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Accurate physical activity monitoring is essential to understand the impact of physical activity on one’s
physical health and overall well-being. However, advances in human activity recognition algorithms have
been constrained by the limited availability of large labelled datasets. This study aims to leverage recent
advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset—a
700,000 person-days unlabelled dataset—in order to build models with vastly improved generalisability
and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark
datasets, with an F1 relative improvement of 2.5–130.9% (median 24.4%). More importantly, in contrast
to previous reports, our results generalise across external datasets, cohorts, living environments, and
sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled
data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.

Cost-effective wearable sensors have gained increasing interest for their
potential to revolutionisehealthcareowing to theirwide rangeof applications,
including fitness and wellness tracking, remote patient monitoring1,2, early
disease detection3,4, real-time clinical trials5–7, large-scale population health
studies8–11, and personalisedmedicine12. Consumer-grade devices allow users
to obtain summary movement and behaviour metrics such as sleep quality,
sedentary time, pace, and step counts. Critical to their effectiveness is the use
of reliable algorithms to infer human activities from motion sensor data.
However, methodological progress in human activity recognition has been
constrained by the limited availability of large representative labelled datasets.

Contrary to fields that have benefited from an explosion of data and
subsequent methodological leaps, such as computer vision13–18 and natural
language processing19–22, wearables-based human activity recognition
research still relies on very small datasets, themajority ofwhich are collected
in an artificial setting (e.g., participants following a predefined script in a lab
environment and under supervision). Further, this small-data limitation
confounds researchfindings involving data-hungry deep learningmethods;
for example, there exist empirical studies23,24, suggesting that deep learning
methods such as DeepConvLSTM25 did not significantly improve upon
more conventionalmethods relying on simple statistics of the sensor signal.

In this paper, we leverage the UK Biobank accelerometer dataset to
realise the full potential of deep learning methods for activity recognition.

The UK Biobank is a unique large-scale study that recruited roughly half a
millionparticipants, ofwhichmore than100,000wore awrist accelerometer
for 7 days in their usual environments (as opposed to lab settings),
amounting to over 700,000 person-days (andmany terabytes) of free-living,
24/7 human motion data.

In order to make use of this unlabelled dataset, we build upon recent
advances in self-supervised learning, which have shown great results in this
regard, with popular examples such as GPT26. A suite of self-supervised
learningmethods have been explored for wearable sensor data with success,
including multi-task self-supervision27, masked reconstruction28, con-
trastive learning18,29,30, and bootstraping31,32. A recent benchmark provided a
comprehensive assessment of existing self-supervised approaches for
human activity recognition and concluded that multi-task self-supervision
could learn the most generic features applicable to different downstream
tasks33. Existingmethods eitherused the samedata for pre-training andfine-
tuning orwere only trained ondatasetswith a small size (n = 100), a limiting
factor for the generalisability of the pre-trained models. By applying multi-
task self-supervision on a large unlabelled dataset with three simple tasks,
arrow of time, permutation, and time warping27,34, we showed for the first
time that a pre-trained model that could generalise to a wide range of
downstream activity recognition datasets important for clinical and health
applications.
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Our main contributions are:
• We demonstrate the application of multi-task self-supervised learning

on a tera-scale wearables dataset to realise the full potential of deep
learning in building state-of-the-art activity recognition models. We
discuss engineering challenges in training on large and high-
dimensional sensor data and other technical considerations.

• In contrast to previousworks,we conduct amore realistic evaluation of
the utility of self-supervised human activity recognition by factoring in
common issues seen inpractical use casesof pre-trainedmodels such as
domain shift and task shift35. In particular, ourmodels show consistent
outperformance on external datasets.

• We release our pre-trainedmodels to enable the digital health research
community to build high-performing models for their own use cases.
Our models will be especially useful in domains with limited data.

Results
Figure 1 provides a schematic overviewof our paper: first, we appliedmulti-
task self-supervised learning to pre-train a deep convolutional neural net-
work on 700,000 person-days of free-living accelerometer data from theUK
Biobank; second, the pre-trained network is evaluated via transfer learning

on eight benchmark datasets to assess representation quality on various
activity types and populations.

