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The clinician-AI interface: intended use
and explainability in FDA-cleared AI
devices for medical image interpretation

Check for updates
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As applications of AI in medicine continue to expand, there is an increasing focus on integration into
clinical practice. An underappreciated aspect of this clinical translation is where the AI fits into the
clinical workflow, and in turn, the outputs generated by the AI to facilitate clinician interaction in this
workflow. For instance, in the canonical use case of AI for medical image interpretation, the AI could
prioritize cases before clinician review or even autonomously interpret the images without clinician
review. A related aspect is explainability – does the AI generate outputs to help explain its predictions
to clinicians? While many clinical AI workflows and explainability techniques have been proposed, a
summative assessment of the current scope in clinical practice is lacking. Here, we evaluate the
current state of FDA-cleared AI devices for medical image interpretation assistance in terms of
intended clinical use, outputs generated, and types of explainability offered. We create a curated
database focused on these aspects of the clinician-AI interface, where we find a high frequency of
“triage” devices, notable variability in output characteristics across products, and often limited
explainability of AI predictions. Altogether,weaim to increase transparencyof thecurrent landscapeof
the clinician-AI interface and highlight the need to rigorously assesswhich strategies ultimately lead to
the best clinical outcomes.

Applications of AI in medicine are increasingly moving beyond develop-
ment to clinical integration, especially in imaging domains like radiology. A
critical aspect of this integration is where the AI fits into the clinical
workflow and the outputs generated to support this workflow. Along with
conveying the core prediction of the AI model, these outputs may facilitate
explainability in helping the clinician understand how the model arrived at
the prediction – a commonly emphasized component for enhancing trust
and decisionmaking1–4. While many workflow strategies and explainability
techniques have been proposed for AI in medical imaging5,6, the current
scope in clinically-available AI products is not well understood.

To study the current state of the clinician-AI interface, we created a
curated database of FDA-cleared AI devices for medical image interpreta-
tion, a canonical task among the first to be clinically operationalized. We
specifically focus onAI deviceswith use cases that are historically referred to
as variations of “CAD”, a term that stems from computer-aided detection7.
As detailed below, there are now several types of CAD that differ according

to how the device is intended to be used by clinicians. To create the database,
we first identified the FDA Product Codes that support CAD devices. We
then reviewed all of the Summary Statements for products with these
product codes and curated relevant data, including the intended use and
device outputs (see Methods). The final database can be found as Supple-
mentary Data 1.

We identified 140 FDA clearances from January 2016 toOctober 2023
for 104 unique AI-enabled CAD products, with some products having
multiple clearances over time. The products fall into one of five categories
based on their intended use in a clinical workflow, as illustrated in Fig. 1.
ThesefiveCADtypes varyby their outputs andhowclinicians are instructed
touse these outputs. For instance, computer-aided triage (CADt) devices are
designed to flag suspicious cases for prioritized review by clinicians. The
core AI output for such devices is a binary indicator of whether the case is
flagged or not, where flagged cases can be reviewed more quickly by a
clinician. Importantly, CADt devices do not provide annotations to directly
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localize findings8. Conversely, computer-aided detection (CADe) devices
help detect the location of lesions by overlaying markings on images. If a
numerical or categorical score is assigned to the detected lesion or thewhole
case, thedevice is then considered a computer-aideddetection anddiagnosis
(CADe/x) device because the additional granularity is thought to aid in
diagnosis and not just detection9. A device that focuses on diagnosis without
explicitly marking the locations of lesions across the case is considered
CADx. As opposed to CADt devices that flag cases before clinician review,
CADe, CADx, and CADe/x devices are designed to assist clinicians as they
are interpreting exams. Finally, a variation of CADx has emerged where the
device is intended to automatically interpret the exam without clinician
review10. We denote this use as CADa, which is currently only used for one
specific application as discussed below.

Abreakdownof theCADtypes across the 104FDA-clearedproducts is
shown inFig. 2a.CADt is themost commonproduct type, representing 59%
of products, followedbyCADewith19%.As illustratedbyFig. 2b,CADthas
been themost frequently cleared device type since 2019. The distribution of
CAD types is highly dependent on the disease, with some diseases having
multiple CAD types and others only one (Fig. 2c). Breast cancer and
intracranial hemorrhage (ICH) have the highest number of products with
14 each. CADt, CADe, CADx, and CADe/x are all represented in breast
cancer, whereas all of the ICH products are considered CADt. Altogether,
we find 37 different diseases/conditions represented, with conditions with
more than three products shown in Fig. 2c. The complete list of all diseases/
conditions and corresponding products can be found in the full curated
database included as Supplementary Data 1.

