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Progress in sequencing technologies and clinical experiments has revolutionized immunotherapy on
solid and hematologic malignancies. However, the benefits of immunotherapy are limited to specific
patient subsets, posing challenges for broader application. To improve its effectiveness, identifying
biomarkers that can predict patient response is crucial. Machine learning (ML) play a pivotal role in
harnessing multi-omic cancer datasets and unlocking new insights into immunotherapy. This review
provides an overview of cutting-edge ML models applied in omics data for immunotherapy analysis,
including immunotherapy response prediction and immunotherapy-relevant tumormicroenvironment
identification. We elucidate how ML leverages diverse data types to identify significant biomarkers,
enhance our understanding of immunotherapy mechanisms, and optimize decision-making process.
Additionally, we discuss current limitations and challenges of ML in this rapidly evolving field. Finally,
we outline future directions aimed at overcoming these barriers and improving the efficiency of ML in
immunotherapy research.

The immune system is crucial in monitoring cancer and identifying
neoantigens produced by tumor cells that can trigger cellular immune
responses1. But tumor cells have developed strategies to evade immune
surveillance2. To address this, cancer immunotherapy was developed,
aiming to stimulate the immune system or create lab-engineered sub-
stances that restore the ability to recognize and eliminate cancer cells.
Immunotherapy options include immune checkpoint inhibitors (ICI),
cancer vaccines, adoptive cellular therapies (ACT), cytokine, tumor-
infecting viruses, targeted antibodies, and adjuvants. While immu-
notherapy has significantly improved patient outcomes, its effective-
ness is confined to a small and unpredictable subset of patients within a
given cancer diagnosis3, and immune-related adverse events (irAEs)
may occur4. Therefore, precise identification of a patient’s tumor
microenvironment (TME) and of the ability to predict its immu-
notherapy response are essential for enhancing overall immunotherapy
effectiveness.

Current prediction of immunotherapy response relies on biomarkers
such as immune-cell infiltration5, tumormutational burden (TMB)6, PD-1/
PD-L1 expression7, CTLA-4 expression8, mismatch repair (MMR) and
microsatellite instability (MSI)9. However, existing clinical practices based
on simplistic threshold-based methods lack accuracy. In this context,
machine learning (ML) technologies have emerged as valuable tools,

offering the potential to refine the precision of immunotherapy response
prediction. By harnessing sophisticated algorithms and analyzing extensive
datasets, ML models can discern intricate patterns and interactions among
variousmolecular biomarkers, providing amore nuanced understanding of
the complex immunotherapy tumor microenvironment. These state-of-
the-artMLmodels not only capture subtle relationships between individual
biomarkers but also adapt to the dynamic nature of immune responses,
offering a more comprehensive and adaptable approach than traditional
threshold-based methods. Indeed, ML-based approaches have shown
capacity in variousoncology applications, including earlydiagnosis10, cancer
type classification11, the complexity and plasticity of TME and immune
system deciphering12, response and prognosis prediction13, and potential
neoantigen detection14.

This review summarizes the application of ML in molecular analyses
related to immunotherapy, including prediction of immunotherapy
responses, identification of response-associated biomarkers, and analysis of
the TME (Fig. 1). It also exploresML approaches developed to optimize the
identification of crucial neoantigens in personalized immunotherapy.
Additionally, this review discusses the challenges and opportunities
encountered in current research endeavors, aiming to enhance under-
standing and recognition of the significant contribution ofML in advancing
cancer immunotherapy.
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Employing machine learning for predicting immu-
notherapy response and identifying biomarkers asso-
ciated with response
While immunotherapy has brought significant benefits to cancer treat-
ments, its effectiveness remains confined to a small andunpredictable subset
of patients with a given cancer diagnosis15. Moreover, the treatment process
often imposes substantial financial, physical and mental care burden on
patients. Acknowledging these challenges, researchers are increasingly
directing their efforts toward identifying valuable molecular biomarkers
capable of predicting immunotherapy outcomes and improving its overall
utility16. Considering the complex omics space, conducting extensive sam-
pling through experimental methods is impractical. Consequently, in silico
approaches, including those employing ML algorithms, provide an
opportunity to address this critical need.