Weighted single-task training
When training individual pretext tasks, we found that without weighted
sampling, all the tasks had worse convergence behaviour (Fig. 2). The
performance degradation was most pronounced for the AoT and permu-
tation. The test performance for the AoT stayed at the random chance level,
and the test performance for permutation dropped ~10% points without
weighted sampling.

Multi-task self-supervised learning
To investigate how different self-supervision configurations perform in
three downstream datasets, we picked one large (Capture-24), medium
(Rowlands), and small (Opportunity) dataset for evaluation. We trained
different tasks both individually and jointly using 1000 subjects from theUK
Biobank, then we fine-tuned the models on the subsequent human activity
recognition benchmarks (Table 1).

The differences between different self-supervision combinations on
large datasets (Capture-24 and Rowlands) was smaller than that of the

Fig. 1 |Overview of the proposed self-supervised learning pipeline. Step 1 involves
multi-task self-supervised learning on 700,000 person-days of data from the UK
Biobank. In step 2, we evaluate the utility of the pre-trained network in eight

benchmark human activity recognition baselines via transfer learning. Reproduced
and modified with permissions from ref. 37.
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smaller dataset (Opportunity). There was no clear best-performing config-
uration, and thus, for ease of comparison, we chose to use all tasks in pre-
training for the remaining experiments. In addition, training more tasks
together might yield the most general representation for different down-
stream datasets.

Downstream performance—human activity recognition
Table 2 summarises the F1 and Kappa scores for eight human activity
recognition datasets. The random forest models outperformed the deep
learning models trained from scratch for all except the Capture-24 dataset,
which is the largest labelled dataset in our evaluations (Table 4). The per-
formance gap between random forest and training from scratch was the
largest in smaller datasets. Meanwhile, pre-trained models outperformed
the models trained from scratch and random forest in all eight datasets.
Fine-tuning all layers was better than fine-tuning just the fully connected
layers after the ConV layers.

The most significant improvement using pre-training was seen on the
small datasets. Conversely, the benefit of self-supervised learning was more
modest for larger datasets. In Capture-24, the F1 improvement was 2.5%
when comparing the model with and without self-supervised pre-training.
Nonetheless, with self-supervised pre-training, the median relative F1
improvement was 18.4%when compared to the same network trained from
scratch and 8.5% when compared to the random forest model.

Transfer learning using labelled pre-training
Even though supervised pre-training can boost the learning outcome sub-
stantially more than training from scratch (Table 2 vs Table 3), self-
supervised pre-training without labels could outperform supervised pre-
training when using Rowlands and Capture-24 as the source data.

Ablation studies
Varying labelled data in the downstream. We observed that pre-
trained models did well regardless of the number of labelled subjects in
two downstream datasets (Fig. 3a). However, fully supervised and ran-
dom forest models were more susceptible to the number of labelled

Fig. 2 | Accuracy test curves for training four self-supervised tasks individually
using 1000 subjects from the UK Biobank with and without weighted sampling.
The patience for early-stopping was five epochs.

Table 1 | Downstream human activity recognition perfor-
mance (subject-wise F1 ( ± SD)) for different self-supervised
task combinations using 1000 UK Biobank participants

AoT Permutation TW Capture-24 Rowlands Opportunity
n = 573k n = 36k n = 3.9k

Single task

✓ ✗ ✗ 0.671 ± 0.094 0.565 ± 0.120 0.582 ± 0.054

✗ ✓ ✗ 0.721 ± 0.093 0.783 ± 0.099 0.588 ± 0.076

✗ ✗ ✓ 0.715 ± 0.093 0.776 ± 0.110 0.584 ± 0.064

Multi-task

✗ ✓ ✓ 0.714 ± 0.094 0.755 ± 0.103 0.587 ± 0.070

✓ ✗ ✓ 0.719 ± 0.094 0.762 ± 0.102 0.530 ± 0.071

✓ ✓ ✗ 0.718 ± 0.092 0.781 ± 0.101 0.502 ± 0.081

✓ ✓ ✓ 0.718 ± 0.095 0.770 ± 0.102 0.482 ± 0.078

N is the number of samples.

