus occupies a small proportion in the entire knee joint,
and the diversity and complexity of injury types pose challenges in
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accurately quantifying the severity of meniscal injuries. This limitation
impedes the effective application of clinical diagnosis and treatment.

Moreover, in Fischer’sGrade 2andGrade3meniscal injuries, partial or
total resection stands as a common treatment approach. However, the
current practice lacks a universally accepted clinical standard for deter-
mining the extent of resection. Inadequate resectionmay result in persistent
pain and associated symptoms, while excessive resection brings accelerated
joint degeneration. To preserve maximal meniscal function, a minimal
suture-based resection or suture treatment plan should be performed on the
injured meniscus. The determination of resection or suturing extents
depends not only on the grading outcomes, but also on considerations of the
vascular supply and the intrinsic healing potential of the injured region,
pivotal for restoring meniscal functionality. Regrettably, existing grading
methodologies fall short of accurately quantifying injury severity, analyzing
signal distribution within the injured area, and elucidating the impact of
vascular supply on meniscus injuries. In response to the above challenges,
the grading methods for diagnosis, and treatment of knee meniscal injury
assisted by artificial intelligence technology are developed.

Henceforth, numerous methods have been applied to the research of
meniscus, encompassing segmentation7–9 and reconstruction10 of the
meniscus region, along with endeavors in diagnosing and grading meniscal
injuries, as well as investigating the mechanisms underlying meniscal
injuries11. While these published methodologies have demonstrated pro-
mising outcomes, refining treatment accuracy necessitates a heightened
focus on the fine grading and visual interpretation of meniscal injuries.
Through a retrospective study, previously proposed meniscus grading
methods have been categorized into traditional grading methods and deep
learning approaches.

Traditional diagnostic methods for meniscus injuries can be
categorized into supervised and unsupervised ones12. Supervised
techniques, exemplified by Boniatis I et al. employed the region-
growing method to segment the meniscus region from MRI. Subse-
quently, computerized image processing techniques were utilized to
extract an array of texture features and spatial variations in pixel
intensity. A classification system based on a Bayesian classifier was
designed to distinguish normal meniscus from degraded meniscus13.
Another supervised approach by Cemal K et al. involved edge detection
filtering using histogram and statistical segmentation to precisely
locate the knee meniscus. Then the meniscus region was analyzed by
modifying the intensity distribution of the statistical model to detect
meniscus tears14. Unsupervised ones such as Saygili A and Albayrak S
et al. proposed methods for detecting and grading meniscus injuries
using knee MRI. They employed Fuzzy-C means and orientation
gradient histogram method, respectively15,16. While these methods
demonstrated certain capabilities in identifying meniscal injuries, they
were often confined to binary injury classification and lacked the
precision required in diagnostic outcomes. Furthermore, most of these
approaches were semi-automatic, requiring human intervention,
thereby introducing potential subjectivity.

The subjectivity of manually extracted features will affect the diagnosis
result of meniscus injuries, while just deep learningmethods belong to end-
to-end, which can effectively circumvent human intervention. Conse-
quently, somemethods ofmeniscus injury diagnosis based ondeep learning
have beenproposed17. For instance,CouteauxV et al. trainedamask region-

based convolutional neural network (R-CNN) to explicitly localize normal
and torn menisci. This network was bolstered through ensemble aggrega-
tion and integrated into a shallow convnet for tear orientation classification.
This study realized the problem of automatically detecting meniscal injury
and classifying of tear direction18. Similarly, RoblotVet al. also constructed a
classification network for meniscal tears for similar problems and the same
public dataset19. In addition, Bien et al. leveraged the deep convolutional
neural network model MRNET, utilizing 1130 instances for training and
120 for validation. Thismodel aimed at gradingmeniscal injuries, achieving
an area under the receiver operating characteristic curve of 0.84720. Pedoia
et al. also performed more detailed injury grading on this basis, augmented
the training set by a factor of 10 using the image amplificationmethod, and
used 3D-CNN to recognize meniscal injury after 2D-UNet segmentation.
Meniscus injuries were classified into normal, mild-moderate and severe
WORMS in 3D-CNN, with accuracy of 0.81, 0.78 and 0.75, respectively21.
Deep learning methods for the diagnosis of knee meniscus injury can be
automated analysis, but the research objectives predominantly remain
within binary (with or without) or ternary (normal, mild or severe) grading.
Despite enabling automated analysis, the above-mentioned methods may
fall short in meeting the requisite accuracy and explanatory depth deman-
ded by clinical practice.

The aforementioned research substantiates the pivotal role of auto-
mated diagnosis and grading in knee meniscal injuries within MRI-based
diagnosis of knee joint disorders. These advancements hold promise in
providing clinicians with more accurate and consistently timely assessment
outcomes. A fine intelligent grading method (VIFG) for meniscal injury is
proposed in this study. As shown in Fig. 1, this method mainly consists of
three parts, including the automatic segmentation and preprocessing phase,
quantitative analysis of injury signal intensity and automatic fine grading
stage, and subdivision of subtypes and clinical surgical validation phase. In
the clinical surgical validation phase, the anatomical considerations
regarding meniscal blood supply were correlated with attention heat maps
derived from attributive attention mechanisms. This correlation aimed to
complement amore nuanced delineation of secondary injury subtypes. The
blood supply status of meniscal injury can also be obtained byMR imaging
features alone without the use of invasive arthroscopy, which provides
guidance for clinical treatment decisions. The main contributions of this
paper can be summarized as follows:

A method (VIFG) was proposed for fine grading of meniscal injury.
The attributional attention mechanism accurately and comprehensively
localizes injury signalswhile transfer learning repetitively extracts distinctive
global and local features, thereby enhancing the diagnostic efficacy and
precision in identifyingmeniscus injuries. Notably, the grading accuracy on
two largeMRI datasets is 0.8631 and 0.8502, serving as a foundational basis
for precise clinical diagnosis.

The diffusion signal of meniscus injury was characterized by class-
activation heat-maps generated by calculating the degree of contribution to
the grading. Employing distinct color representations elucidated the pro-
gression of diffused signals, challenging for human perception. This
approach facilitated the quantification of nuanced intra-meniscal injury
traits, significantly enhancing the interpretability of automated fine grading
methodologies for meniscal injuries.

Based on the information of the meniscus core and potential injury
area shown by the attention heat-map, from the perspective of meniscal

Table 1 | MRI description of Fischer grading criteria

Grade 0 Normal, there is no high signal inside;

Grade 1 Manifested as flak-like or circular fat compression sequence with the high signal image in the meniscus, which did not reach the articular surface margin of the
meniscus;

Grade 2 Presented as horizontal or oblique stripe lipid pressure sequencewith high signal image, and the joint capsule can be reached if themeniscus articular surface is
not reached;

Grade 3 Manifested as a high signal image of the lipid pressure sequence within the meniscus reaching the articular surface margin.
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blood supply, a refinement of Grade 2 injuries into subtypes 2a, 2b and 2c is
proposed, which serves as a preoperative guide for delineating the extent of
meniscal resection andhas been corroborated through arthroscopic surgical
validation.

Results
Performance evaluation metrics description
The performance evaluation metrics encompass various indicators. Mean
accuracy serves as a comprehensive measure of overall grading accuracy,
while Flops and Params quantify the resources allocated by the methods.
Within the correlation evaluation metrics, Cohen’s-κ correlation
coefficient22, Pearson’s r correlation coefficient23, Matthews correlation
coefficient24 and Jaccard similarity coefficierent25 elucidate the correlations
between the predicted grades and the ground-truth grades. A coefficient
value closer to 1 indicates a stronger correlation. The grading evaluation
metrics are defined as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð1Þ

Specificity ¼ TN
TNþ FP

ð2Þ

Sensitivity ¼ TP
TPþ FN

ð3Þ

Precision ¼ TP
TPþ FP

ð4Þ

F1� score ¼ 2 Sensitivity ×Precision
Sensitivity þ Precision

ð5Þ

where TP and TN denote the number of correctly classified positive and
negative samples, respectively. FP and FN represent the number of mis-
classified positive and negative samples, respectively. Specifically, the posi-
tive samples denote a particular grade, while negative samples encompass
the remaining three grades.Accuracy is defined as the ratio of the number of
correctly classified samples to the total numberof samples. Specificitymeans
the ratio of the number of correctly classified negative samples to the total
number of true negative samples. Sensitivity represents the ratio of the
number of correctly classified positive samples to the total number of true
positive samples. Precision, defined as the ratio of correctly classified posi-
tive samples to the total positive samples, provides insight into the

classification’s exactness. F1-score is the summed average of precision and
sensitivity.

Meniscal region extraction
The meniscus represents a small fraction of the overall knee MRI image,
posing a substantial challenge forprecise injury grading.As shown inFig. 2a,
themeniscus volumewithin theMRI scanof the entire knee joint constitutes
less than 0.1%. The approach adopted in this study involves segmenting the
meniscal region from the entirety of the knee MRI. Leveraging the current
optimal segmentation algorithm, a model specializing in meniscus region
segmentation was trained. To accommodate variations in data sources and
perspectives, four adaptive models were developed for localizing the
meniscus region. The average dice similarity coefficient for segmentation
was 0.88, as depicted in Fig. 2b showcasing segmentation results. Visuali-
zation of the outcomes revealed precise segmentation of the meniscus in
both sagittal and coronal orientations. The distinction between two distinct
menisci was highlighted using red and green labels. Subsequently, the
delineatedmeniscus region underwent cropping by applying the segmented
mask to the original image, creating a refined dataset solely encompassing
the meniscal region.