Tumors are caused by the accumulation of various genetic variations
that regulate the way cells growth and multiplication17–19. In light of this,
recent studies have turned on ML models to predict a patient’s response to
immunotherapy by leveraging his genomic biomarkers and clinical features
(Table 1, Fig. 2). Somatic mutations, including single-nucleotide variants
(SNVs), insertions, and deletions, provide direct evidence documenting the

driving forces behind tumorigenesis and tumor cell proliferation20. These
mutations have demonstrated their ability in predicting immunotherapy
responses. For example, Peng et al.21 used SNV data and convolutional
neural network (CNN) model to classify anti-PD-1/PD-L1 therapy
response from metastatic non-small-cell lung cancer (NSCLC) patients.
Nonsynonymousmutations can alter transcription, subsequently impacting
pathway activations and gene functions. Leveraging the distinct changes in
gene expression levels, particularly in oncogenes and tumor suppressor
genes, ML models can subtly predict immunotherapy response. According
to our survey, RNA-based features, including bulk RNA sequencing22–31,
single cell RNA sequencing (scRNA-seq)32,33, flow cytometry34, and circu-
lating cell-freemicroRNA sequencing35,36, have beenwidely implemented in
immunotherapy response prediction. Furthermore, the availability of
numerous accessible RNA-seq datasets, coupled with the outstanding per-
formance of models utilizing RNA-seq data, has been instrumental in
advancing research. From RNA-seq data, many advanced features can be
extracted from bioinformatic or ML tools to better characterize tumor
genomic profiles, such as tumor-infiltrating lymphocytes (TILs)32,33, path-
way activity28 and cell-cell communication23. It is worth noting that some
studies have leveraged these features to extract high-level features, thereby
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Fig. 1 | Genomic landscape of machine learning in tumor immunotherapy. We
provide an overview of machine learning methodologies applicable to different
aspects of tumor immunotherapy including prediction of immunotherapy
responses, identification of response-associated biomarkers, and analysis of the
TME. ML machine learning, DEG differentially expressed gene, RFE recursive

feature elimination, UAF univariate association filtering, LASSO the least absolute
shrinkage and selection operator, LR logistic regression, SVM support vector
machine, RF random forest, FCNN fully-connected neural network, CNN con-
volutional neural network, RNN recurrent neural network, PFS progression-free
survival, TME tumor microenvironment.
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enhancing predictive performance. For instance,Wang et al.22 utilizedTMB
information based on SNV data, gene expression information, and support
vector machines-recursive feature elimination (SVM-RFE) algorithm to
select gene features. Subsequently, they used least absolute shrinkage and
selection operator (LASSO) logistic regression classifier to predict responses
of urothelial carcinoma patients treated with the PD-L1 inhibitor atzoli-
zumab using selected gene features. Their approach achieved an AUC of
93% in the test dataset. Additionally, they utilized generalized linearmodels
(GLMs) to derive a TMB-related LASSO score (TLS) from the LASSO
regression results. The TLS can serve as an effective indicator for immu-
notherapy response prediction like TMB. Lapuente-Santana et al.23

employed regularized multi-task linear regression (RMTLR) to identify
interpretable biomarkers in relation to immune cells markers, intracellular
networks, and intercellular networks for predicting immunotherapy
response. On the other hand, Zeng et al.28 implemented a joint nonnegative
matrix factorization (NMF) to decompose gene expression matrix, mole-
cular phenotype matrix, and immunotherapy response matrix. This
approach aims to identify pivotal genes correlated with immunotherapy
response. Similar to RNA-seq data, Shang et al.37 and Filipski et al.38 have
successfully employed DNA methylation profiles (CpG sites) for ICI
response prediction inNSCLC37 andmetastaticmelanoma38 patients. Apart
from these conventional biomarkers, clinical information39 and Raman
spectroscopy data40 have shown promise as reliable biomarkers of ICI
response prediction. In a separate study, Sidhom et al.41 integrated human
leukocyte antigen (HLA) and T cell receptor (TCR) sequencing to predict
ICI response inmelanoma. Their approach involved employing amultiple-
instance learningmodel that incorporatedHLA into the featurization of the
TCR sequences to provide a representation of a joint TCR-HLA antigenic
latent space. The contextualization of TCR-HLA was then trained on
multihead attention networks to learn the attention weights, which were
used to predict the final immunotherapy response.