Table2 |Subject-wiseF1andKappa (κ) fordownstreamhumanactivity recognition tasks (mean ± SD)using100,000participants
for pre-training

ResNet

Data Random forest Trained from scratch Fine-tune self-supervised Improvement

After ConV layers All layers

Capture-24 F1 0.694 ± 0.099 0.708 ± 0.094 0.723 ± 0.097 0.726 ± 0.093 2.5%

κ 0.683 ± 0.101 0.703 ± 0.092 0.718 ± 0.090 0.737 ± 0.087 4.8%

Rowlands F1 0.700 ± 0.090 0.696 ± 0.106 0.724 ± 0.081 0.796 ± 0.093 14.4%

κ 0.830 ± 0.086 0.810 ± 0.098 0.850 ± 0.062 0.874 ± . 073 7.9%

WISDM F1 0.711 ± 0.149 0.684 ± 0.123 0.759 ± 0.121 0.810 ± 0.127 18.4%

κ 0.715 ± 0.153 0.685 ± 0.124 0.758 ± 0.121 0.809 ± 0.126 18.1%

MJFF-LR F1 0.590 ± 0.136 0.327 ± 0.103 0.677 ± 0.094 0.755 ± 0.109 130.9%

κ 0.653 ± 0.126 0.347 ± 0.128 0.715 ± 0.091 0.817 ± 0.080 135.4%

REALWORLD F1 0.731 ± 0.119 0.705 ± 0.062 0.764 ± 0.052 0.792 ± 0.075 12.3%

κ 0.680 ± 0.142 0.638 ± 0.079 0.703 ± 0.063 0.739 ± 0.086 15.8%

Opportunity F1 0.416 ± 0.185 0.383 ± 0.124 0.570 ± 0.078 0.595 ± 0.085 55.4%

κ 0.318 ± 0.206 0.238 ± 0.154 0.435 ± 0.092 0.471 ± 0.104 97.9%

PAMAP2 F1 0.753 ± 0.093 0.605 ± 0.086 0.725 ± 0.054 0.789 ± 0.054 30.4%

κ 0.744 ± 0.101 0.596 ± 0.086 0.717 ± 0.057 0.769 ± 0.059 29.0%

ADL F1 0.764 ± 0.180 0.414 ± 0.179 0.645 ± 0.107 0.829 ± 0.101 100.0%

κ 0.720 ± 0.199 0.368 ± 0.198 0.654 ± 0.123 0.849 ± 0.113 130.7%

The relative improvement compares the performance between the model that is trained from scratch and fine-tuning using all the layers. Datasets are ranked by subject number from large to small.
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Fig. 3 | The association between data volume and model performance. The impact of varying amount of labelled data in fine-tuning (a) and unlabelled data in self-
supervision (b) on subsequent human activity recognition performance. Mean F1 ± SD are plotted.

Table 3 | Transfer learning (subject-wise F1 ( ± SD)) performance comparison between supervised pre-training with self-
supervised pre-training

Source data

Target data Rowlands Capture-24 UK Biobank

Supervised Self-supervised Supervised Self-supervised Self-supervised

Capture-24 0.707 ± 0.094 0.709 ± 0.094 – 0.707 ± 0.094 0.726 ± 0.093

Rowlands – 0.734 ± 0.082 0.728 ± 0.094 0.730 ± 0.084 0.796 ± 0.093

WISDM 0.680 ± 0.109 0.702 ± 0.123 0.715 ± 0.119 0.723 ± 0.121 0.810 ± 0.127

MJFF-LR 0.331 ± 0.159 0.468 ± 0.161 0.616 ± 0.127 0.601 ± 0.114 0.755 ± 0.109

REALWORLD 0.712 ± 0.086 0.737 ± 0.105 0.759 ± 0.070 0.771 ± 0.061 0.792 ± 0.075

Opportunity 0.536 ± 0.019 0.539 ± 0.018 0.547 ± 0.043 0.547 ± 0.042 0.595 ± 0.085

PAMAP2 0.677 ± 0.082 0.689 ± 0.078 0.678 ± 0.118 0.725 ± 0.725 0.789 ± 0.054

ADL 0.634 ± 0.182 0.701 ± 0.111 0.768 ± 0.169 0.754 ± 0.159 0.829 ± 0.101
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subjects. The performance gain for having more labelled subjects was
roughly linear with respect to the number of subjects included with a
greater increase when we had fewer labelled subjects.