Beyond CAD type, we curated finer details regarding the outputs of
FDA-cleared AI devices. From a practical standpoint, we can consider these
outputs to have two functions: (1) convey the core prediction of the AI
model to help with the final diagnosis, and (2) convey information to
support this prediction. For instance, an AI model may predict that a head
computed tomography (CT) exam is suspicious for ICH (the core predic-
tion) and also indicate the location of the hemorrhage or show similar

examples from the training dataset where ICH was also present. These
additional outputs can be considered a form of explainability in facilitating
clinician understanding and trust of the prediction.

Across the database, we find high variation in output characteristics of
theAI devices. This variation is present both in terms of the formof the core
prediction and the presence and type of explainability. Startingwith the core
prediction, we categorized each product as having a binary, categorical, or
score-based prediction output. For example, a product may characterize an
exam/lesion as suspicious or not (binary), lowvs.mediumvs. high suspicion
(categorical), or generate a suspicion score between 1-10 (score-based).
Figure 3a illustrates the distribution of prediction output types across theAI
products.We find that binary-level predictions are by far themost common
across FDA-cleared products. This is in large part driven by CADt and
CADe products that generate binary-level predictions at the case- or lesion-
level, respectively. Categorical and score-based outputs are nonetheless
represented in CADx andCADe/x products, though categorical outputs are
three-times less common than numerical scores.

Beyondprediction type,we curated the type of explainability offered by
the AI products, considering several types of explainability that have been
discussed in AI literature5. We consider explainability from a user interface
perspective and group product outputs according to several categories that
are illustrated in Fig. 3b. Localization-based explainability can take different
forms such as bounding boxes or heatmaps, where these outputs help
convey the “where” behind an AI model’s prediction. Other types of
explainability also convey aspects of “why” or “what”. For instance, an
exemplar-based explanation might retrieve and display reference examples
in the training dataset that have similar qualities to the image under con-
sideration. An approach that is becoming increasingly popular in AI
research is the use of counterfactual explanations11 and related generative
techniques. A counterfactual approach involves minimally modifying the
image to flip an AI model’s prediction, thus giving intuition on the features
used by the model in making the original prediction. Other explainability
categories include the use of language-based semantics or quantitative

Fig. 1 | Overview of types of FDA-cleared CAD
products and their integration intomedical image
interpretation workflows. CAD types vary
according to their outputs and place within the
clinical workflow. CADt (triage) devices are
designed to flag cases for prioritized review and do
not place marks on the image. CADe (detection)
devices mark regions of interest to aid in the detec-
tion of lesions as a clinician is interpreting an exam.
CADx (diagnosis) devices are designed to aid in
diagnosis, such as by outputting a score or category,
but do not explicitly detect lesions across the exam.
CADe/x (detection & diagnosis) devices provide
both detection and diagnosis support. Finally, an
autonomous system, which we denote as CADa,
aims to automatically interpret the exam without
clinician input.
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characteristics. For instance, anAImodelmay characterize a detected lesion
as “round” or estimate its size as 2 cm, both of whichmay help the clinician
understand and trust (or be skeptical of) a model’s prediction.

The distribution of explainability types in the FDA-cleared AI devices
is illustrated in Fig. 3b, where “none” corresponds to image/case-level
predictions without explicit localization or other types of explainability.
Although we do not find examples of counterfactual explanations, each of
the other described categories of explainability are represented across the
products. Not surprisingly, “none” is the most common category of

explainability given the popularity of CADt, which does not offer explicit
localization or other explainability types. When a form of explainability is
provided, localization is by far the most common, followed by semantics,
quantitative, and exemplar with 5, 5, and 1 products, respectively.

In summary, while several studies have analyzed aspects of FDA-
cleared AI devices12–14, there is a pressing need for enhanced transparency
around factors related to clinical integration. To this end, we assembled and
analyzed a curated database focusing on the canonical use case of medical
image interpretation assistance (“CAD”). Our analysis finds 140 FDA

Fig. 2 | Landscape of intended uses of FDA-cleared
AI products for medical image interpretation.
a Total number of FDA-cleared AI products from
January 2016 to October 2023 for each CAD type:
CADt (triage), CADe (detection), CADx (diag-
nosis), CADe/x (detection & diagnosis), CADa
(autonomous). bDistribution of FDA clearances by
year (*up to October 1st for 2023). cDistribution of
FDA-cleared AI products for each CAD type by
disease indication. Diseases/conditionswith three or
more products are shown. ICH intracranial
hemorrhage, LVO large vessel occlusion, PE pul-
monary embolism, VCF vertebral compression
fracture, MSK musculoskeletal.