Accompanied by the advancement of sequencing technologies, recent
studies have focused on developing complex ML models incorporating
multi-omics datasets for immunotherapy prediction42–47. Compared to
single omics approaches, the integration ofmultiple omics data can provide
a more comprehensive scope of tumor profile, from the original cause of
tumors (genetic, environmental, or developmental) to the functional
consequences48,49, and consequently leads to improved performance in
immunotherapy response prediction47. In a recent approach50, researchers
integrated RNA-seq data with somatic mutations, copy number alterations
and protein expression alterations to comprehensively investigate various
subcohorts within TME using a sparse hierarchical clustering model. By
employing thismethod, they have successfully identifieddistinct subcohorts
within the TME, each exhibiting unique responses to different cancer
treatments, including immunotherapy. This model holds significant
potential in guiding precise decision-making for combination therapy
strategies. However, integrating and training multi-omics data, usually
accrued from different platforms, is more challenging than training unim-
odal features. Addressing this challenge, a recent study by Vanguri et al.47

developed a dynamic deep attention-based multiple-instance learning
model that integrates radiology, pathology, and multiomics data to predict
the response of NSCLC patients treated with anti-PD-1/PD-L1 blockade.
Comparisons demonstrated that the multimodal approach, integrating
these features, enables higher accuracy than unimodal approach in the
prediction of immunotherapy response. Notably, their multimodal model
can also handle redundant information and missing values in combination
with data from different modalities. In addition to ICI prediction, ML
models have been utilized to predict the chimeric antigen receptor (CAR) T
therapy response. Daniels et al.51 developed a DL model to utilize signaling
motifs to evaluate the antitumor efficacy of a given CAR. Their DL fra-
mework takes the motif sequence of the CAR as the input and propagated
the encoded sequence through two CNN layers, a long short-termmemory
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Multimodal representation learning
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Fig. 2 | An overview of machine learning techniques for immunotherapy
response prediction.Advancements in sequencing technologies have paved theway
for exploring diverse approaches in immunotherapy response prediction. To
improve efficiency and mitigate overfitting, dimensionality reduction and feature
selection techniques are performed prior to model training. Multimodal models

offer the flexibility to train on data with multiple modalities. These models first
utilize sub-models to extract unimodal features from each data modality. Subse-
quently, a data fusion step transforms each extracted unimodal feature into a
compact multimodal representation. Finally, a classification sub-model is imple-
mented to infer response based on the integrated features.
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(LSTM) network layer and seven fully connected neural network (FCNN)
layers. This approach enables directly prediction of tumor stemness and
cytotoxicity based on the motif combinations designed for CAR T cells,
thereby guiding the design of the engineering of CAR signaling domains in
CAR T therapies.

In our survey, to improve the computational efficiency and reduce
noise and complexity of ML models, most studies utilized statistical or ML
algorithms, or both to identify a subset of gene markers for model training.
ML techniques for gene selection can handle high-dimensional data and
identify patterns that may not be apparent through manual inspection or
traditional analyses. These ML approaches, including LASSO29, random
forest (RF)21,40, SVM-RFE22,26, NMF28, and logistic regression (LR)27, auto-
matically assess the importance of each gene in relation to the immu-
notherapy response prediction. Using these extracted biomarkers, various
algorithms, including LASSO, LR, RF, XGBoost, naive Bayes (NB), SVM,
decision tree (DT) and NN, have demonstrated their ability to accurately
predict immunotherapy responses. By focusing on this refined set of fea-
tures, researchers can also enhance the interpretability and generalizability
of themodels, fostering amore effective integrationofmachine learning into
the complex landscape of immunotherapy research.

Employing machine learning as a supplementary tool
for the identification of biomarkers in the tumor
microenvironment for immunotherapy
The TME refers to the intricate cellular landscape surrounding tumors,
including immune cells, cancer cells, stroma cells, the inflammatory cyto-
kines and chemokines,metabolites, acidity, cytokines andhypoxia52. It plays
a critical role in supporting tumorigenesis and progression, and immu-
notherapy effectiveness53,54. Extensive studies have elucidated the complex
interactions within TME, driving functions like angiogenesis55, metastasis56

and immunosuppression57. Although obtaining accurate datasets for TME
factors such as hypoxia and low pH poses challenges, the integration of
tumor omics data and the implementation of MLmodels have enabled the
identification of TME characteristics directly or indirectly associated with
cancer immunotherapy (Table 2, Fig. 3).