Varying unlabelled data in the pre-training. We also found that the
downstream human activity recognition performance appeared to
increase linearly with respect to the number of unlabelled subjects on a
log scale (Fig. 3b, left). The self-supervision performance boost withmore
unlabelled subjects pre-training was most significant in the smallest
dataset, Opportunity. Furthermore, if the number of participants is fixed
at 10,000 in pre-training, the data ratio included per subject did not
significantly influence the downstream performance. Notably, the
downstream performance did not degrade more than 10% in F1 even
when we reduced the the amount of data per subject from 100 to 25%.
(Fig. 3b, right).

Understanding the representation
Cluster analysis. We used UMAP36 with default parameters for low-
dimensional projections for visualisation. This was applied to the raw
inputs, untrained features, and self-supervision-derived features without
fine-tuning. Results for two of the downstream datasets are shown in
Fig. 4, and the remaining results can be found in Supplementary Fig. 2.
Across all datasets, we observed that the self-supervision-derived features

were better at clustering similar activities (e.g., walking, stair climbing vs
sitting, writing, typing) aswell as their intensities (e.g., lying down, sitting,
standing vs jogging, sports), exhibiting better intra-class compactness
and inter-class separability.

Feature interpretation. Next, we visualised two exemplary pretext self-
supervised task predictions in the presence of repetitive low- and high-
intensity activities: shaking hands (Supplementary Fig. 4a) and playing
tennis (Supplementary Fig. 4b). During tennis playing, a repetitive high,
intensity activity, relevance scores tended to highlight the moments
around the natural movements of swinging and hitting the tennis ball
(Supplementary Figs. 4b and 5). When performing a repetitive low-
intensity activity experiment, for example, shaking hands (Supplemen-
tary Fig. 4a), layer-wise relevance propagation appeared to also identify
the intensity and natural signal periodicity as indicative of the original
activity. In contrast, for augmented signals, our model attributed more
during periods of visually unrealisticmotion dynamics, such as unnatural
fragmentation in activity frequency or synchronisation mismatches
between sensor axes. Interestingly, stationary movement periods were
not relevant for detecting the pretext tasks.

Finally, we empirically compared the faithfulness of the explainable AI
algorithms investigatedand the combination of various layer-wise relevance
propagation parameters, using sample-masking experiments for a random

Fig. 4 | Cluster analysis on raw inputs, untrained features and self-supervised-pre-trained features.Colour gradients were used to denote activity intensities (a:Rowlands,
b: Capture-24).
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subset of 1000 (out-of-sample) subjects in the UK Biobank. Most explain-
able AI models consistently demonstrated the ability to identify relevant
patterns for discriminating transformed samples from the original raw data
when compared against a random model.

Discussion
Our work has shown that self-supervised pre-training consistently
improved downstream human activity recognition, especially in small
datasets, reducing the need for labelled data. The self-supervised repre-
sentations generalise well across a range of external datasets, tasks, devices,
health statuses, and populations, a key aspect in activity monitoring for
clinical use. Our work represents the most robust human activity recogni-
tion foundational model to date, as it is trained on a much larger and more
diverse dataset thanprevious efforts in this space.The scale ofUKBiobank is
several orders of magnitude greater than the largest datasets used by the
current state-of-the-art such as the Fenland data9 (n = 160,000). In addition,
not just big in size, but UK Biobank is much more diverse as it contains
hundreds, if not thousands, of natural human activities—a crucial aspect
regarding the training data and feature generalisation. Indeed, the obtained
pre-trained model has already been used with success in enhancing digital
monitoring for a clinical population with motor impairment37 and epide-
miological research38,39.

With our pre-trained models, one can obtain a highly competitive
activity recognition model with a small amount of labelled data, a feature
important for clinical studies where labelled data is expensive to acquire. In
contrast, previous studies applied self-supervised training and fine-tuning
only on the same data sources24,27,40, making it necessary to pre-train on every
new dataset in practical applications. A recent attempt has been made to
systematically evaluate the effect of self-supervised techniquesbypre-training
on Capture-24, providing a good baseline for the performance evaluation in
human activity recognition33. However, pre-training on Capture-24 with
roughly 100 participants will not be able to characterise the impact of self-
supervised pre-trained models. The representation quality is superior if the
pre-training is done on datasets with richer population characteristics. Our
pre-trained network can serve as a foundational human activity recognition
model that removes the need to pre-train on unseen datasets.

