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Contextualizing remote fall risk: Video
data capture and implementing ethical AI
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Wearable inertial measurement units (IMUs) are being used to quantify gait characteristics that are
associatedwith increased fall risk, but thecurrent limitation is the lackof contextual information thatwould
clarify IMUdata.Useofwearable video-basedcameraswouldprovideacomprehensiveunderstandingof
an individual’s habitual fall risk, adding context to clarify abnormal IMU data. Generally, there is taboo
when suggesting the use of wearable cameras to capture real-world video, clinical and patient
apprehensiondue toethical andprivacyconcerns. Thisperspectiveproposes that routineuseofwearable
camerascouldbe realizedwithindigitalmedicine throughAI-basedcomputer visionmodels toobfuscate/
blur/shade sensitive information while preserving helpful contextual information for a comprehensive
patient assessment. Specifically, no person sees the raw video data to understand context, rather AI
interprets the raw video data first to blur sensitive objects and uphold privacy. Thatmay bemore routinely
achieved thanone imagines as contemporary resources exist. Here, to showcase/display the potential an
exemplar model is suggested via off-the-shelf methods to detect and blur sensitive objects (e.g., people)
with an accuracy of 88%. Here, the benefit of the proposed approach includes a more comprehensive
understandingof an individual’s free-living fall risk (from free-living IMU-basedgait)without compromising
privacy.More generally, the video andAI approach could be usedbeyond fall risk to better informhabitual
experiences and challenges across a range of clinical cohorts. Medicine is becoming more receptive to
wearables as a helpful toolbox, camera-based devices should be plausible instruments.

Contemporary research investigates free-living fall risk through habitual
(community-based) monitoring with wearable inertial measurement units
(IMUs), i.e., devices with accelerometers and/or gyroscopes across a wide
range of different neurological conditions1. For example, examining habi-
tual daily mobility through instrumented gait within Parkinson’s disease
(PD) is notable for assessing abnormal step times (intrinsic digital-based
bio-markers) to better understand underlying mechanistic limitations that
may lead to a fall1. Free-living mobility assessment through instrumented
gait (via IMUs) could improve targeted strategies for reducing falls, enabling
personalized fall risk prevention2. For example, IMUs can measure abnor-
mal spatial and temporal gait characteristics during ambulatory walks,
including gait asymmetry or variability, which are associated with an
increased risk of falls3,4.

The current limitationwhen using an IMU-basedwearable alone is the
lack of absolute contextual (extrinsic, environmental) information (e.g.,
where someone is walking), which could lead to inaccurate interpretations
of gait abnormalities and incorrect fall risk assumptions. That limitationwas
described over a decade ago leading to a conceptual approach to better
understand the powerful impact of environmental factors on gait andmotor
function in the home and community5. To overcome this, studies have
begun to propose the use of e.g., smartphones or wearables with embedded
global positioning system (GPS) functionality and/or embedded applica-
tions/apps to provide context such as weather and general environmental
location6. However, those approaches cannot be used within buildings, and
situations beyond indoor environments may rely on outdated maps.
Moreover, those approaches fail to capture the granular/minute influences
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on gait, such as navigating raised pathways or gait variations due to ad-hoc/
randomobstacles (not easily determined fromoutdatedmaps), which could
generate abnormal gait characteristics7. Furthermore, although the use of
diary-based apps can enable self-report of contextual factors8, it is limited
due to subjective reporting9. Therefore, recent research has explored the use
of wearable cameras to augment IMU-based gait assessment to provide a
more comprehensive understanding of fall risk beyond the lab10. However,
there is taboo when using cameras and shunning of suggestions pertaining
to their use in the home or community settings to capture real-world video
data as ethical and privacy concerns are a primary and overriding rationale
to avoid their deployment. For example, a wearable camera could capture
sensitive information, such as details on a bank statement, personal letter, or
images of children. Moreover, if cameras were to be used, they create
pragmatic challenges for researchers to view and painstakingly categorize/
label the video data. Specifically, video data needs to be annotated (labeled)
with synchronized IMU data, dramatically increasing timelines for a
complete fall risk assessment5. The ability to collect IMU gait with absolute
contextual clarity on environmental factors would dramatically increase the
understanding of fall risk at an individual level. However, the challenge is to
routinely anonymize sensitive information contained within a video to
uphold privacy while providing rich contextual information on the envir-
onment (for a comprehensive patient assessment).