Meniscus region signal intensity analysis
In clinical settings, T2WI high signal refers to regions with significantly
bright signal intensity on T2-weighted imaging. These high signal areas are
typically associated with water or fluids, presenting as uniformly white or
gray-white on MRI images. In bone MRI imaging, T2WI high signal areas
may be related to bone marrow edema, fractures, cartilage lesions, or
arthritis, among others. The objective of this study is to grade the severity of
meniscal injury through T2WI of the knee joint. We utilized the Fisher
grading criteria, where different grades exhibit distinct radiological pre-
sentations, as depicted in the schematic diagram in Fig. 3a. Specifically,
Grade 0 exhibits aminimal high signal, Grade 1 shows a laminar or circular
high signal, Grade 2 displays a horizontal or oblique striped high signal, and
Grade 3 demonstrates a high signal extending to the joint surface edge in the
meniscus inner fat suppression sequence. Qualitative descriptions based on
diagnostic criteria indicate that the focus ofmeniscal injury grading research
lies in the high signal within the meniscus, encompassing the morphology,
distribution, and location of high signal, all of which are crucial for injury
grading. Therefore, in order to quantitatively define the grading criteria, our
study proposed metrics for quantifying the signal within the meniscus. We
defined theHigh-to-LowSignal IntensityRatio Index (HSI) (as illustrated in
Fig. 3) and the signal variation from the injury core to the normal tissue area
(as shown in Fig. 4).

Fig. 1 | Schematic representation of the workflow for meniscal injury intelligent
grading system. The segmentation preprocessing phase automates the segmenta-
tion of the meniscal region. Signal intensity analysis facilitates quantitative

assessment of injury signals and enables refined automatic grading of meniscal
injuries. The clinical surgical validation phase introduces a novel subtype
classification.
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Specifically, we introduced the High-to-Low Signal Intensity Ratio
Index to assess the severity of meniscal injuries. As depicted in Fig. 3a, in
grayscale images, pixel values range from 0 to 255, representing various
grayscale levels; a pixel value of 0 signifies pure black, while a value of 255
denotes pure white. Through the output of four signal distribution grades,
we observed significant differences when the threshold was set at 50.
Consequently, basedon the signal intensity distributionwithin themeniscus
images, regions with pixel values >50 were defined as high signal areas
(assigned as Shigh), while those below 50 were designated as low signal areas
(assigned as Slow). We then calculated the ratio between these areas and
multiplied the result by 255, as shown in the following equation:

HSIi ¼
Shigh
Slow

× 255; i ¼ 0; 1; 2; 3 ð6Þ

The signal intensities for the four grades are denoted as HSI0�3, dis-
tinguishing the four levels as illustrated in Fig. 3b. Through statistical ana-
lysis, it was observed that HSI demonstrates an increasing trend with
ascending grades. This finding further supplements the existing qualitative
grading criteria for meniscal MRI, providing a more quantitative repre-
sentation of high-signal injury.

Besides quantitatively assessing HSI, signal diffusion analysis was
conducted to evaluate the extent of injury influence, depicted in Fig. 4.
According to the qualitative grading criteria, the image coloration delineates
normal tissue as pure black, the injury core as bright white, and the outward
extension of the injured area gradually transitioning fromwhite to black. In
examining the signal changes within the injured region, signal values from
the injury core and its surrounding blocks were assessed. Remarkably, the
injured core area exhibited a conspicuous high signal, with values
approaching 255. Moving outward, the injury signal progressively wea-
kened until it became imperceptible to the naked eye. Quantitative output
values underscore the evident presence of a core injury and an extended

surrounding injury area within the affected meniscus. This progressive
pathological process aligns with typical characteristics associated with
meniscus injuries.

Grading results on the different datasets
Before transitioning to more complex methods such as CNNs, we aug-
mented our analysis with machine learning based on radiomics. Utilizing a
feature extraction package, we extracted radiomic features from the seg-
mented regions of the meniscus (obtaining 378-dimensional features using
the pyradiomics package). Subsequently, we conducted classification
experiments using several commonmachine learning algorithms, including
RandomForest, Decision Tree, Naive Bayes, and SVM, thereby introducing
additional comparative algorithms in the study. The methods of radiomics
can achieve classification tasks inmeniscal injury grading. The experimental
outcomes, as depicted in Table 2, reveal that themachine learning approach
basedon radiomics exhibits slightly inferior performance inmeniscus injury
grading compared to deep learningmethods. Due to their excessive reliance
on superficial features and the lack of generalizability to large datasets and
deep learning is proposed to help solve the problem of deep feature
extraction of a large numberof data, so this paper adopts themethodof deep
learning. Substantial experiments confirm the significant advantage of deep
learning methods in this task.

The results obtained by the deep learning method proposed in this
paper on the two datasets are shown in Tables 3–6. The visualization results
of heat-maps on the two datasets are presented in Fig. 5 and Fig. 6. For the
Xijing_Knee dataset, our method achieved a mean accuracy of 85.02% in
overall grading performance. Cohen’s kappa correlation coefficient was
0.7982, Pearson’s correlation coefficient was 0.9329, Matthews correlation
coefficient was 0.7996, and Jaccard’s similarity coefficient was 0.7478. These
quantitative indicators are all superior to other deep learning methods. For
the FastMRI_Knee dataset, the mean accuracy of our method in the overall
grading performance is 86.31%. Cohen’s kappa correlation coefficient is

Fig. 2 | Sketch of meniscus region extraction.
a Calculated that the meniscus accounted for <0.1
percent of the total knee MRI image. b The sche-
matic diagram showed the results of meniscus seg-
mentation in sagittal and coronal MRI.

a

b

Label Name Voxel
Count

Volume
( )

Intensity
Mean

Clear Label 3989444 2.362e+06 112.6424

Label1_red 3139 1859 116.4189

Label2_gree 2553 1512 88.7313

Label Name Voxel
Count

Volume
( )

Intensity
Mean

Clear Label 2249799 2.587e+06 93.0507

Label1_red 1462 1681 86.3516

Label2_green 1539 2770 47.5211
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0.8258, Pearson’s correlation coefficient is 0.9425, Matthews’s correlation
coefficient is 0.8159, and Jaccard’s similarity coefficient is 0.7663. These
quantitative indicators are also better compared to other deep learning
methods for contrast experiments, as well as better than the Xijing_Knee
dataset.

The results of statistical significance tests were presented in
Tables 3 and 5 to ascertain the significance of the outcomes. Paired t-tests
were employed, and additional experimentswere conducted to compute the
t-statistic and the corresponding p-value. Throughout the computation
process, ourmethod served as the baseline against which the results of other

Complete knee MRI Meniscus Localization Meniscus Segmentation Signal distribution 

a Signal distribution of  meniscus injury in different grades

Slow3

Shigh3

b High-low signal  intensity ratio index of  four grades

Shigh1

Slow1Slow0

Slow2

Shigh0

Shigh2

Fig. 3 | Schematic diagram of meniscus internal injury signal analysis. a Represents the signal distribution of meniscus injury of different degrees, and b refers to the
calculation of the high–low signal intensity ratio index of four grades.
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methods were compared for statistical significance. The obtained results are
displayed in the last columnofTables 3 and 5. The p-values indicate that at a
significance level of 0.05, our method exhibits superior performance com-
pared to other CNN architectures, with statistically significant differences
noted as *p < 0.05 and **p < 0.01.

To measure the performance of our method on the four grades
respectively, precision, specificity, recall, and F1-score were calculated on
the four grades. The experimental results show that all deep learning
methods can perform well in Grades 0 and 3. The superiority of our
approach ismainly reflected inGrade 1 andGrade 2,which are the twomost
difficult grades to distinguish. The details are as follows, for the Xijing_Knee
dataset, Grade 1’s precision is 0.763, specificity is 0.9, recall is 0.786, and F1-
score is 0.774. Grade 2’s precision is 0.741, specificity is 0.941, specificity is
0.829, and F1-score 0.783. For the FastMRI_Knee dataset, Grade 1 has a
precision of 0.810, specificity of 0.930, recall of 0.784, and F1-score is 0.797.
Grade 2 has a precision of 0.754, specificity of 0.939, recall of 0.794, and F1-
score is 0.773. Our method performed better on grading quantitative
indicators of Grade 1 and Grade 1.

Due to the sufficient quantity of both datasets, five-fold cross-valida-
tion was carried out on the private dataset XijingMRI_Knee and the public

dataset FastMRI_Knee, respectively, and the results obtainedwere shown in
Tables 7 and 8. Our method exhibits outstanding performance in the five-
fold cross-validation experiments, displaying evident advantages compared
to other typical methods. Particularly noteworthy is the attainment of the
highest accuracy of 89.33% in the second-fold experiment on the
XijingMRI_Knee dataset and an accuracy of 87.54% in the fourth-fold
experiment on the FastMRI_Knee dataset. From the average classification
accuracy of the five-fold cross-validation experiments, it can also be
observed that our method demonstrates a certain level of stability.

Regarding the external testing perspective, the external testing was
performedbyutilizing the test segment of the private datasetXijing_Knee as
the external test for themodel trained on the public dataset FastMRI_Knee.
The outcomes of the external testing, as depicted inTables 9 and 10, validate
the robustness of the algorithm. Comparative analysis across Mean-Acc,
Cohen’s κ, JSC, Pearson’s r, specificity,MCC, and specific gradingmetrics at
each level demonstrates superior performance of our method in indepen-
dent testing results compared to othermethods. The bestMean-Acc reaches
92.5%, providing substantial evidence for the robustness of this approach
than the comparison algorithm and baseline algorithm on two datasets.