We found that the representation quality from self-supervision was
always better than that of supervised learning in an apple-to-apple com-
parison when using Rowlands as the source of pre-training. Self-supervised
learning with other modalities has also found that self-supervised pre-
training can outperform supervised pre-training18,41. Pre-training on theUK
Biobank yields the most significant improvement among all the self-
supervised representations, as the human activity recognition performance
is uniformly better than other pre-trained baselines (Table 3). The perfor-
mance boost could be attributed to the large data volume, diverse activity
classes and rich population characteristics of the UK Biobank over alter-
native pre-training datasets. Recent investigations on large languagemodels
have profiled the trade-off between model size and data volume when the
compute budget is fixed42, suggesting model size is another important
dimension for pre-training worthy of further investigation for human
sensing data.

This study highlights new questions to prioritise in future. Due to a
current lackof raw accelerometer datasets in different regions of theworld, a
limitation of our work is that the pre-training data (UK Biobank) consists
mostly of Caucasians from the UK. Amulti-modal representation that also
includes electrocardiogram and other time-series wearable sensor data
sourceswill also be important to considerwhen suchdatasetsare collected in
the future. Lastly, future work could also investigate the representation
quality usingmore recent self-supervised learning approaches on free-living
UKBiobank accelerometers28,32,33,40,43, in addition tomulti-task learning.We
attempted to use Autoencoder and contrastive learning for pre-training.
However, we could not obtain high-quality representation using the UK
Biobank43. We suspect this was mainly due to the difference between free-
living and lab-based activity data, which can be further analysed to compare
the performance of different self-supervised methods.

We have developed and evaluated a self-supervised deep neural net-
work on large-scale activity tracking data. The features obtained improved
on prior state-of-the-art performance across eight benchmark human
activity recognition datasets. Our open-sourced model represents a foun-
dationmodel that others can build upon for state-of-the-art human activity
recognition applications. The improved physical activity measurement will
help to understand better the influence of physical activity on different
disease outcomes, especially for populations that have been under-
represented in previous studies.

Methods
We used tri-axial accelerometer data from wrist-worn activity trackers,
which record acceleration on three orthogonal axes at a high sampling rate
(e.g., 100Hz). The main benefit of wrist-worn activity trackers is their high
user compliance, resulting in days, if not weeks, of continuous recordings.
Following ref. 44, we split the signals into windows of equal duration,
effectively treating them as independent inputs to the human activity
recognition models. We can then label each window with an activity class.
Throughout this study, we linearly resampled all data to 30 Hz resolution
and used ten-second-long windows to compare the downstream bench-
marks fairly. The 30Hz sampling rate was used because most human
activities have a frequency less than 10Hz. We used a sampling rate that is
higher than thepresumedNyquist rate (20Hz) to ensure thatwedidnot lose
any useful signal.

Datasets
Ourmulti-task self-supervised training relied on the unlabelledUK Biobank
dataset, which contains roughly 700,000 person-days of free-living activity
data (>100,000 participants, 7 days of wear). The free-living aspect is
important because the data can contain all sorts of activities, as opposed to
lab data which are constrained to scripted activities only. The UK Biobank
data (project ref 21/NW/0157) is covered by ethical approval from theNHS
National Research Ethics.

For the subsequent activity recognition benchmarks, we considered
eight external labelled datasets that vary in size (600–600,000 samples),
activity classes (4–18 classes), devices (5 different brands), device place-
ments (4 configurations), populations (differ in age, sex, and health status),
and collection protocol (free-living, scripted, and lab settings). See Table 4
and Supplementary Table 1 for detailed dataset characteristics. Three
datasets had license information, and five datasets had explained informed
consent information (Supplementary Table 2).We removed the classes that
were not present in all the subjects in small datasets with less than ten
individuals during data cleaning. TheMichael J. Fox Foundation Levodopa
Response (MJFF-LR) studywas included to assess the generalisability of our
model in a clinical population with motor impairment, Parkinson’s disease
in our case. For theMJFF-LR study, we only included data collected in a lab
because not all the participants had free-living data. Finger-to-nose and
repeated-arm movement tasks were also removed from MJFF-LR as these
two activities were performed using both arms in alternation, but we only
used the data from one arm. We further merged three walking classes
into one.