Microsatellite instability and tumor mutational burden
MSI and TMB are FDA-approved biomarkers that predict immu-
notherapy response. While not directly related to the TME, MSI and
TMB reflect genetic alterations occurring within tumor cells. MSI
indicates microsatellite length polymorphism due to mismatch repair
deficiency, while TMB represents the number of somatic mutations per
million bases in the exome region58. Tumors with higher MSI or TMB
tend to produce neoantigens recognized by the immune system, ren-
dering themmore responsive to immunotherapy. Given the high cost of
large-scale genomic sequencing, usingMLmodels to assessMSI or TMB
based on a panel with limited genes can offer a more cost-effective
approach. Zhou et al.59 successfully identified a 54-microsatellite-site
biomarker using an RF classifier, allowing accurate classification of
microsatellite instability-high (MSI-H) and microsatellite stable (MSS)
tumors. In a similar vein, Lu et al.60 implemented LASSO regression to
identify a gene-targeted panel capable of accurately assessing TMB
levels. Recently, many deep learning (DL) models have been developed
to use whole-slide images (WSIs) to predict MSI61,62 and TMB status63,64,
which enables a more cost-effective means of predicting immunother-
apy response without relying on genomic data.

Cancer stem-like cell
Cancer stem-like cells (CSCs) are a small population of cancer cells that can
reconstitute and propagate tumors. They have been implicated in metas-
tasis, relapse, and resistance to cancer therapies65,66. Numerous studies have
focusedon identifying andcategorizingCSCswithin tumor cell populations.
Researchers such as Wei et al.67 and Wang et al.68 employed LASSO
regression to identify stemness features in tumor samples using RNA-seq
data. These identified stemness features have shown a strong correlation

with the prognosis of immunotherapy and can serve as valuable biomarkers
for predicting immunotherapy response.

Cancer-associated fibroblast
Cancer-associatedfibroblasts (CAFs), also a critical componentofTME,can
modulate cancermetastasis through signaling interactionswith cancer cells.
They can also influence leukocyte infiltration, drug access and therapy
responses69. To identifyCAF related genes,Wang et al.70 appliedMLmodels
to classify tumor samples as either CAF-enriched (CAF+) or CAF-absent
(CAF−). Their analysis revealed that theCAF− subtypewas associatedwith
longer overall survival and higher immune cell infiltration compared to the
CAF+ subtype. These findings provide valuable insights for predicting the
response to immunotherapy. Similarly, Tian et al.71 used LASSO regression
to obtain six CAF-related genes that can be used to predict the response to
anti-PD-1 therapy in melanoma patients. These studies demonstrate the
utility of ML models in elucidating the role of CAFs and their associated
genes in immunotherapy response prediction.

Tumor-infiltrating lymphocyte
TILs are highly specific immunological reactive lymphocytic cell popu-
lations that can recognize andkill tumor cells72. Their presence is crucial in
mediating response to cancer therapy, and a higher abundance of TILs is
often associated with better clinical outcomes after immunotherapy73–75.
Currently, ML models have been broadly implemented to quantify var-
ious TIL-based biomarkers for immunotherapy response prediction.
These biomarkers encompass RNA-seq data and somatic mutation
features76, including protein-protein interaction (PPI) networks77, tumor-
infiltrating immune cell-associated lncRNAs78,79, T cell signatures80,81, B
cell signatures82 and immunophenotype-related DNA methylation sig-
natures (iPMS)83. A general approach adopted in these models involves
clustering tumor samples based on the tumor immune microenviron-
ment, such as immunoactivity, disease stages, and survival outcomes. ML
models are then employed to extract significant biomarkers for cluster
classification. Subsequently, another ML model was then utilized for
predicting immunotherapy response to validate the selected biomarkers
for each cluster. Typically, TILs comprise both mononuclear and poly-
morphonuclear immune cells, includingT cells, B cells, natural killer cells,
macrophages, neutrophils, dendritic cells, mast cells, eosinophils, and
basophils. Accurately assessing the abundance of each immune cell type
within tumor tissues is essential for treatment decision-making and
evaluating drug response. To this end,MLmodels have been developed to
automatically estimate the abundance of these immune cells82,84–87,
enabling precise deconvolution. In a recent study, Fernández et al.84 used
their deconvolved proportions of 22 immune cells as the input feature,
which could accurately predict the response of patients treated with ICI
therapy.