Understandably, there is apprehension when suggesting video
data capture, especially beyond the clinic and in the home or com-
munity. Ideally, any captured raw video data would not be seen first by
any person (including any member of a person’s healthcare team)
until necessary, e.g., data verification. Accordingly, perhaps the
detection and obscuring of sensitive objects (e.g., people, letters) to
uphold privacy prior to being seen is best facilitated with the routine
use of artificial intelligence (AI)-based computer vision (CV). But
what is that? Where AI enables computers to think, CV enables them
to see, observe and understand, and derive meaningful information
from images and videos11. Typically, CV is routinely discussed within
the field of autonomous systems for applications in e.g., robot
navigation12 or agriculture and food processing13. AI-based CV may
provide very pragmatic insights to remotely assess fall risk while
upholding privacy.

We posit that current CV approaches exist to uphold privacy and
should be routinely harnessed. Granted, amultidisciplinary approach is
required to ensure approaches are from best (computing) practices to
ensure any development(s) are fit-for-purpose and robust to uphold
privacy and ethical concerns. Here, this perspective adopts off-the-shelf
approaches and showcases the use of an examplar deep learning model
to anonymize sensitive information captured by a wearable camera to
better inform IMU mobility-based gait characteristics. In doing so the
suggested model will display how to preserve the contextual informa-
tion for future consideration (in free-living/habitual fall risk assess-
ment). Generally, the aim of this perspective is to suggest the routine use
of accessible approaches that can be harnessed to enhance (enrich)
personalized approaches in medicine.

Proposed technologies
Here, we suggest amodel that typifies how aCV approachwould be created
and adopted within the fall risk assessment. The aim here isn’t to champion
the suggested model per se but to inspire the field of digital medicine to
closely consider (reconsider, perhaps) the adoption of wearable cameras for
free-living/habital data collectionwith the use of exemplar AImethods. The
following sections detail a suggested approach by drawing upon the author’s
experiences and then uses data collected within a single university setting
only to showcase the application during a pilot test.

Building a reference. Typically, the first step in a custom CV model is
the collection of an image-based dataset with (manual) annotation of
(video-based) frames/images. That is a very time-consuming process
especially when initiating a database, but the purpose is to train

computers to recognize objects, classifying them fromwithin an image. In
contrast, openly available resources exist such as the Microsoft Common
Objects in Context (COCO) dataset, containing approximately 330,000
images and >2.5 million object instances in 80 categories including those
required for anonymization14. From the referenced work, Lin et al
describe COCO not within the context of object recognition but rather
scene understanding comparable to 91 object types that would be
recognizable by a 4-year-old child.

Defining amodel. The You Only Look Once (Yolo) series of algorithms
are typically described as the cornerstones of object detection for scene
understanding15. Through several iterations, the current state-of-the-art
is Yolov816, based on the Darknet-53 network architecture and using a
similar approach to previous Yolo implementations but with improved
detection and classification modules17. Specifically, the architecture of
Yolov8 consists of a deep convolutional neural network (CNN) that can
be trained on large datasets (such as COCO).

When an image is an input to Yolov8, it goes through a series of
convolutional layers used to extract features from the image. The network
then predicts a set of bounding boxes, each with a confidence score, that
surround objects in the image. Yolov8 uses a single pass of the network to
predict the bounding boxes and class probabilities directly from full images,
eliminating the need for region proposal and feature alignment steps used in
other object detection systems. The output of Yolov8 is a set of bounding
boxes with confidence scores and class probabilities that represent the
detected objects in the image. Those bounding boxes identify sensitive
objects in the video.