In addition to the quantitative results of grading, qualitative visual
results were also obtained. Due to the heatmaps’ proficiency in visually
representing the locations, shapes, and extents of distinct features indicative
of different grades of meniscus injury in imaging, we proposed the inte-
gration of an attributional attention module in the refined classification
process of meniscus injuries. This module precisely guides the model to
focus on regions that contribute significantly to injury grading. Themodel’s
emphasis on high-intensity areas is essential due to the clinical diagnostic
standards wherein highlighted information reflects manifestations of tissue
fluids, tears, and aligns with the focal points of diagnostic grading criteria.
Therefore, it is imperative for the model to attend to these highlighted
regions.

Our approach distinctly illustrates discernible differences in visualized
heatmaps across various grades. Based on the results of visualizing heat-
maps from different methods on the two datasets, it was found that deep
learning algorithms of contrast miss critical injury when localizing injured
signals. And compared to baseline method, our method can accurately
locate the injured location and show the core injured signal with finer focus.
As depicted in the additional Fig. 7a–d represent correctly classified samples
corresponding to Grade 0 to Grade 3, along with their respective heatmaps.

Fig. 4 |Diagramof the process of gradual change inmeniscal injury signal value.Block 1– block 6 are taken from5*5 pixel blocks in the outward extension direction of the
core damage in the meniscus region, respectively.

Table 2 | Comparative experimental results of meniscus injury
grading with deep learning methods and based on radiology
machine learning methods

Method Accuracy Precision Recall Specificity

Radiomics-based machine learning

Random forest 0.75 0.50 0.68 0.67

Decision tree 0.65 0.65 0.46 0.62

Naive Bayes 0.53 0.49 0.78 0.33

SVM 0.56 0.52 0.73 0.58

Deep learning

ResNet18 0.8343 0.8225 0.8250 0.9449

EfficientNet-B0 0.8429 0.8250 0.8250 0.9482

Swin-transformer 0.8573 0.8224 0.8168 0.9529

Our method 0.8631 0.8550 0.8575 0.9546
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Table 3 | Comparison results between our method and other deep learning methods on Xijing_Knee dataset

Method Mean-Acc Flops Params Cohen’s κ JSC Pearson’s r specificity MCC P-value

VGG16 0.6123 15.5 138.36M 0.4735 0.5215 0.8573 0.8830 0.4944 0.0061**

DenseNet121 0.7797 2.88 6.96M 0.7029 0.6489 0.8925 0.9267 0.7034 0.0029**

HRNet 0.7974 4.33 19.25M 0.7263 0.6747 0.9160 0.9322 0.7271 0.0057**

RegNetx 0.8282 0.41 4.77M 0.7683 0.7165 0.9288 0.9429 0.7687 0.0088**

ShuffleNet 0.8216 0.15 908.57k 0.7583 0.7145 0.9236 0.9421 0.7617 0.0061**

Convmixer 0.7974 5.55 23.36M 0.7262 0.6785 0.9160 0.9329 0.7281 0.0057**

ResNet101 0.8128 7.85 42.51M 0.7475 0.6963 0.9214 0.9377 0.7479 0.0060**

MobileNet 0.7797 0.32 2.23M 0.7025 0.6622 0.9106 0.9106 0.7116 0.0026**

ResNet152 0.8106 11.58 58.15M 0.7447 0.6903 0.9213 0.9365 0.7450 0.0064**

ResNet18 0.8260 1.82 11.18M 0.7654 0.7128 0.9276 0.9419 0.7657 0.0079**

EfficientNet-B0 0.8150 0.02 4.01M 0.7498 0.7026 0.9214 0.9390 0.7511 0.0058**

Swin-Transformer 0.8260 4.36 27.52M 0.7656 0.7151 0.9302 0.9428 0.7689 0.0105*

Our method 0.8502 3.52 15.26M 0.7982 0.7478 0.9329 0.9502 0.7996

*Indicates that P-value is < 0.05, which is statistically significant; **indicates that P-value < 0.001 is statistically significant.

Table 4 | Comparison of the specific results of four grades on Xijing_Knee dataset

Method Grade 0 Grade 1 Grade 2 Grade 3

Pre Spe Rec F1 Pre Spe Recl F1 Pre Spe Rec F1 Pre Spe Rec F1

VGG16 0.92 0.96 0.56 0.70 0.34 0.75 0.49 0.40 0.14 0.83 0.63 0.23 0.94 0.98 0.75 0.83

DenseNet 0.81 0.93 0.82 0.81 0.75 0.89 0.72 0.74 0.60 0.91 0.68 0.64 0.90 0.96 0.85 0.87

HRNet 0.85 0.94 0.83 0.84 0.76 0.89 0.70 0.73 0.61 0.91 0.73 0.66 0.92 0.97 0.92 0.92

RegNetx 0.90 0.96 0.84 0.87 0.79 0.91 0.77 0.78 0.66 0.92 0.75 0.70 0.92 0.97 0.92 0.92

ShuffleNet 0.94 0.97 0.80 0.86 0.78 0.90 0.74 0.76 0.55 0.90 0.85 0.67 0.93 0.97 0.91 0.92

Convmixer 0.92 0.96 0.78 0.84 0.73 0.88 0.71 0.71 0.58 0.90 0.74 0.65 0.91 0.97 0.95 0.93

ResNet101 0.90 0.96 0.84 0.87 0.78 0.90 0.74 0.76 0.62 0.91 0.70 0.66 0.90 0.96 0.92 0.91

MobileNet 0.98 0.99 0.68 0.81 0.60 0.84 0.71 0.65 0.56 0.90 0.84 0.67 0.93 0.97 0.94 0.93

ResNet152 0.88 0.95 0.84 0.86 0.77 0.90 0.73 0.75 0.65 0.92 0.70 0.68 0.89 0.96 0.94 0.92

ResNet18 0.89 0.96 0.84 0.86 0.78 0.90 0.76 0.77 0.67 0.92 0.75 0.70 0.92 0.97 0.93 0.92

EfficientNet 0.89 0.96 0.84 0.86 0.80 0.91 0.74 0.76 0.57 0.90 0.74 0.64 0.93 0.97 0.91 0.92

Swin-T 0.97 0.99 0.77 0.86 0.70 0.87 0.76 0.73 0.70 0.93 0.80 0.75 0.90 0.96 0.99 0.94

Ours 0.96 0.98 0.82 0.88 0.76 0.90 0.79 0.77 0.74 0.94 0.83 0.78 0.92 0.97 0.98 0.95

Pre represents precision, Spe represents specificity, Rec represents recall, and F1 represents F1-score.

Table 5 | Comparison results between our method and other deep learning methods on FastMRI_Knee dataset

Method Mean-Acc Flops Params Cohen’s κ JSC Pearson’s r specificity MCC P-value

VGG16 0.6282 15.5 138.3M 0.4912 0.5434 0.8601 0.8877 0.5108 0.0057**

DenseNet121 0.7810 2.88 6.96M 0.7065 0.6443 0.9033 0.9261 0.7082 0.0038**

HRNet 0.8285 4.33 19.25M 0.7698 0.7143 0.9314 0.9427 0.7701 0.0060**

RegNetx 0.8401 0.41 4.77M 0.7846 0.7313 0.9339 0 .9469 0.7848 0.0055**

ShuffleNet 0.8343 0.15 908.5k 0.7761 0.7308 0.9376 0.9459 0.7775 0.0090**

Convmixer 0.8386 5.55 23.36M 0.7826 0.7309 0.9369 0.9470 0.7837 0.0081**

ResNet101 0.8386 7.85 42.51M 0.7825 0.7344 0.9346 0.9468 0.7829 0.0057**

MobileNet 0.8098 0.32 2.23M 0.7428 0.7025 0.9170 0.9391 0.7449 0.0039**

ResNet152 0.8501 11.5 58.15M 0.7982 0.7488 0.9401 0.9505 0.7985 0.0086**

ResNet18 0.8343 1.82 11.18M 0.7769 0.7259 0.9361 0.9449 0.7773 0.0075**

EfficientNet-B0 0.8429 0.02 4.01M 0.7884 0.7391 0.9403 0.9482 0.7887 0.0106*

Swin-Transformer 0.8573 4.36 27.52M 0.8082 0.7595 0.9442 0.9529 0.8089 0.0305*

Our method 0.8631 3.52 15.26M 0.81581 0.7663 0.9425 0.9546 0.8159

*Indicates that P-value is < 0.05, which is statistically significant; **indicates that P-value < 0.001 is statistically significant.
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The heatmaps for Grade 0 essentially lack prominently highlighted areas,
aligning with diagnostic standards. For Grade 1, the highlighted areas are
primarily concentratedwithin themeniscus, forming circular regionswith a
relatively smaller range.Grade 2heatmapsdisplay broader highlighted areas
compared to Grade 1, covering larger impact regions, mostly located closer
to the joint capsule. Grade 3 heatmaps exhibit the widest range of high-
lighted areas, occupying nearly half of the meniscus area, spanning across
regions near the joint capsule to the articular surface. Eachgrade’s heatmaps
exhibit distinctive characteristics, aligning with clinical standards for
meniscus injury grading based on Fisher’s grading criteria, demonstrating
the interpretability of heatmaps by vividly presenting the locations, shapes,
and extents of injury signals.