Metabolism
Metabolism refers to the changes observed in cellularmetabolic pathways in
tumor cells. Typically, oncogenic transformation can induce cancer cells to
adopt a well-characterized metabolic phenotype that can profoundly
influence the TME88. Increasing evidence has highlighted the role of
metabolism in tumor immunosuppressive responses and resistance to
immunotherapy89,90. For instance, tumor cells can alter metabolism by
increasing glucose uptake and fermentation of glucose to lactate, promoting
tumor growth, survival, proliferation, and long-term maintenance91. To
improve immunotherapy efficacy, researchers have proposed employing
ML models to identify metabolic TME subtype that respond favorably to
immunotherapy. Ge et al.92 conducted an analysis of lipidmetabolism genes
and immune-related genes of lung adenocarcinoma (LUAD) patients and
identified two distinct subtypes, namely “metabolism phenotype” and
“immunoactive phenotype”, using Cox regression. The “metabolism sub-
type” exhibited reduced sensitivity and poorer prognosis to immunother-
apy. The identifiedmetabolic features hold promise as potential biomarkers
to predict immunotherapy response.
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Neoantigen
Neoantigens are novel peptides that form in tumor cells due to certain
somatic mutations. Neoantigens have the potential to be recognized by
immune cells, triggering immune responses against tumor cells93,94.
Immunogenic neoantigens have been identified as crucial for developing

personalized neoantigen-targeted cancer immunotherapies95,96, including
vaccines and adoptiveT-cell therapies94.However, theprocess of neoantigen
discovery and validation remains a daunting question that must be
addressed before neoantigen-based immunotherapies can become promi-
nent in cancer treatment97. For example, many tumor peptides lack
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• CAF enrichment classification
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Tumor cells
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• MSI prediction
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Fig. 3 | Machine learning offers promising strategies for evaluating tumor
microenvironment. Various machine learning models have been developed to
effectively identify biomarkers and comprehend the relationship between tumor
microenvironment and immunotherapy, including risk, development and treat-
ment. Thesemodels aim to improve the efficiency of immunotherapies by providing

valuable insights and understanding. ML machine learning, TME tumor micro-
environment, TIL tumor-infiltrating lymphocytes, CAF cancer-associated fibro-
blast, CSC cancer stem-like cell, MSI microsatellite instability, TMB tumor
mutational burden.
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immunogenicity, highlighting the importance and complexity of accurately
identifying which neoantigens can effectively stimulate immune cell
responses.

Recently, novel pipelines and state-of-the-artMLalgorithmshave been
developed to identify T-cell neoantigens through major histocompatibility
complex (MHC) class I and II presentations (Table 3, Fig. 4). Pipelines
utilize genomics data, usually derived from whole-genome sequencing
(WGS) or whole-exome sequencing (WES), obtained from tumor samples
to infer themutated peptides based on the somatic non-synonymous SNVs.
To facilitate neoantigen prediction, researchers have conducted The
Immune Epitope Database (IEDB), which provides experimentally char-
acterized T cell epitopes and a comprehensive set of MHC-binding and
MHC eluted ligand (EL) data for humans98. These resources significantly
enhance the convenience and accuracy of neoantigen prediction. Based on
our review, the majority of ML models focus on identifying class I MHC
alleles, which have the ability to bind peptides derived from intracellular
proteins andpresent themon the cell surface toCD8+ Tcells. Some studies
employMLmodels to predict neoantigens by estimating the binding affinity
between a given mutated peptide and a class I MHC molecule, known as
peptide-MHC (pMHC) binding affinity99–106. These models can be cate-
gorized into two groups based on their output. The first group predicts a
score representing the relative binding affinity between a peptide and
MHC99–103. Among these models, NetMHC99 and NetMHCpan100 used the
FCNN framework. While NetMHC was trained solely on binding affinity
datasets and can predict peptide binding to specific MHC alleles,
NetMHCpan integrated information from both binding affinity data and