Blurring sensitive objects. A set of sensitive objects that should be
obscured upon detection with habitual video capture were the pre-
selected classes of person, book, laptop, and TV. Of those, many act as a
catch-all for other objects (book: any text-based paper object, laptop:
laptop or mobile phone, TV: any form of screen). When the Yolov8
model detects those objects in a video frame, a Gaussian blur filter is then
applied using theOpenCV library for anonymization (Fig. 1). Specifically,

Fig. 1 | Video-based data capture could be gathered from any location via a
wearable camera. Typically, common wear locations include the chest or waist (1).
However, alternative locations with more routinely worn wearables could include
the wrist (watch) or face/head via glasses (1). A CV model implementing YoloV8
(2a) drawing upon a well-characterized and comprehensive ground truth learning
dataset/database (2b) and necessary libraries (2c, 2d, and 2e) via a suitable analytical
environment (2f). The images to the right detail how the raw/original data (top) is
anonymizedwith only the latter being visible as an output i.e., red locks indicate what
is analyzed and then deleted with a green lock indicating the remaining image
available for viewing. (A wearable IMU to quantify gait is worn on the lower back,
not shown.) The algorithm selectively anonymizes only specific privacy-conscious
objects such as screens, people, and documents while leaving the remaining content
unanonymised to allow a better understanding of the environment in edge cases
where the frame must be manually investigated.
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the bounding box of the detected object is output by the Yolov8 model,
and then theGaussian blur is applied to that region of the video frame. To
further ensure privacy an offset of 50 pixels was added to each side of the
region of interest to improve privacy.

Video processing. Once all frames are processed, they are combined
into a new anonymized video. A new videowriter object is instantiated by
OpenCV with each processed frame written before the output of the final
anonymized video (.avi) before converting to .mp4 due to its wider use
and smaller file size.

Testing, a pilot study. To investigate the proposed model, 10 partici-
pants were recruited (M: 9, F: 1, 30.0 ± 6.3 years). Ethical consent was
granted by the Northumbria University Research Ethics Committee
(REF: 44692). Participants gave informed written consent before parti-
cipating in this study. Testing took place within the City Campus,
Northumbria University, Newcastle upon Tyne, UK.

To implement the model a Python 3.8 environment on a desktop
containing an RTX 3070ti, Ryzen 7 3800X, and 24 GB RAM was chosen.
PyTorch and Ultralytics libraries were used for manipulating tensors and
accessing the YOLOv8 range of algorithms with the YOLOv8m model
chosen for a good balance of speed and accuracy. The final model processes
the video at 30 frames/second (fps).

Wearables: Video glasses and IMU. Any wearable camera and many
attachment locations could be used within the context of gathering
extrinsic data, but we suggest the use of wearable camera glasses as the
technology is becomingmore streamlined (i.e., subtle for daily use) and is
typically ergonomically designed as well as being more user/patient
friendly for passive sensing in comparison to a camera worn on the
chest18.Wearable camera glasses also carry the potential of reduced injury
in case of a fall event, especially when compared with a protruding chest-
mounted camera that is likely to cause further injury to the participant
upon impact. Moreover, camera-based glasses capture a participant’s
visual perspective along with the wider/peripheral environmental con-
text. Accordingly, each participant recruited wore the Pupil Labs Core
wearable video glasses (https://pupil-labs.com/products/core/). The
glasses feature three independent cameras consisting of a world (front-
facing camera facing outwards) and two cameras facing inwards at each
pupil to capture eye location. The world camera captures video at a
resolution of 1920 × 1080 pixels at a frame rate of 30 Hz (Fig. 2) and is
used here only. Audio data were automatically collected but removed
upon video download.

Additionally, each participantwore aMoveMonitor IMU (McRoberts,
55 g, 106.6 × 58 × 11.5 mm) on a belt with the device on the lower back
(specifically, at 5th vertebra level—L5) to collect inertial data (100 Hz). A
validated algorithm was used to segment periods of walking from con-
tinuous inertial data19 stemming from the vertical acceleration used to
identify the initial contact (IC) and final contact (FC) of each foot. For
identification of IC and FC events a validated algorithm was used20 which
filtered, integrated, and transformed the signal using continuous wavelet
transforms (CWT). Once IC and FC times were found, temporal gait
characteristics were computed. Spatial characteristics used another vali-
dated algorithm21, involving a high pass filter and double integration on the
signal before using where l is IMU height from the ground and h is the
absolute difference between the minima and maxima of the integration of
the signal. The general methodology has been used for many years and is
generally perceived as a pragmatic approach to habitual gait assessment22,23.