Overall, the FastMRI_Knee datase performed better by comparing the
above quantitative and visual results on the two datasets. This is motivated
by the two following reasons, the large amount of data and the higherdegree
of injury signal aggregation.The influenceofmeniscus injury grading results
not only comes from the size of data but also is related to the location of
meniscus injury, the degree of diffusion and the degree of signal aggregation.
Therefore, ourmethod combines the advantages of large-scale data samples,
accurate injury location algorithm and quantitative injury signal analysis to
make correct fine-grading diagnosis.

In Fig. 8, instances of prediction errors were reported, with mis-
classified samples observed across each grade. Notably, Grades 0 and 3
exhibit higher accuracy rates and fewermisclassifications.Misclassifications
in Grade 0 predominantly result in predictions as Grade 1, while Grade 3
misclassifications are primarily predicted as Grade Conversely, Grades 1
and 2, which pose greater grading difficulties, are more prone to mis-
classification as adjacent grades. Further clarification on specific classifica-
tion scenarios is provided through the illustrative confusion matrices in
Fig. 9. Analysis of misclassified data allows for the identification of three
primary contributing factors: firstly, issues related to image quality arise due
to differences in image acquisition protocols within the dataset, resulting in
varying image qualities. Secondly, individual variations in case profiles and
subtle features among grades contribute to misclassifications. Thirdly, the
method proposed in this paper has some limitations, demonstrating good
classification capabilities concerning grade boundaries but encountering
challenges in accurately classifying ambiguous cases, particularly Grades 1
and 2, which possess unclear classification boundaries.

Correlation study of meniscus injury grading
Due to the advantage of a large amount of data in this study, we conducted a
correlation study between meniscus injury grade and various influencing

factors of subjects to explore the trend of meniscus injury in the population
and obtain a more complete and detailed evaluation system. We concluded
that age, sex, body weight, medial or lateral meniscus were significantly
correlated with Fisher’s grade of meniscus injury, while Fisher’s grade of
meniscus injurywas not significantly correlatedwith left and right legs. Non-
imaging variables such as gender, age, and weight can be important for this
task. We plan to incorporate the experimental findings pertaining to this
section. Furthermore, we aim to incorporate non-imaging variables such as
gender, age, and weight into the model as non-imaging features embedded
within the network, leading to the results shown in Table 11. It is evident that
age, gender and weight, as non-imaging features, contribute to an improve-
ment in the gradingperformance. Fromtheexperimental results, the addition
of gender and weight separately showed a slight improvement in the grading
accuracy.However, after introducing age as a single feature, there was amore
noticeable enhancement in grading accuracy. Embedding all three non-
imaging features into the network yielded the best grading performance.

Clinical significance of injury heatmaps
This research article incorporates the attributional attention module within
the VIFG framework, yielding attentional heat maps crucial for precise
localization of the affected area. As shown in Fig. 10, the signal blocks of the
heat-maps are consistent with the conclusions obtained above section of
meniscus region signal intensity analysis. Notably, the core injury region
exhibits a prominent high signal, nearing values of 255, while the signal
weakens with outward dispersion. These heat maps employ varied colors to
denote the severity and spatial extent of the injury. The dark red area is the
signal value corresponding to the locationof the coreof the injury, and the red
area represents the signal value referring to the area most adjacent to the
location of the core injury. The signal values within the yellow area register
lower values compared to the red area, ranging from100 to 200, all within the
rangeperceptible to thehumaneye.As the injured area extends into the green
area, it is barely discernible toournaked eye, but it shows adifference in signal
values from the normal tissue of the meniscus represented by dark blue. On
the basis of different color blocks representing different injury degrees, a
quantitative evaluation indexAIAwas obtained by calculating the sumof the
areas of core dark red and extended red areas. Hence, our proposed method
enables a refined grading analysis of meniscal injuries and non-invasive
localization of the affected area, significantly enhancing diagnostic efficiency.

Subtypes representation and anatomic verification
The proposedmethod realizes the intelligent grading across the spectrumof
the four grades of meniscal injury, utilizing attentional heat maps to

Table 6 | Comparison of the specific results of four grades on FastMRI_Knee dataset

Method Grade 0 Grade 1 Grade 2 Grade 3

Pre Spe Rec F1 Pre Spe Rec F1 Pre Spe Rec F1 Pre Spe Rec F1

VGG16 0.89 0.94 0.62 0.73 0.38 0.79 0.46 0.42 0.12 0.82 0.81 0.21 0.98 0.99 0.73 0.84

DenseNet 0.79 0.91 0.91 0.84 0.73 0.90 0.64 0.68 0.71 0.92 0.65 0.68 0.87 0.96 0.93 0.90

HRNet 0.89 0.95 0.94 0.91 0.78 0.91 0.91 0.76 0.71 0.92 0.68 0.68 0.88 0.96 0.92 0.90

RegNetx 0.91 0.96 0.88 0.90 0.78 0.92 0.75 0.77 0.72 0.93 0.76 0.74 0.89 0.96 0.93 0.91

ShuffleNet 0.95 0.97 0.87 0.91 0.77 0.91 0.71 0.74 0.63 0.91 0.77 0.70 0.92 0.97 0.96 0.94

Convmixer 0.95 0.97 0.85 0.89 0.72 0.90 0.78 0.75 0.76 0.94 0.75 0.76 0.88 0.96 0.96 0.92

ResNet101 0.94 0.97 0.87 0.90 0.73 0.90 0.74 0.74 0.71 0.92 0.76 0.73 0.73 0.97 0.95 0.94

MobileNet 0.96 0.98 0.84 0.89 0.72 0.90 0.73 0.73 0.55 0.89 0.73 0.63 0.92 0.97 0.89 0.90

ResNet152 0.94 0.97 0.88 0.91 0.76 0.91 0.77 0.76 0.74 0.93 0.76 0.75 0.92 0.97 0.96 0.94

ResNet18 0.91 0.96 0.91 0.91 0.78 0.91 0.72 0.75 0.68 0.92 0.73 0.71 0.92 0.97 0.94 0.93

EfficientNet 0.93 0.97 0.90 0.92 0.79 0.92 0.75 0.77 0.68 0.92 0.74 0.71 0.90 0.97 0.94 0.92

Swin-T 0.94 0.97 0.88 0.91 0.72 0.90 0.80 0.76 0.81 0.95 0.76 0.78 0.93 0.97 0.95 0.94

Ours 0.93 0.97 0.92 0.92 0.81 0.93 0.78 0.80 0.75 0.94 0.79 0.77 0.93 0.98 0.94 0.93

Pre represents precision, Spe represents specificity, Rec represents recall, and F1 represents F1-score.
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pinpoint the site of injury. In clinical scenarios, Grade 2 holds paramount
importance in determining the course of clinical treatment. However,
experimental findings indicate that Grade 2 poses exceptional difficulty and
presents the most formidable challenge across diverse methodologies,
emerging as the weakest performer among the four grades. Because surgical
planning for kneemeniscal injury necessitates consideration not only of the
injury type and tear magnitude but also critically relies on the local blood

supply at the injury site. To achieve precise therapeutic outcomes and
optimize meniscal function preservation in patients, minimal resection or
suturing of the injured meniscus is imperative.

In this paper, based on the research results and combined with the
vascular distribution of the meniscus, the anatomical knowledge that
themeniscus is divided into three equal parts by distance from the outside to
the inside was presented26. As shown in Fig. 11 (a), the outer third of the
meniscus is often referred to as the “red zone” because it has a good blood

Fig. 5 | Comparison of visualization results of meniscus grading applying dif-
ferentmethods onXijing_KneeDataset. aOriginal meniscal region, bConvmixer,
cDensenet, dEfficientnet, eHRnet, fMobilenet, gRegenetx, hResnet18, i shufflenet,
j swin-transformer, and k our method.

Fig. 6 | Comparison of visualization results of meniscus grading applying dif-
ferent methods on Xijing_Knee Dataset. a original meniscal region, b Convmixer,
cDensenet, dEfficientnet, eHRnet, fMobilenet, gRegenetx, hResnet18, i shufflenet,
j swin-transformer, and k our method.
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Table 7 | The results of the five-fold cross-validation experiment
on the XijingMRI_Knee dataset, with accuracy as the index

Method| Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

VGG16 0.3267 0.2867 0.5267 0.6267 0.6689 0.4871

DenseNet 0.8160 0.7864 0.7537 0.7507 0.7033 0.7620

HRNet 0.7133 0.8067 0.7867 0.7733 0.7483 0.7657

RegNetx 0.7933 0.8443 0.7800 0.8133 0.8079 0.8078

ShuffleNet 0.7820 0.8100 0.7963 0.8037 0.8163 0.8017

Convmixer 0.7774 0.7270 0.7685 0.7982 0.6558 0.7454

ResNet101 0.8200 0.7800 0.8200 0.8200 0.7947 0.8069

MobileNet 0.7933 0.8333 0.7867 0.7267 0.7947 0.7869

ResNet152 0.8400 0.7467 0.8400 0.8200 0.7947 0.8083

ResNet18 0.7800 0.8523 0.7600 0.7933 0.8278 0.8027

EfficientNet 0.7933 0.8367 0.7867 0.8200 0.8575 0.8188

Swin-T 0.8576 0.8200 0.7948 0.8267 0.8133 0.8245

Ours 0.8200 0.8933 0.8309 0.8600 0.8423 0.8493

Table 8 | The results of the five-fold cross-validation experiment
on the FastMRI_Knee dataset, with accuracy as the index