mass spectrometry (MS) EL data, allowing it to predict binding for a wider
range ofMHCmolecules with high accuracy. Different fromNetMHC and
NetMHCpan, MHCflurry101 added two one-dimensional convolutional
layers before fully connected layers, resulting in higher accuracy. EDGE102,
on the other hand, used three peptide-extrinsic features (RNA abundance,
flanking sequence, per-gene coefficients) captured from MS data as the
input, propagating them into three locally connected layers respectively
before merging them into fully connected layers for binding affinity pre-
diction. This approach extracts more information than using a single input,
resulting in higher positive predictive values (PPV) compared to bench-
markedmodels. Anothermodel,MHCRoBERTa103, built a transfer learning
model by pre-training on the UniprotKB/Swiss-Prot dataset and fine-
tuning on IEDB dataset. This strategy allows the model to maintain high
accuracy and efficiency simultaneously. The second formof binding affinity
prediction in thesemodels involvesproviding abinary classification result to
determine whether a given peptide is a binder104–106. In most studies, a
threshold of <500 nMof the IC50 value is used to define candidate peptides
that are likely to bind to MHC. Notably, to improve performance,
ForestMHC105 considered six different sequence-related features and their
combinations as input features to select the optimal feature subset. Similarly,
Anthem106 collected five published sequence scoring functions that can
calculate a binding probability based on sequence information. These
scoring functions, along with their combinations, were used as input fea-
tures to select the optimal subset of scoring functions for binder classifica-
tion. Considering the distinct advantages and limitations of each binding
affinity model, Gartner et al.107 built a random forest-based model that

Table 3 | Application of machine learning technologies in neoantigen and immunogenicity prediction

Model Task ML Model Encoding method MHC class Ref

NetMHC-4.0 Predict binding affinity NN BLOSUM class I 99

NetMHCpan-4.0 Predict binding affinity NN BLOSUM class I 100

MHCflurry Predict binding affinity A deep learning model includes locally connected
1D-CNN and FCNN

BLOSUM class I 101

EDGE Predict binding affinity NN One-hot class I 102

MHCRoBERTa Predict binding affinity BPE Byte pair class I 103

Vang et al. Predict binding affinity CNN Skip-gram class I 104

ForestMHC Predict binding affinity RF NA class I 105

Anthem Predict binding affinity NB, XGBoost, LR, NN, SVM, DT, RF BLOSUM class I 106

Gartner et al. Rank binding affinity RF NA class I 107

NN-align Predict binding affinity NN BLOSUM class II 110

MixMHC2pred Predict binding affinity Linear regression BLOSUM class II 111

NeonMHC2 Predict binding affinity CNN One-hot class II 112

NetMHCIIpan Predict binding affinity NN BLOSUM class II 113

MARIA Predict binding affinity LSTM One-hot class II 114

Neopepsee Predict immunogenicity LNB, GNB, RF, SVM NA class I 115

DeepNetBim Predict immunogenicity A deep learning model includes CNN and attention
module

BLOSUM class I 116

DeepHLApan Predict immunogenicity BiGRU + attention One-hot class I 117

Seq2Neo Predict immunogenicity CNN One-hot class I 118

TCIA Predict cancer immunogenicity RF NA class I, class II, non-
classical

120

Besser et al. Predict CD8+ T cell response RF NA class I 121

iTTCA-Hybrid Predict CD8+ T cell response SVM, RF NA class I 123

DLpTCR Predict TCR-pMHC interaction A multimodal model based on FCNN, LeNet-5,
ResNet-20