Protocol. Participants were asked to walk through naturally populated
areas within the university campus. Participants navigated a range of
environments including ascending and descending stairs, entering sen-
sitive areas such as toilets, and having conversations with people. The
video glasses and IMU were worn throughout the duration of the par-
ticipant’s walk (approx. 10 min/participant), providing a continuous
stream of synchronized data (via time stamps on a researcher’s compu-
ter) that captured the participant’s gait and environmental context.

Yolo evaluation metrics. When deciding on Yolo architecture (i.e.,
nano, small, medium, large, x-large) different evaluation metrics are
available on the repository16 for the training results stemming from the
COCO dataset14. Those metrics are:
• Size of the image being fed into themodel, to ensure a fair test allmodel

architecture fed the image in at a size of 640 × 640 px.
• Mean average precision (mAP50) value. Specifically, mAP50 is a

measure of howaccurate thepredicted boundingboxes from themodel
are when compared with the manually labeled and drawn boxes of the
objects within the dataset (ground truth data).

• Speed refers to the average inference time on a computer’s central
processingunit (CPU) i.e., the time it takes toprocess an image through
the network in milliseconds (ms).

• The number of parameters (params) present within the architecture,
i.e., this is the total amount of different parameters that must be
adjusted during training. This metric in essence gives insight into the
size of the network.

• Floating point operations per second (FLOPs) which is a measure of
the computational complexity of the model as it defines how many
mathematical operations a model must do per second.

Results
The YoloV8 model has previously been evaluated on the COCO dataset
(Table 1, top), which contains 80 different object classes, including people,
books, and electronics.Metrics suggest that themodel is highly accurate and
efficient,making it well-suited for the task of anonymizing videos.However,
when assessing how well the model can truly generate privacy-sensitive
videosmAP50alonedoesnot give a true indicationof the effectiveness of the
model for use in anonymization. This is due to the use of intersection over
union (IoU) within mAP50. IoU is not a perfect measure of overlap,
especially for objects with complex shapes like faces. IoU calculates the
overlap between two bounding boxes as the area of the intersection divided
by the area of the union. Thismeans that even if a predicted bounding box is
slightly off, it can still have a high IoU score if it covers most of the object.
However, this does not mean that the object is truly anonymized, especially
if the object is a face.While there may be a good overlap between predicted
bounding boxes and the actual objects, if the box is even slightly off and
allows for identification of a person’s face, it is not fit for purpose. Therefore,
the only good metric is that of manual review, pertaining to how many

Fig. 2 | Video-based glasses showing visual perspective (captured context, in this
example it is ascending indoor stairs) and IMU device along with a representation of
both worn by a participant.
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sensitive data points are in the frame and howmany of themare completely
obscured.

To evaluate the effectiveness of the model, a sample of anonymized
videos was manually reviewed, and it was found that the model was highly
effective at obscuring sensitive data points such as faces, letters, and screens
(Table 1, bottom). For the purposes of this perspective, to aid in categorizing
the performance of themodel the results were split into 3 categories (people:
any person within the frame, textual: any form of text-based information
like letters and bank statements screens: any form of the screen like televi-
sions, laptops, or mobile phones). It was also found that the medium-sized
model was capable of processing videos in real-time, making it a viable
solution for real-world applications. In summary, the YoloV8 model was
found to be a highly effective method of anonymizing videos, with the
medium-sized model providing a good balance between performance and
accuracy.

Environmental context
To establish a baseline for natural gait, the study analyzed periods of the
video inwhichno external factors affected the gait of the 10participants (i.e.,
walks on flat/level ground). These baseline characteristics were then com-
pared with the characteristics observed during periods when obvious

external factors could influence gait, such as navigating stairs (Fig. 3). For
instance when comparing baseline flat walking, stair ascent, and stair des-
cent, themean step, stance, stride, and swing timeswere all relatively similar.
However, the standard deviation and asymmetry measures in these sce-
narios were found to differ significantly. For example, with one participant,
when the context captured from thewearable video glasses showedflat-level
terrain (Fig. 3) very low step time asymmetry (0.025) and standarddeviation
(0.019) values were observed (Table 2).