Even though we reused existing datasets, we made our best effort to
enumerate the license and consent information for all the included datasets,
as our data involved human subjects. We observed that many open
benchmark datasets that we used did not have suitable licensing or consent
information, possibly due to the lack of data governance awareness at the
time of the study.

Multi-task self-supervised-learning
Weconsidered three self-supervised tasks from ref. 27,whichwerefirst used
in ref. 34 as data augmentation techniques. Eight transformations were
included in the previous exploration of multi-task learning27. We chose
arrow of time, permutation and timewarping tomaximise learning features
related to human motion dynamics. Supplementary Methods Section
explains why other transformations were not chosen.
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Arrow of time (AoT) flips the signal along the time axis, effectively
playing the signal in reverse. Permutation breaks the signal into chunks and
shuffles them. We set the number of chunks to four and the minimum
length of each chunk to at least ten timestamps. Time warping (TW)
stretches and compresses arbitrary segments of the signal, effectively
slowing down and speeding up the signal randomly.

Following ref. 27, we treated each of the tasks as a binary problem
predicting whether a transformation has been applied. In the multi-task
learning (MTL) setting, not all the tasks might benefit human activity
recognition when trained jointly, so we assessed how different task com-
binations could influence the downstream performance. We computed the
cross-entropy loss for each task and weighed all the tasks equally in the loss
calculation.

Weighted sampling. Motion data collected in the real world contains
large portions of low movement periods that are less informative (Sup-
plementary Fig. 1), which is an issue for our self-supervised tasks as static
signals remain virtually unchanged after the transformations. We found
it crucial to perform weighted sampling for improved training stability
and convergence: during training, we sample the data windows in pro-
portion to their standard deviation so as to give more weight to high-
movement periods.

Network training
We adapted a ResNet-V2 with 18 layers and 1D convolutions45 for the
main trunk (feature extractor), totalling 10M parameters. The learned
feature vector was of size 1024. All the tasks shared the same feature
extractor. Then, we attached a softmax layer for each of the self-
supervised tasks. In the downstream evaluation, we added a fully con-
nected (FC) layer of size 512 in between the feature extractor and soft-
max readout. The network structure was fixed for all the downstream
evaluations.

For self-supervised learning, we load up to four subjects from theUK
Biobank at each iteration. For each subject, wefirst sampled one day out of
the week-long data, from which we again sampled 1500 10-s windows to
make up a training batch. Self-supervised transformations were then
applied to the batch of data. Since the axis orientation differs between
device manufacturers, we used random axis swaps and rotations to aug-
ment the training data to embed this invariance into our models. For
optimisation, we used Adam46 with a learning rate of 1e-3. To account for
large batch sizes, 1500 × 4 = 6000, we applied linear scaling for the
learning rate with five epochs as burn-in47. We distributed the network
training over four TeslaV100-SXM2with 32 GBofmemory. It took about
420GPUhours to train theMTLmodel (about 20 epochs).Weused an 8:2
ratio for the train/test split for all the self-supervised experiments. Forfine-
tuning, we used the same training setup as the pre-trainingwhere possible,
except for the batch size, which was re-adjusted depending on the size of
each dataset.

Evaluation—human activity recognition
To evaluate the downstream human activity recognition performance, we
used held-one-subject-out cross-validation for the datasets that had
<10 subjects. We additionally removed activity classes not done by all the
subjects in these small datasets. For datasets with ≥10 subjects, we used five-
fold subject-wise cross-validation instead. Each cross-validation had a
7:1:2 split ratio for train/validation/test sets. We used early-stopping with a
patience offive to avoid over-fitting. For training runs that did not converge,
we reported the best performance after using three different random seeds
for weight initialisation.

After the network was trained on the UK Biobank using ~100,000
participants, we further fine-tuned the network on the eight labelled
downstream datasets to perform human activity detection using two
approaches: (1) fine-tuning all the layers (2) freezing the trunk (feature
extractor) and fine-tuning only the FC layers in the end.We also report the
model performance for a network of the same architecture but fully trained
from scratch, and a strong random forest model with tried-and-tested time
series features, which has often been neglected in baseline model
comparisons8,48–50. See the Supplementary Methods Section for the list of
features used.