Method| Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

VGG16 0.7151 0.4214 0.6825 0.6231 0.6558 0.6196

DenseNet 0.7537 0.7418 0.8131 0.7745 0.7626 0.7691

HRNet 0.8338 0.8101 0.8487 0.8101 0.7982 0.8202

RegNetx 0.8427 0.8190 0.8309 0.8487 0.7893 0.8261

ShuffleNet 0.8220 0.8220 0.8427 0.8071 0.7834 0.8154

Convmixer 0.7567 0.7567 0.7211 0.7151 0.7181 0.7335

ResNet101 0.8398 0.7834 0.8042 0.8071 0.7893 0.8048

MobileNet 0.8249 0.8160 0.8131 0.7715 0.8190 0.8089

ResNet152 0.7982 0.8190 0.8042 0.8665 0.8220 0.8220

ResNet18 0.8398 0.8427 0.8071 0.7953 0.8220 0.8214

EfficientNet 0.8427 0.8427 0.8131 0.8338 0.7982 0.8261

Swin-T 0.7953 0.8012 0.8576 0.8190 0.8398 0.8226

Ours 0.8427 0.8279 0.8605 0.8754 0.8665 0.8546

Table 10 | The test set part of Xijing_Knee dataset is tested on the model trained by FastMRI_Knee dataset, and the specific
performance of each grade was obtained

Method Grade 0 Grade 1 Grade 2 Grade 3

Pre Spe Rec F1 Pre Spe Rec F1 Pre Spe Rec F1 Pre Spe Rec F1

VGG16 0.92 0.96 0.56 0.70 0.34 0.75 0.49 0.40 0.14 0.83 0.66 0.23 0.95 0.98 0.75 0.84

DenseNet 0.76 0.91 0.85 0.80 0.78 0.90 0.68 0.73 0.69 0.92 0.66 0.67 0.84 0.94 0.92 0.88

HRNet 0.89 0.96 0.92 0.91 0.84 0.93 0.79 0.82 0.74 0.94 0.73 0.73 0.90 0.96 0.95 0.92

RegNetx 0.92 0.97 0.86 0.89 0.84 0.93 0.80 0.82 0.72 0.93 0.80 0.76 0.92 0.97 0.97 0.94

ShuffleNet 0.94 0.97 0.83 0.88 0.79 0.91 0.87 0.82 0.85 0.96 0.82 0.83 0.92 0.97 0.98 0.95

Convmixer 0.95 0.98 0.78 0.86 0.74 0.89 0.84 0.78 0.82 0.95 0.81 0.81 0.90 0.96 1.00 0.95

ResNet101 0.92 0.97 0.87 0.89 0.83 0.92 0.80 0.81 0.71 0.93 0.78 0.74 0.92 0.97 0.96 0.94

MobileNet 0.99 0.99 0.88 0.93 0.85 0.94 0.88 0.87 0.80 0.95 0.88 0.84 0.95 0.98 0.98 0.96

ResNet152 0.90 0.96 0.88 0.89 0.85 0.93 0.80 0.83 0.74 0.94 0.79 0.76 0.91 0.97 0.96 0.93

ResNet18 0.86 0.95 0.87 0.86 0.81 0.91 0.74 0.78 0.70 0.93 0.74 0.72 0.91 0.97 0.97 0.94

EfficientNet 0.91 0.96 0.87 0.89 0.82 0.92 0.76 0.79 0.63 0.91 0.75 0.68 0.92 0.97 0.95 0.93

Swin-T 0.95 0.98 0.85 0.90 0.79 0.91 0.84 0.82 0.83 0.96 0.82 0.83 0.94 0.98 0.99 0.96

Ours 0.96 0.98 0.91 0.93 0.90 0.95 0.88 0.89 0.83 0.96 0.95 0.89 0.97 0.99 0.96 0.97

Pre represents precision, Spe represents specificity, Rec represents recall, and F1 represents F1-score.

Table 9 | Cross-center data independent test results

Method Mean-Acc Cohen’s κ JSC Pearson’s r specificity MCC p-value

VGG16 0.6150 0.4764 0.5250 0.8583 0.8839 0.4978 0.0052**

DenseNet121 0.7780 0.7004 0.6380 0.8992 0.9250 0.7019 0.0044**

HRNet 0.8550 0.8043 0.7511 0.9423 0.9513 0.8046 0.0063**

RegNetx 0.8630 0.8158 0.7656 0.9427 0.9545 0.8164 0.0056**

ShuffleNet 0.8770 0.8344 0.7836 0.9507 0.9586 0.8356 0.0069**

Convmixer 0.8550 0.8048 0.7513 0.9456 0.9517 0.8076 0.0071**

ResNet101 0.8570 0.8070 0.7565 0.9423 0.9523 0.8074 0.0060**

MobileNet 0.9070 0.8754 0.8357 0.9583 0.9695 0.8763 0.0046**

ResNet152 0.8630 0.8159 0.7643 0.9443 0.9544 0.8163 0.0061**

ResNet18 0.8330 0.7743 0.7195 0.9313 0.9437 0.7749 0.0055**

EfficientNet-B0 0.8370 0.7799 0.7314 0.9348 0.9461 0.7808 0.0057**

Swin-Transformer 0.8810 0.8402 0.7931 0.9548 0.9601 0.8409 0.0076**

Our method 0.9250 0.8990 0.8631 0.9664 0.9752 0.8995

The test set part of the XijingMRI_Knee dataset is tested on the model trained by the FastMRI_Knee dataset.
**Indicates that P-value < 0.001 is statistically significant.
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supply and is capable of healing on its own if the tear is small and does not
necessarily require to be treated surgically. There is a partial blood supply in
themiddle thirdof themeniscus, knownas the “red-white zone,” and it is less
likely to heal on its own. The “white area” in the inner third of themeniscus
has little to no blood supply and cannot heal on its own once the injury has
occurred, only to be surgically removed. The entire meniscus is evenly
divided into three parts according to the whole distance from the capsule to
the innermost part of the joint. The first third is red and red areas, indicating
an adequate blood supply. The middle third is red and white, representing
limited blood supply. Thefinal third of the area is white, representing almost
no blood flow. Themiddle third is red andwhite, representing limited blood
supply.Thefinal thirdof the area iswhite, representingalmostnobloodflow.
The heat-maps were employed to delineate the location and extent of the
core injury area based on concentrated dark red and red zones. In cases
where the injury spans across multiple areas, priority was accorded to the
most severe region. To furnish a more nuanced representation of injury
severity, subtypes were proposed within Grade 2, specifically 2a (red-red
zone), 2b (red-white zone), and 2c (white zone). The meniscus was divided
into three equal segments from the inner to outer regions, as illustrated in
Fig. 11b.Within this scheme, 2a indicates core injury about one-third of the
way up the joint capsule, 2b signifies the lesion’s midsection, and 2c
encompasses the remaining distal capsule area. Integrating subtype grading
with clinical practice facilitatedanunderstandingof the relationshipbetween
heatmap-identified regions and anatomical blood supplyfindings, validated
in select clinical scenarios.

The specifics are detailed in Fig. 11b. The left panel delineates the
locations of the injured areas corresponding to RR, RW, andWW regions.
These position relationships provide the anatomic basis for the classification
of subtypes of knee meniscus injuries. This novel subtyping protocol was
validated through arthroscopic surgery formeniscus injuries, as depicted in
the right panel of Fig. 11b. The heat-maps of 2a show that the core of the
injury to be in the RR region. During arthroscopic surgery, the injury core,
found near the joint capsule and exhibiting pronounced vascularity, man-
ifested amore hemoglobin-rich coloration. For 2b, the predominant injured
core was identified within the RW region on the heat-maps, with some
discernible vascularity observed during arthroscopic surgery. Regarding 2c,

the core of injurywasmainly in theWWarea, corroborated by arthroscopic
surgery footage revealing an absence of appreciable blood supply. The
findings of this study can complement the current qualitative grading sys-
tem formeniscal injury, providing enhanced guidance for clinical diagnosis
and treatment through quantified and visualized outcomes.

Discussion
The superiority of our method in grading of knee meniscal injury. Our
proposed method (VIFG) exhibited remarkable efficacy in fine grading
validation using both the public FastMRI_Knee dataset (consisting of 2488
cases) and theprivateXijing_Kneedataset (consistingof 1526cases).Notably,
distinguishing betweenGrade 0 andGrade 3meniscal injuries, which exhibit
distinct imaging characteristics, posed relatively minimal grading challenges.
Common deep learning methods typically achieve accuracies surpassing
90%, while our method attained an accuracy exceeding 92%. This under-
scores the robustness and effectiveness of our approach in finely grading
Grade 0 and Grade 3 injuries. Nevertheless, the major challenge in auto-
matically grading meniscal injuries comes from the identification of Grade 1
andGrade2 injuries.The intermediarynatureofGrade2, positionedbetween
Grades 1 and 3, results in less distinct high signal localization and intensity,
contributing to grading complexities. Regardless of the methodological
approach adopted, satisfactory grading outcomes for these two grades have
not been achieved. Upon MRI examination, the difficulty in grading stems
from the limited differentiation of high signal locations in meniscal injuries
between Grades 1 and 2, leading to strikingly similar learned features that
increase grading errors in deep learning algorithms when applied to test
datasets. This lack of distinction poses significant challenges within the
grading framework and necessitates the development of innovative techni-
ques to achieve objective and accurate gradations.