The resulting lower asymmetry (Asymmetry) and standard deviation
(Std. deviation) from level flat terrain suggest a natural gait with no indi-
cation of fall risk. However, when the same participant’s gait is assessed a
short time later during stair ascent (Fig. 3), there is a change in gait char-
acteristics. For instance, we see step time asymmetry increase by 116%
(0.025–0.054), and the standard deviation increases by 300% (0.019–0.076),
Table 2.

These pilot results suggest that gait characteristics can be significantly
affected by environmental factors and that cliniciansmust take these factors
into account when evaluating fall risk. Without the use of video to sup-
plement the numerical IMU gait characteristics with environmental con-
text, clinicians may misinterpret data as an indication of increased fall risk
caused by an intrinsic neurological disorder, such as PD, rather than a
natural response to one’s environment.

Discussion
The rationale for using wearables as objective tools to capture habitual
longitudinal data to better understand personalized approaches inmedicine
is becoming profound24. There are many use cases and supporting argu-
ments for adopting wearables to digitize traditional approaches inmedicine
to better inform clinical decision-making processes. Here, this perspective
focuses on fall risk assessment through IMU-based wearables as they are a
viable technology to passively capture robust and informative gait char-
acteristics during everyday life across many cohorts25. Yet, they are limited
by failing to provide absolute context, which could be exceptionally useful to
enrich fall risk assessment (at an individual level). Accordingly, our per-
spective is that contemporary wearable cameras (especially glasses) and AI-
based CVs should be now routinely proposed and used to complete the
picture while simultaneously upholding privacy.

The next step for fall risk assessment beyond the lab/clinic is limited by
twokeychallenges (i) privacy and (ii) technical integration.Perhapsboth can
be overcome by methods like the ones presented here. The proposed AI
model in this pilot study is an example only to better inform fall risk
assessment from combined wearables (video and IMU) data while preser-
ving privacy. By automatically anonymizing video data, the AI provides a
practical and efficient solution for protecting participant privacy while still
enabling the collection of important contextual data. Understanding the
environmental context, such as the presence of stairs or the type of flooring,
is crucial tobetterunderstanding fall risk fromhabitual IMUgait assessment.
Combining IMU data (i.e., validated gait characteristics) with the environ-
mental context data (i.e., video-based data from ergonomically designed

Table 1 | Architecture size metrics on COCO dataset and
manual review anonymization review

YOLOV8 Archi-
tecture size
metrics

Model Size mAP50 Speed Params FLOPs

YoloV8n 640px 37.3 80.4 3.2 8.7

YoloV8s 640px 44.9 128.4 11.2 28.6

YoloV8m 640px 50.2 234.7 25.9 78.9

YoloV8l 640px 52.9 375.2 43.7 165.2

YoloV8x 640px 53.9 479.1 68.2 257.8

YoloV8m Man-
ual review
anonymisation

Participant People Text Screens All

001 0.988 1.00a 0.961 0.948

002 0.988 1.00a 0.972 0.959

003 0.989 1.00a 0.966 0.955

004 0.988 1.00a 0.952 0.940

005 0.983 0.914 0.944 0.848

006 0.986 0.926 0.938 0.856

007 0.982 0.933 0.943 0.863

008 0.986 0.928 0.939 0.859

009 0.988 0.874 0.929 0.802

010 0.984 0.934 0.933 0.857

Average 0.986 0.918 0.947 0.887
a<20 frames of examples within the specific video.

Fig. 3 | Flat-level terrain (left) and participant stair ascent (right).
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video capture devices like glasses), could better enable the understanding of
factors (intrinsic and extrinsic) that contribute to fall risk in free-living.

Furthermore, the use of cameras in this study highlights the impor-
tance of considering the role of the physical (extrinsic) environment in fall
risk assessment. While traditional laboratory-based assessments may be
useful for evaluating specific aspects of gait and balance, they often do not
replicate the complex and dynamic nature of real-world environments. The
combination ofwearable IMUs and video glasses, alongwithAImodels (for
anonymization), offers an appropriate and efficient approach for assessing
fall risk in free-living environments.