In addition, a shared implementation was introduced for our network
training, model evaluation and preprocessing. Differences in experiment
setup such as training rates, regularisation and data augmentation can lead
to inconsistent results51. A unified evaluation frameworkwould ensure a fair
comparison between different baseline models. Our evaluation framework
contrasts with previous work, where there is no fixed evaluation protocol
across the benchmark datasets, making it hard to compare model perfor-
mance with the current state-of-the-art. The results produced in our paper
would serve as the baseline for future human activity recognition research.

Transfer learning. Pre-training on a larger labelled dataset and fine-
tuning on a smaller dataset is a common technique in practical appli-
cation that has been under-reported as a baseline for self-supervision.
The success of transfer learning, however, depends on how similar the
source and target datasets are. Hence, we included experiments using the
two largest labelled datasets, Capture-24 and Rowlands for pre-training,
which were then fine-tuned on other labelled datasets.

The benefits of data volume. In the ablation studies, we investigated
how the downstream performance differs on two axes, the amount of
labelled data and the amount of unlabelled data. Concretely, we gradually
increase the number of labelled subjects in both Capture-24 and Row-
lands in the downstream evaluation to assess whether our pre-trained
model can still do well in a limited-data regime. In terms of unlabelled
data, we experimented with pre-training that had 100 to 100,0000 par-
ticipants with one order of magnitude increment. We also varied the
amount of unlabelled data per subject from 0.25 to 1 using 10,000 par-
ticipants. A data ratio of 0.25means that if one day of data per subject was

Table 4 | Wrist-worn accelerometer datasets used to evaluate the utility of self-supervised learning for human activity
recognition tasks

Dataset #Subjects #Samples #Classes Environment References

UK Biobank ~100K 6 B Unlabelled Free-living 55

Capture-24 152 573K 4 Free-living 8

Rowlands 55 36K 13 Lab 56

WISDM 46 28K 18 Semi free-living 57

MJFF-LR 28 12K 12 Lab 58

REALWORLD 14 12K 8 Lab 59

Opportunity 4 3.9K 4 Semi free-living 60

PAMAP2 8 2.9K 8 Lab 61

ADL 7 0.6K 5 Lab 62
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used previously, then only 6 h of data per subject would now be used for
training. Investigating how unlabelled data influences downstream per-
formance will guide how much data one needs to have to obtain an
effective self-supervised model for human activity recognition.

Understanding network representation
Contextualising layer-wise relevance propagation. We applied layer-
wise relevance propagation (LRP) to visually investigate the signal
characteristics relevant for detecting the pretext tasks52,53. It is inherently
more difficult to visually interpret attribution heatmaps generated
through Explainable AI (XAI) frameworks on time-series signals. To
overcome this lack of visual ground truth, we devised a set of simple
contextual experiments to evaluate our LRP attribution results. Using the
same accelerometer as the UK Biobank, we recorded a participant per-
forming two activities under video observation: (1) low-intensity scripted
(hand-shaking) and (2) high-intensity unscripted (playing tennis). We
acquired a ground truth (the context) for the accelerometer activity
through the time-synced video observations, enabling a better visual
interpretation of the sensor-based characteristics attributed as relevant
for detecting different pretexts. Holistic interpretations were formed
based on visualising the raw sensor signal, its analogues time-frequency
representation through continuous wavelet transform (CWT)
scalograms54, as well as the time- and pretext task-localised LRP relevance
scores, all with respect to observing the concurrent video recordings.
Details on theXAI contextual LRP (cLRP) framework are described in the
Supplementary Methods Section.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
TheUKBiobankaccelerometer dataset used for training canbe requestedby
application (https://www.ukbiobank.ac.uk/enable-your-research/register).
All the other evaluation datasets can be downloaded via https://github.com/
OxWearables/ssl-wearables. TheMJFF-LR study canbe accessed via https://
www.synapse.org/#!Synapse:syn20681023/wiki/594686 after registration.
The Rowlands dataset can be requested by contacting Alex Rowlands
directly.

Code availability
The underlying code for for this study is available in OxWearables/ssl-
wearables on Github and can be accessed via this link https://github.com/
OxWearables/ssl-wearables.
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