Consequently, we propose specific methodologies to address the
aforementioned challenges. Utilizing attributional attention aids in precisely
pinpointing regions with distinct features, effectively focusing on these
injured signals. And a quantitative method is designed to quantify the high
signal intensity and the injured area of themeniscus tomeasure the degree of
injury to the meniscus. Simultaneously, a multi-level transfer learning fra-
mework is constructed to counter the limitations posed by the meniscus’s

Fig. 7 | Four grades of correct prediction results and corresponding heat maps.
a is the prediction result and thermalmap corresponding toGrade 0, and it canbe seen
that no obvious highlighted area is seen. b–d is the prediction result and thermal map

corresponding to Grade 1, Grade 2 and Grade 3, respectively. It can be seen that the
area of the highlighted area has increased significantly and the range is wider.
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weak signal, which restricts available information. Through multiple itera-
tions to extract global and local features, our method can more compre-
hensively characterize meniscus injury features. This study not only
optimized themethod but also obtainedmultiple data sources from different
institutions. The experimental data included the private Xijing_Knee dataset
(1526 cases) and the public FastMRI_Knee dataset (2488 cases). Our meth-
od’s results demonstrate noticeable enhancements in grading accuracy for
Grade 1 and Grade 2, respectively. These improvements significantly con-
tribute to the overall grading accuracy, surpassing the performance of alter-
native methods.

To enhance the accuracy of grading diagnosis of meniscus injury, the
future study will consider the multi-modal data fusion method and intro-
duce anatomical knowledge, clinical knowledge and physiological infor-
mation. In our previous analysis of factors related tomeniscus injury, it was
found that patient information, such as age and weight, was correlated with
injury grade. Therefore, in the following studies, we believe that adding this
patient information will further improve the accuracy of the grading. At the
same time, themethodofmulti-center data joint trainingmodelwill be used
to improve the generalization ability of the method. Also, the development
of engineering application software will be improved, and the clinical
deployment will finally be realized.

Quantitative study on the grading of meniscal injury. Human per-
ception fails to discern subtle signal differences within images, but quanti-
fied signal values can distinctly illustrate imaging variances between healthy
menisci and injured areas. In the automatic grading ofmeniscal injuries, we
introduced a four-grade fine-grained grading method, a significant

advancement from previous studies limited to binary or triple grading.
Additionally, the high-low signal intensity ratio (HSI) and heat map area
(AIA) of meniscus injuries were quantitatively calculated to evaluate the
degree of meniscus injuries. According to the statistical analysis of the
calculation results of HSI andAIA, it was found that the HSI value andAIA
value in the meniscus region increased with the increase of grade, showing
obvious separability, as shown in Fig. 12.

Utilizing gradation, attention heat-maps employ distinct colors to
delineate the scope of potential injury, enhancing the visualization of auto-
mated diagnosis and grading of meniscal injuries, imperceptible to the
human eye. The dark red area is used to represent the injury core area of the
kneemeniscus, which is also the core target of our grading diagnosis. The red
area is the closest diffusion region to the core of injury, and the signal can be
recognized by human eyes.However, the injury diffusion area represented by
the three colors of yellow, green and light blue is generally difficult to dis-
tinguish, but this also reflects the difference from the normal meniscus on
MRI, which is also worthy of attention in clinical diagnosis and treatment.
Employing the quantitative criteria above, our method can comprehensively
visualize themeniscal injury’s extent, encompassing injury location, size, and
diffusion area, critically guiding clinical practices. Subsequent studieswill aim
to achieve a more nuanced characterization and analysis of the progressive
evolution of meniscal injury, elucidating the entire system’s dynamics. This
deeper insight into the mild-to-severe spectrum of meniscal injuries will
facilitate the development of more effective diagnosis and treatment plans.

Clinical validation of visualization and qualitative grading. The VIFG
method, reliant on automatic grading, employs visual attention heat-maps

Fig. 8 | Schematic illustration of the failure cases. a–d correspond toGrade1–Grade3 grading failure cases,where failure cases aremainlymisclassified into adjacent injury grades.
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Table 11 | (a) Non-imaging variables such as gender, age, weight are embedded in the algorithm for the overall experimental
results on the FastMRI_Knee dataset. (b) The specific experimental results of the embedding of non-imaging variables at each
grade were graded on the FastMRI_Knee dataset

(a)

Method Mean-Acc Cohen’s κ JSC Pearson’s r specificity MCC

Our method 0.8631 0.81581 0.7663 0.9425 0.9546 0.8159

+Gender +Weight +Age

√ 0.8700 0.8241 0.7784 0.9470 0.9575 0.8266

√ 0.8720 0.8275 0.7813 0.9493 0.9579 0.8291

√ 0.9050 0.8723 0.8312 0.9609 0.9683 0.8726

√ √ 0.9190 0.8903 0.8510 0.9619 0.9729 0.8909

√ √ √ 0.9210 0.8930 0.8588 0.9671 0.9742 0.8936

(b)

Method Grade 0 Grade 1 Grade 2 Grade 3

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Our method 0.93 0.92 0.92 0.81 0.78 0.80 0.75 0.79 0.77 0.93 0.94 0.93

+Gender +Weight +Age

√ 0.95 0.89 0.92 0.88 0.76 0.82 0.67 0.85 0.75 0.91 1.00 0.95

√ 0.97 0.84 0.90 0.83 0.81 0.82 0.71 0.85 0.78 0.93 0.99 0.96

√ 0.94 0.90 0.92 0.87 0.84 0.85 0.81 0.90 0.85 0.97 0.98 0.97

√ √ 0.98 0.89 0.93 0.88 0.90 0.89 0.85 0.88 0.86 0.93 0.99 0.96

√ √ √ 0.98 0.95 0.96 0.93 0.86 0.90 0.77 0.86 0.82 0.94 0.99 0.97

Mean-Acc indicatesaverageaccuracy,Cohen’s-κstands forCohen’s-κcorrelation coefficient, JSC indicates Jaccardsimilarity, Pearson’s r stands for Pearson’s r correlation coefficient andMCC indicates
Matthews correlation coefficient. Pre represents precision, Spe represents specificity, Rec represents recall, and F1 represents F1-score.

Fig. 9 | Confusion matrix for classification results on the Xijing_Knee dataset. The confusion matrix consists of six algorithms, respectively, and the first graph is our
method, which can be seen to have the best grading performance.
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to denote injury locations. This paper presents an in-depth analysis basedon
clinical research. The anatomical study of the meniscus found that the
distribution of blood vessels in the meniscus was evenly divided into three
equal parts from the outside and inside, as shown in Fig. 11a. The outer
third, termed the ‘red zone,’ enjoys robust vascularity, often facilitating self-
healing without necessitating surgery for less severe injuries. The middle

third, termed the ‘red-white zone,’ possesses partial vascularity with limited
self-healing capabilities. Conversely, the inner third, termed the ‘white area,’
exhibits minimal to no vascularity, necessitating surgical intervention in
case of injury. Recent research indicates that improper meniscectomy can
result in an uneven distribution of synovial fluid within the joint, com-
promising its buffering capacity. This often leads to articular cartilage

Fig. 10 | Diagram of injury diffusion. The heat-
maps for the location of the injury core and diffusion
of the injury changes in the extended area. The
sequence of changes in dark red, red, yellow, green,
blue and dark blue, respectively, represents the
changes in the outward extension direction of the
core damage in the meniscus region. The numbers
on each color block represent pixel values on the
original MRI image of the meniscus.
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surface degeneration, joint instability, and significantly elevates the risk of
long-term osteoarthritis. To ensure precise clinical interventions and
maximal preservation ofmeniscal function, surgical interventions involving
minimal excision or suturing should be considered for meniscal injuries.
Thedeterminationof excisionor suturing relies not onlyon the type and size
of the injury but also on the vascularity at the injured site.

Currently, the selection of surgical excision areas relies heavily on sur-
geon expertise and intraoperative judgment. However, consensus lacks
regarding thepreoperative identificationofblood supply influenceon injuries
and the precise selection of excision areas. Solely relying on knee MRI does
not provide adequate information for effective decision-making. In response,
this research visualizedMRI imaging injury signals more intuitively through
heat-maps with distinctive colors, showcasing both visible and imperceptible
signals. Simultaneously, three areas corresponding to the injury site and
meniscus blood supply were categorized as the red-red zone, red-white zone,
and white zone. Through qualitative classification of meniscus injury and
clinical case analysis, a refined classification standard was proposed, deli-
neating Grade 2 into finer subtypes. The subdivision injury signal subtype

includes: “2a: horizontal or oblique stripeswith high signal located in the red-
red zone”; “2b: horizontal or oblique stripes with high signal located in the
red-white region”; “2c: horizontal or oblique stripes with high signal located
in the white area”. The anatomic results corresponding to the high signal of
meniscus in Grade 2 injury proposed in this paper have been verified in
arthroscopy of dozens of clinical operations, as shown in Fig. 11b. Grade 2a,
exhibiting good blood supply, might self-heal, thus considering conservative
treatment. For Grade 2b, if the injury isn’t severe, it might self-recover,
negating the need for surgical intervention. Conversely, Grade 2c lacks blood
supply, requiring surgical removal as self-healing isunlikely.Thevisualization
outcomes of this method complement the qualitative grading of meniscal
injuries more accurately, providing guidance for clinical meniscus injury
surgical planning, enhancing diagnostic precision, and improving treatment
efficacy. Furthermore, it’s hoped that further researchwill verify and enhance
the classification rules of these subtypes, yielding more acceptable and effi-
cient outcomes for meniscal injury research.