Video analysis also needs to consider environmental factors that
influence fall risk. For example, uneven terrain26, lighting, and obstacles can
impact an individual’s mobility-based gait patterns that increase the like-
lihoodof falls23. Previous studies have investigated that byusingGPSsensors
to infer terrain type, however, unlike video captured directly from the
participant, absolute context cannot be gained from GPS sensors alone27.
For example, GPS sensor data could be compared to freely available satellite
images, but often they are outdated and so terrain types may be different.
Equally, historical satellite images of outdoor environments cannot capture
real-time or ad-hoc objects in the person’s daily path. Adoption of wearable
video (to complement IMUs) would enable up-to-date terrain type classi-
fication with the detection of spontaneous obstacles.

Figure 1 displays the suggested scenario of how the AI proposed here
could protect privacy (for the patient and bystander). The rationale for
partial obfuscation is to ensure that any manual reviewing of a video frame
upholds the clarity required to fully understand the environment. That
approach is similar to previouswork examining activity-orientated cameras
to provide visual confirmation of specific activities from real-world
settings28. By keeping a human in the loop it helps ensure visual confirma-
tion to validate environmental circumstances. Of course, other camera
sensing modalities could be used to further enhance approaches. An
example includes a depth camera/sensor designed to determine the differ-
ence between the camera and the subject of an image which could offer
further contextual information. Specifically, depth sensors are often used in
combination with software algorithms to determine the outline of the
subject (a person or other object) and apply a blur effect to the rest of the
image. Such an approach in the context of free-living fall risk assessment
mayhelp determine a person’s adaptive gait to near anddistant trip hazards.
However, commercially available ergonomic glasses fitted with depth-
sensing cameras are currently unavailable but related wearable concepts
incorporating the technology have been proposed29.

Here, the suggested approachmay be beneficial for clinical groups due
to the potential usability of the glasses e.g., (i) prescription lenses can be
included, and (ii) unobtrusiveness due to routine wearability compared to
cameras mounted in other places. Furthermore, contemporary glasses with
a smartphone app may reduce patient burden and minimize the risk of
injury to patients e.g., if someone fellwith aGoPromountedon their chest, it
would likely result in an injury to the sternum. The usability and safety
considerations of wearable video glasses highlight their potential for prac-
tical application and wider clinical/medical implementations. In contrast,

other generic camera-based technology (e.g., GoPro)may not be deemed fit
for purpose due to their influence to increase social presence and social
stigma,which could create social and surveillance discomfort for thewearer.
Importantly, attempts to reduce any discomfort may result in behavior
modification or abandoning the device30, negating the benefit of a remote,
real-world patient assessment of fall risk.

Of course, cameras have been examined before in life-logging research
to understand chronic disease self-management31. Previously, life-logging
may have been perceived as a technical exercise rather than fulfilling an
unmet clinic need, due to the use of readily identifiable cameras andmanual
processes needed over a prolonged period to gather, (patient) self-label and
analyze data from daily events32. Thankfully, hardware has shrunk to be
unobtrusive/discrete for continuous deployment (e.g., glasses) while soft-
ware (e.g., Yolov8) and resources (e.g., COCO) are accessible and powerful
to make laborious concepts5 more automated.

Although the patient-centric issue of technology interaction and
privacy may be overcome with contemporary approaches, what about the
bystander? Previously, life-logging human activity recognition (sitting,
standing, walking) with an accelerometer and camera glasses was achieved
while upholding bystander privacy via CNNs to uphold bystander
annonymisation33. However, that work achieved a 70% accuracy only and
was further limited with the adoption of a conservative a priori methodol-
ogy, limiting the range of obfuscating in any environment. Interestingly,
previous life-logging research has found that bystanders were generally
accepting of the life-logging (i.e., camera) technology and life-logging (i.e.,
patients) engaged inpropriety behaviors tohelpprotect by stander privacy34.
Accordingly, it could be assumed that for medical purposes use of camera-
based technology to better inform fall risk could (i) be acceptable from
bystanders e.g., friends and family in the home and (ii) empower the patient
to remove cameras when s/he deems it necessary.