Fig. 3 | Prediction and explainability output types of current FDA-cleared AI
products formedical image interpretation. aPredictions are grouped according to
binary, category, or score. b Type of explainability offered by products, with “none”
corresponding to products that provide image/exam-level predictions without

explicit localization or other form of explainability. Counts are also indicated by
CAD type: CADt (triage), CADe (detection), CADx (diagnosis), CADe/x (detection
& diagnosis), CADa (autonomous).
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clearances for 104 products across five different CAD types. By far themost
frequent CAD type is CADt, where there are more products with this triage
use case than all other types combined. While CADt products are con-
strained in the types of outputs provided, we find meaningful variation in
core user interface parameters for products of other CAD types. None-
theless, usage patterns are highly skewed,with score-basedpredictionsmore
popular than categorical, and localization-based explainability being the
most common technique when a form of explainability is offered.

The optimal AI-clinician integration strategy depends on a number of
factors, yet even seemingly minor differences in AI outputs may ultimately
lead to dramatic differences in clinical efficacy. As providers consider AI
adoption, it is especially instructive to be aware of the different CAD types
and their advantages and limitations across different diseases. In the case of
CADt, several studieshave indeed shown the potential for faster turnaround
times and improved outcomes for prioritized exams15,16. However, the FDA
has also recently released a letter “reminding health care providers about the
intended use of radiological computer-aided triage and notification (CADt)
devices for intracranial large vessel occlusion (LVO)”, including statements
that such devices are not diagnostic and cannot rule out the presence of an
LVO17,18. As such, the AI output for CADt devices is minimal and the core
study required for FDA clearance is standalone AI performance testing8.
These considerations especially highlight the need for effective clinician
training on the risks, intended benefits, and outputs of AI devices. Appre-
ciating clinician-AI considerations is similarly important for AI developers
in envisioning how a coreAImodel could fit into existing or newworkflows
and aligning model development with this in mind. There are especially
opportunities to assess whether recently popular explainability techniques
such as counterfactual and text-based explanations can improve clinical
utility, as these techniques are not yet robustly represented in current pro-
ducts. Altogether, rigorously studying the clinician-AI interface will help
accelerate the clinical translation of AI in a safe and effective manner.

Methods
Database curation
To curate a list of FDA-cleared AI CAD products, we first identified the
FDA Product Codes that support CAD devices by reviewing all Product
Code descriptions19 in both a manual and keyword-search manner,
resulting in the following list: MYN, OEB, PIB, POK, QAS, QBS, QDQ,
QFM, QNP, QPN. We note that other product codes that may include
forms of image processing but are not explicitly indicated for CAD-
based assistance, such as LLZ and QIH, were not considered. From the
final list of ProductCodes, we then retrieved a list of all products for these
codes using the FDA’s 510(k)20, De-Novo21, and PMA22 databases. From
the Summary Statement for each product, we manually extracted the
intended use, device outputs and inputs, and types of algorithms used.
Each product was independently reviewed and confirmed by two
researchers. For a small number of products where the Summary
Statement was ambiguous, we additionally consulted online product
documentation. As our goal was to study products based on modern
deep learning-based AI techniques, we excluded any products that
describe the use of purely traditional (shallow) machine learning or
hand-engineered computer vision techniques. We note that deep
learning has generally become the most prevalent modeling approach in
medical imaging applications, but other techniques are actively used,
including feature engineering-based radiomics. We additionally com-
pared our final product list to a list released by the FDA that covers AI-
enabled products with clearances through July 202323 to ensure con-
sistency across the overlapping time period for our identified product
codes. Finally, we cleaned and standardized the extracted data to
maintain standard nomenclature across products. We additionally
identified which clearances are new versions of previous products versus
new products altogether, which we determined based on a product
having a consistent name/manufacturer, intended use, and disease
indication(s) as a prior clearance. The final curated database is included
as Supplementary Data 1.

Explainability characteristics
We characterized the outputs of each product according to the form of its
core prediction and type of explainability offered.As eachdevice is indicated
for a specific disease(s)/condition(s) we consider the core prediction to be
the device’s estimate of the presence of this disease(s)/condition(s). This
prediction could take a number of forms, which we grouped into three
buckets: binary, categorical, or score-based. Categorical predictions consist
of text-based classifications such as “high” vs. “medium” vs. “low”. Score-
based predictions consist of numerical outputs, typically with at least 10
increments (e.g., 1–10). In circumstances where a prediction has aspects of
both a text identifier and number (generally with <10 increments), the
prediction was considered categorical. An example of this would be the BI-
RADSclassification systemwhichconsists of anumber from0 to6anda text
category corresponding to this number. Additionally, a given product may
have more than one output type, such as both categorical and score-based
predictions, in which case each type was included in the final tally. If a
product hadmore than one clearance, such as an update over time, themost
recent version was used for all analysis.

Data availability
The curated database used for all analysis is available as Supplementary
Data 1.

Code availability
Code for the analysis in the manuscript is available at https://github.com/
lotterlab/ai_cad_database.
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