Limitations and prospects. The findings of this study indicate that the
deep learning-based image analysis method offers a partial solution to the

Fig. 11 | Schematic diagram of subtypes representation and anatomical ver-
ification. aMeniscus blood supply relation position anatomical diagram. Dividing
themeniscus region into three equal parts, the segment proximal to the joint capsule
is termed the red-red area (RR), the intermediate area designates the red-white area
(RW), and the innermost portion corresponds to the white-white area (WW). b The
blood supply region corresponding to the heat-maps and the results of arthroscopic
verification. The figure showed the originalMRI image of the 2a red-red area, 2b red-

white area and 2c white area, the thermal map of the injured area and the video
capture of arthroscopic surgery, respectively. Clinically, arthroscopy was used to
verify the blood supply shown by the heat-maps of attention.2a is the arthroscopic
video effect of red and red area 2a, 2b is the arthroscopic observation results of red
and white area 2b, and 2c is the arthroscopic operation image of white and white
area 2c.
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challenging task of diagnosing and grading knee meniscal injuries. The
method designed in this paper improves the accuracy of grading on the
whole. The most important thing is to improve the accuracy of Grade 1 and
Grade 2which are themost difficult.However, limitations persist, such as the
necessity for a more comprehensive set of evaluation indicators to guide
precise clinical treatment beyond grading results alone. With regard to the
automatic diagnosis and grading of meniscal injury, as Irmakci I et al. con-
ducted research and analysis onmeniscal injury27. The current overall results
show that meniscal injury is the most challenging task among knee joint-
related injuries, and further improvements in sensitivity, accuracy, and other
aspects are still possible. Subsequent studies may focus on enhancing sensi-
tivity and specificity by assessing biochemical components of menisci at
different grades or incorporating additional imaging characteristics into
the evaluation. Moreover, the expansion of the training dataset with more
diverse patient characteristics could enhance model stability, facilitating
future clinical deployment. It’s essential to note that this study solely estab-
lishes the feasibility of employing deep learning methods for knee meniscal
injury assessment.Despite the great promise of the currentpreliminary study,
large prospective validation studies are required to compare the interpreta-
tion of the meniscal injury detection system with the arthroscopically spe-
cified meniscal injury grade and associated histological examination.

Methods
Ethics statement
This study is approved by Xijing Hospital Affiliated to the Fourth Military
Medical University. The study was non-interventional and retrospective, all
participants in the study signed the written informed consent, and the knee
MR images used in this data were anonymized. A sampled and desensitized
example dataset was shared in the source code repository.

Data source
For the task of automatic fine grading of knee meniscal injury, two datasets
were verified. The public FastMRI_Knee dataset was from New York
University28. The private data was from Xijing Hospital, the collaborating
institution in this study, fromFebruary 2018 toMarch 2021,whichwas called
Xijing_Knee.The formatof rawdata isDigital ImagingandCommunications
in Medicine (DICOM). Both datasets were collected from multiple centers
anddevices. Patientswere scanned in feetfirst supine (FFS) position, and slice
thicknesses included 3, 3.5, and 4mm. The distribution details of both
datasets are shown in Table 12. The FastMRI_knee dataset consisted of
2488 subjects and the Xijing_Knee dataset was studied in 1526 patients. The

grades were annotated according to the Fisher standard by a radiologist and
subsequently reviewed by two orthopedic doctors. Across the two datasets,
the distributionofGrades 0 to 3was as follows: 753 cases, 660 cases, 495 cases,
and 580 cases; and 471 cases, 420 cases, 275 cases, and 360 cases, respectively.
This study utilized sagittal and coronal T2-weighted MRI data from the
aforementioneddatasets, excludingpatientswith radiographic abnormalities,
such as those who underwent joint replacement surgery. The MRI was
subjected to biasfield correction and size normalizationwith thefinal volume
size set to 408 × 408 × 24 pixels. For training, validation, and testing the
proposed VIFGmethod, the patients in the collected dataset were randomly
grouped into three different sets according to the ratio of 3:1:1. In the pre-
processing stage, the data is augmented by image rotation in various
directions.

Functional overview of meniscus grading system
This study successfully integrated fourkey components, as depicted inFig. 13,
including rough segmentation of meniscus region, meniscal injury signal
analysis, automatic fine grading of meniscal injury, visualization of meniscus
injured region, subtypes ofGrade 2 and clinical validation.Meniscus is a very

Table 12 | Patient characteristics of the study population

FastMRI_Knee
(Public)

Xijing_Knee
(Private)

P-value

Age 48.14 ± 17.13 37.44 ± 15.91 0.000**

Gender Female 1365 503 0.028*

Male 1123 1023 0.001*

Weight 80.72 ± 20.13 79.85 ± 20.19 0.024*

Leg Right 1223 895 0.031*

Left 1265 631 0.000**

Grade 0 753 471

Grade 1 660 420

Grade 2 495 275

Grade 3 580 360

Age is in years old, weight is in kilograms, and the rest is the number of samples. Variables were
compared using Chi-square test. * Indicates that P-value is <0.05 and ** indicates that P-value is
<0.001. Grade 0–Grade 3 indicates the sample distribution of the four grades in two datasets,
respectively.

Fig. 12 | Correlation diagram of quantitative indicators of meniscus damage signal HSI andAIAwith grade. In a, theX-axis is the injury grade, the Y-axis is the sex, and
the Z-axis is the HSI mean value. In b, the X-axis is the injury grade, the Y-axis is the sex, and the Z-axis is the AIA mean value.
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small target in MR Images of the whole knee joint. Given the meniscus’s
limited presence inMRI of the entire knee joint and the challenge in isolating
specific damage within it amidst surrounding tissue, a segmentationmethod
was employed to isolate themeniscus region, providing preprocessed data for
in-depth analysis ofmeniscal damage. The analysis ofmeniscal injury signals
revealed the distribution of high-signal areas across different grades of injury,
showing a gradual diffusionpattern from the injury core tonormal areas. The
diffusion of injured signals to normal areas from the injured core in different
directions is a gradual process. The intelligent grading function of meniscal
injury is performed to accurately focus on the high-signal area of the injury,
and the location of the injury is displayed through the heat-maps. The
intelligent grading function precisely highlighted the high-signal injury area,
displayed injury location via heat maps, and aligned well with clinical
observations, particularly regarding themeniscus’s anatomical blood supply,
which is crucial for determining clinical treatment plans. This study intro-
duced a novel grading rule, particularly addressing Grade 2 injuries, sub-
dividing them into more nuanced categories—2a favoring conservative
treatment, while 2b and 2c leaning towards surgical intervention.

Implement the overall technical process
While realizing the aforementioned functionalities, a method rooted in
attributional attention for grading meniscal injuries was developed. The
comprehensive technical framework is delineated in Fig. 14. Firstly, in order
to address the issue that the meniscus is a small target and the scale of
observation is limited across the entire knee, MR imaging, the sagittal and
coronal plane images of the kneewere pre-processed, respectively. This was
followed by training a coarse segmentation model specifically for meniscus
area isolation. Segmentation resultswere cropped to enlarge the scale so as to
analyze and explore the manifestations of meniscal injury in MRI. The
meniscal signals from two aspects were quantitatively analyzed, including
the proportion of high and low signals and the change in signal values
during the extension outwards from the injured region of the core. These
analyses provideddetailed imaging insights into various injury grades. After
the meniscus image is enhanced, the constructed multilevel transfer Swin-
Transformer learning framework was used to extract distinguishable fea-
tures from different levels ofmeniscus damage, which will be detailed in the
module of the next section. The attributional attention module is then used
to extract the features that make the largest contribution to the grading of
identifiable regions. Once the region has been cropped and dropped, it is fed

back to the feature extractor. After extracting the feature again, bilinear
attention pooling is performed on the feature graph and attention graph to
obtain the feature vector. Finally, the gradingmodel is obtained through the
custom grading layer at the top of the hierarchy, and the final grading result
is obtainedby aggregatingmultiplemodels aftermultiple training. Predicted
labels and visual results are provided in the result output. Finally, leveraging
our research and anatomical insights, Grade 2 meniscal injuries were sub-
divided into Grade 2 red-red, Grade 2 red-white, and Grade 2 white zones,
delineating blood supply relationships to inform treatment decisions.

Meniscus segmentation from knee MRI based on nnFormer
The backbone structure of the nnFormer29 consists of many parts, as shown
in Fig. 15. Recognizing that the convolutional network adeptly retains
precise positional information and provides high-resolution low-level fea-
tures, it assumes the role of Transformer blocks. Thus, the initial segment
comprises a four-layer convolutional structure, primarily responsible for
transforming the input image into network-manageable features. Not only
does the algorithm use the combination of cross-convolution and the self-
attention operation, but it also introduces a local and global volumetric self-
attention mechanism for learning the volume representation. This method
also proposes to replace the traditional operation of splicing or summing by
skipping attention in theU-Net class structure.As this studynecessitated the
segmentation of the meniscus region, the nnFormer segmentation method
was employed to segment this region from the entire knee MRI. Four
models were individually trained on both sagittal and coronal data from the
FastMRI_Knee dataset and theXijing_Knee dataset. The resultingmeniscus
segmentation was tested, yielding a mean DICE index of 88.34%. Notably,
the performance of this proposed method outperforms previous segmen-
tation approaches significantly.