The pilot study to highlight the use of the suggested model was con-
ducted with a small number of participants (n = 10) and all participants
were testedwithin amodern university environment during daylight hours,
whichmay limit the generalizability of the (AI-based)methodology to other
settings and time of day. Regardless, the proposed approach and findings
showcase the use of wearable cameras to inform IMU gait beyond lab
settings, but there ismuchwork to bedone. Future research in this areamust
explore additional computer vision-based algorithms such as the inclusion
of a sensitivity category (to complement the3 suggested categories presented
here). Specifically, locations pertaining to e.g., bathrooms, religious settings,
and playgrounds are important to consider. One possible approach for a
sensitivity category includes gathering original datasets from within the
home and wider community to train existing models (e.g., YoloV8),
obfuscating sensitive locations.

An unused feature of the wearable glasses presented here is eye-
tracking. Harnessing the video data to inform IMU gait is a step forward for
free-living fall risk assessment. Yet, the additional insight pertaining to
participant gaze and specifically where s/he is looking during habitual
walking would be a giant step forward for fall risk assessment. That is
especially true in PD where the combined IMU and video-based eye-
tracking glasses would provide a harmonious and holistic approach to
provide a comprehensive understanding of vision and gait impairment
pertaining to underlying mechanistic limitations35. For example, the refer-
enced study draws attention to reduced saccade latencies and longerfixation
durations during gait in PDwhich could be better explored in relation to fall
risk during habitual data capture.

Although discussed within the context of fall risk with PD highlighted
throughout, wearables (incorporating various sensing modalities including
a camera) with AI-based CV contextualization (to automatically identify a
range of objects, and items of interest to specific patient groups) could
inform medical practice and routine care across a range of clinical cohorts.
Hypothetical examples include (i) chronic obstructive pulmonary disease
(COPD) and a better understanding of the environment influencing
symptoms i.e., identification of air freshener plug-ins, weather, industrial
vehicle exhaust36; (ii) obesity and automated food diary logging37 or; (iii)

Table 2 | Gait characteristics on different terrains

Step
time (s)

Stance
time (s)

Stride
time (s)

Swing
time (s)

Step
length (m)

Flat-level

Mean 0.591 0.745 1.186 0.439 1.314

Asymmetry 0.025 0.030 0.023 0.029 0.051

Std. deviation 0.019 0.022 0.005 0.019 0.157

Stair ascent

Mean 0.615 0.775 1.230 0.454 1.075

Asymmetry 0.054 0.052 0.011 0.029 0.210

Std. deviation 0.076 0.081 0.111 0.053 0.078
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depression, where e.g., social context, activity, and location could influence
symptoms38. Inter- and multidisciplinary fields need to ensure medicine is
best equipped to comprehensively understand a person’s/patient’s living
environment to inform better treatment.

Conclusion
Apprehension often surrounds the use of video cameras in the home to
capture patient data, fuelled by privacy and ethical concerns. However,
wearable cameras could better inform free-living patient assessment, pro-
viding extrinsic (environmental) factors. Here, extrinsic video data from
wearable glasseswereused tobetter inform intrinsic digital bio-markers (i.e.,
IMU gait characteristics). Off-the-shield AI methods/resources could be
harnessed to derive contemporary deep learning models to obscure/blur
sensitive information and preserve contextual information necessary to
better understand habitual patient data. In this perspective, AI was used to
uphold privacy in video data to better understand abnormal gait indicative
of elevated fall risk e.g., abnormal variability and asymmetry. Generally,
video and AI have the potential to significantly improve the accuracy of
habitual patient assessment while ensuring privacy and should be con-
sidered broadly for implementation across the field of digital medicine.

Data availability
Correspondence and requests for video and IMU data should be addressed
to Alan Godfrey. Due to the nature of the data (raw video), access is limited
and must be discussed on a per-project/access basis.

Code availability
Please refer to https://github.com/JasonMooreNorthumbria for more
information.
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