Multilevel transfer swin-transformer learning framework
Intelligent hierarchical diagnosis of meniscal injuries using deep learning
encounters a challenge in constructing a network capable of fully leveraging
available features. The inherent limitation of small medical image datasets
necessitates innovative approaches. To maximize data utilization and
acquire comprehensive information, this paper proposes a three-level
transfer learning framework based on Swin-Transformer, outlined in
Fig. 16. We introduce intermediate domains to reduce the domain offset
difference between the source domain and the target domain on the basis of
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Fig. 13 | The overall framework of the functional module. The figure summarizes
four aspects of this paper, the first part is the segmentation task of meniscus region
from the entire knee MRI, the second part is the analysis of meniscus signals, the

third part is the fine-grained grading task of meniscus injuries, and the fourth part
combines its results with clinical knowledge to propose a new subtype classification
and verify its results.
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pre-training on large-scale natural images. The non-medical image data set
ImageNet was used as the source domain, the middle domain was the full
MRIof theknee joint, referred to asMRNET, and the target domainwasMR
Image data of the meniscus. Natural images can be used to learn some
shallow texture information, and the high-level features of musculoskeletal
and other tissues in MRI images of knee joints can be learned from the
intermediate domain and then transferred to the target domain to further
improve the feature extraction effect of the target domain. Adding super-
ficial features and deep features, aswell as the addition of global information
on the knee joint and local informationon themeniscus, is amenable todeep
neural network characterization of meniscal injury. Subsequently, the

attributional attention module effectively identifies fine-grained lesion fea-
tures atop a foundation of diverse imaging features.

Attributional attention module to find discriminative features
The challenge in intelligently grading meniscal injuries resides in identifying
distinct features specific to each grade. The transfer learning framework
described above allows us to use the acquired swin-transform as a backbone
for extracting many deep and shallow imaging features of meniscal injury.
The attributional attention module constrains the learning process so as to
finddistinguishable features andhelps us break through theblack boxof deep
learning by analyzing the causal relationship between variables. To assess the

Fig. 14 | The overall technical framework diagram of the implementation details. The method diagram includes feature extraction of meniscus region using swin-
transformer asbackbone, and croppingoperation of attention area and feedback before feature extraction.On this basis, the task offine-grained classification is further carried out.

Fig. 15 | Meniscus segmentation diagram. The kneeMRI data set was divided into
four parts, and the two data sets corresponded to their sagittal and coronal positions,
respectively. These four data sets were studied in the encoder and decoder of

nnFormer, respectively, and four knee meniscus segmentation models were
obtained, and meniscus regions under different perspectives were obtained in the
test set.
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quality of attention, the causal relation was used, producing an attention
diagram with a score distribution30 and constructing an attributional atten-
tion network model. The purpose of this module is to discover the distin-
guishing features and perform a characterization of the location, shape, and
diffusion severity of meniscal injury signals. The schematic block diagram of
the module is shown in Fig. 17.

The features from the meniscus images were extracted through Swin-
Transformer transfer learning and obtain the feature map expressed as
F 2 RH ×W ×N , where H, W, and N represent the feature layer’s height,
width, and the number of channels, respectively. The attention module is
designed to learn the spatial distributionof eachpart of the object,which can

be expressed as an attention graphA 2 RH ×W ×N , whereM is thenumberof
attention. The attention model is implemented using a two-dimensional
convolutional layer and ReLU activation. The feature maps are then soft-
weighted using the attention map and aggregated by the global average
pooling operationω. Where * represents the multiplication of the elements
of two tensors to form a global representation h, and these representations
are strung together and normalized.

hi ¼ ωðF � AiÞ ¼
1

HW

XH
h¼1

XW
w¼1

Fh;wAh;w
i ; h ¼ normalizeð½h1; h2; . . . ; hM �Þ ð7Þ

Fig. 16 | Schematic diagram ofmutilevel transfer learningmodule.The non-medical image dataset ImageNet was used as the source domain, themiddle domain was total
MRI of knee joint (MRNET for short), and the target domain was MR Image data of meniscus and the backbone is swin-transformer.

Fig. 17 | Block diagram of attributional attention module. The attribution attention module constrains the learning process, finds distinguishable features, and analyzes
causal relationships between variables. To assess the quality of attention, causality was used and an attention graph with a score distribution was made.
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Inspired by the method proposed by Yongming Rao et al. 31, an
intervention to learn to obtain visual attention by the reaction effect of
grading results was used. In our practice, the intervention imageðA ¼ �AÞ is
performed by imagining the nonexistent attention map �A to replace the
learned attentionmap and keep the featuremap F unchanged. According to
Eq. (8), the final prediction Y after intervention A ¼ �A be obtained:

YðimageðA ¼ �AÞ; F ¼ FÞ ¼ classð½ωðF*�AMÞ�Þ ð8Þ

where class is the classifier. The actual effect of the learned attention on the
prediction can be represented by the difference between the observed pre-
diction YðA ¼ A;X ¼ XÞ and its counterproductive effect

YðimageðA ¼ �AÞ;X ¼ XÞ : Yeffect ¼ E�A∼ γ½YðA ¼ AÞ; F ¼ FÞ
�YðimageðA ¼ �AÞ; F ¼ FÞ�

ð9Þ

Theeffect onpredictionwas represented asYeffect;γ is thedistributionof
reactive attention. Attention function is used to measure whether learning
attention is focused on distinguishable area utilization tasks. The influence
measurement of this characteristic is used as a supervisory signal that
explicitly guides the attentional learning process. The total loss function can
be expressed as:

Lall ¼ LceðYeffect; yÞ þ Lclass ð10Þ

where y is the grading label,Lce is the cross-entropy loss, andLclass represents
the original objective, such as standard classification loss.

Attention guide discriminant feature augmentation
Havingdiscovered the characteristics ofmeniscus separability gradingusing
causality, augmenting the data in this area in order to fully utilize the key
positional information provided by the data was developed. The grading of
the four grades of meniscal injury is a fine-grained classification problem.
Since the differences between grades are small, achieving accurate grading is
a huge challenge. In this paper, the key step is to extract the most dis-
criminative local features from the entiremeniscus region.The intensity and
location of the high signal of meniscal injury contribute specifically and
decisively contribution to the determination of the grade. Thus it guides the
data augmentation via the attention map acquired by the attributional
attention module. The presence of attention in the network can encourage
the model to pay more attention to the distinguishable area of meniscal
injury by cropping and dropping. This allows for more accurate char-
acterization of imaging features such as texture, signal intensity, and injury
distribution can be more accurately characterized in the high-signal area of
meniscal injury so as to obtain better grading results. Attention cropping in
the network can distinguish the differences between local areas by cropping
and adjusting the size of local areas so as to extract more distinctive local
features. The details of the implementation are described below. Firstly, the
features of the image Iwere extracted, and the feature maps were expressed
as F 2 RH ×W ×N , where H;W;N represented the feature layer’s height,
width and the number of channels, respectively. The attention maps is
obtained by formula 11, which is expressed as A 2 RH ×W ×M

A ¼ f ðFÞ ¼ ∪M
k¼1Ak ð11Þ

where f ð�Þ is a function. Ak 2 RH ×W represents part of the signal in the
meniscus region.M is the number of attention maps.

Data augmentation is a commonprocessingmethod, butRandomdata
augmentation is low efficient.With attention maps, data can be more

efficiently augmented. For each training image, one of its attention mapAk
was randomly choosed to guide the data augmentation process and nor-
malize it askth Augmentation Map A*

k 2 RH ×W .

A*
k ¼

Ak �minðAkÞ
maxðAkÞ �minðAkÞ

ð12Þ

With augmentation maps, more detailed features are extracted by
resizing the image of the area. Attention cropping was used. Firstly, Crop
Mask Ck was obtained from A*

k by setting element A*
kði; jÞ which is greater

than threshold θc 2 ½0; 1� to 1, and others to 0, as represented in formula 13.
This region is enlarged from the original image as input data for augmen-
tation.

Ckði; jÞ ¼
1; if A*

kði; jÞ > θc
0; otherwise

(
ð13Þ

To encourage the attention map to represent parts of multiple objects
of recognition, attentiondroppingwas used.DropMaskDkwas obtained by
setting elementA*

kði; jÞ which is greater than threshold θd 2 ½0; 1� to 0, and
others to 1, as represented in Eq. 7.

Dkði; jÞ ¼
1; if A*

kði; jÞ > θc
0; otherwise

(
ð14Þ

Since the drop operation can remove some parts from the image, the
network will be encouraged to propose other differentiated parts, which
means that the information can be better seen while the robustness and
accuracy of the grading will be improved.

Inspired by Bilinear Pooling aggregates feature representation from
two-stream network layers, Bilinear Attention Pooling (BAP) proposed to
extract features from these parts32. It element-wise multiply feature maps F
by each attention map Ak in order to generate M part feature maps Fk, as
shown in Eq. (15), where ⊙ denotes element-wise multiplication for two
tensors.

Fk ¼ Ak � Fðk ¼ 1; 2; :::;MÞ ð15Þ

Let ΓðA; FÞ indicates bilinear attention pooling between attention
maps A and feature maps F. It can be represented in Eq. 16, where gð�Þ is a
feature extraction function.

ΓðA;FÞ ¼

gðA1�FÞ
gðA2�FÞ

� � �
gðAM�FÞ

0
BBB@

1
CCCA ¼

f 1
f 2
� � �
f M

0
BBB@

1
CCCA ð16Þ

After bilinear attention pooling, the feature matrix is obtained. After
customized grading layers, including the maximum pooling layer of the
whole play, concatenate, and linear grading layer, grading results are finally
obtained. By changing the training parameters,multiple trainingmodels are
obtained for aggregation prediction, and the best grading results are
obtained.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Data availability
The data used in this study is not open access due to privacy and security
concerns. After obtaining the sharing agreement, it can be sharedwith third
parties for reasonable use, relevant requests should be addressed to A.L.
(LuoAnlin@stu.xidan.edu.cn). To enable a complete run of the code shared
in this study, aminimumamount of desensitized sample data is sharedwith
the code.Thepublic datasets used in this study canbedownloadedat https://
fastmri.med.nyu.edu/.

Code availability
Source code of this study is provided at https://github.com/
LorraineAnlinLuo/VIFG_Meniscus-injury-grading.
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