One-hot, PCA, PCP class I 124

pMTnet Predict TCR-pMHC interaction AE+ LSTM+NN BLOSUM class I 125

NN neural network, BPE byte pair encoding,CNN convolutional neural network, FCNN fully connected neural network, RF random forest, NA not applicable,NB naïve Bayes, LR logistic regression, SVM
support vectormachines,DTdecision tree, LSTM long short-termmemory,LNB locallyweighted naïveBayes,GNBGaussian naïveBayes,BiGRUbidirectionalGatedRecurrentUnit,pMHCpeptide-MHC,
PCA principal component analysis, PCP physicochemical properties, AE autoencoder.
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integrates known class I candidate human tumor neoantigens predicted by
othermodels and next-generation sequencing (NGS) data from individuals
with metastatic cancers. This model can rank the candidate neoantigens,
providing a ranked list that can serve as therapeutic targets and facilitate
studies aimed at developing more effective immunotherapies. Recently,
increasing evidence indicates that CD4+T cells can recognize cancer-
specific antigens and control tumor growth. As a result, MHC class II
neoantigen prediction has become important in immunotherapies like
vaccine design and targeted therapy development. However, unlike MHC
class Imolecules that are highly specific and bind a limited set of peptides of
a narrow length distribution108, MHC class II molecules are highly poly-
morphic and the size of thepeptidespresentedarepromiscuous109,making it
more challenging for neoantigen prediction. In response to this challenge,
several models have been established to predict the binding affinity of
pMHC class II complexes110–114. Compared with class I binding affinity
prediction models, the MHC class II prediction models were generally
trained on more complicated datasets, such as the IEDB MHC class II cell
surface receptor (IEDB MHC-DR) restricted peptide-binding dataset. In
particular, MHC class II prediction models need to consider longer or even
variable peptide lengths as their inputs.

Typically, identifying binding affinity between MHC and peptides
alone is insufficient for accurate neoantigen predictions with high con-
fidence. To overcome the limitation, some studies have focusedon assessing
the immunogenicity of the predicted binding molecules115–118. Immuno-
genicity refers to the ability of protein products to provoke an immune
response, and it depends on several factors, including protein expression,
peptide-MHC binding affinity and stability, peptide competition for MHC

binding, and more94,119. Among these models, DeepHLApan117 designed a
multi-task neural network model consisting of three layers of bidirectional
Gated Recurrent Unit (BiGRU) with an attention layer. This model can
simultaneouslypredict thebinding affinity and the immunogenicity. Similar
toDeepHLApan,DeepNetBim116 used aCNNmodelwith an attention layer
to predict binding affinity and binary immunogenic categories. In com-
parison to DeepHLApan, DeepNetBim incorporated an additional layer to
merge the two independent outputs together, namely the binding affinity
and the binary immunogenic category, in order to calibrate the final
immunogenicity prediction. Seq2Neo118 took a different approach by
developing an end-to-end software that directly utilize raw sequencing data
(WES/WGS, RNA) in FASTQ, SAM and BAM formats to predict the
immunogenicity directly through a CNN-based model. In contrast, Char-
oentong et al.120 did not focus ondeveloping a state-of-the-artDLmodel like
most approaches. Instead, they designed a comprehensive biomarker con-
sisting of 127 features, including somatic mutation features, class-I and
class-II MHCs, immune inhibitory and stimulatory genes, adaptive
immunity cells and innate immunity cells from integrated WES, RNA-seq
and clinical data. Their results demonstrated that proper feature extraction
could achieve a high accuracy for tumor immunogenicity prediction using
only an RF classifier. In addition to assessing the immunogenicity of the
predicted binding molecules, some studies have explored the integration of
TCR sequence to predict the likelihood of peptide-TCR interaction for
neoantigen prediction. Besser et al.121 proposed using CD8+T cell
responses as the task of their models to detect neoantigens. To accomplish
this, they employed an additional step in theirMLmodels, training themon
the Tantigen dataset122, a comprehensive database of tumor T cell antigens.

CD4+ T cell
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CD8+ T cell
(cytotoxic)

APC Tumor cell

C
D
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C
D

8
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mutation

Neoantigen
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Fig. 4 | Identification of tumor neoantigens using machine learning models. The
identification of tumor neoantigens involves the elution of MHC epitopes from
tumor cells and the extraction of somatic mutations from sequencing data. Machine
learning algorithms are then processed tomodel the binding affinity betweenmutant
peptides and MHC proteins, allowing for the prediction of candidate neoantigens.
To improve performance, some models incorporate TCR sequencing data to screen

for candidate neoantigens with high proportions that interact with TCR and induce
T cell responses.MHCmajor histocompatibility complex, TCRT-cell receptor, APC
antigen-presenting cell, pMHC peptide-MHC, WES whole-exome sequencing,
WGS whole-genome sequencing, LC/MS liquid chromatography/mass
spectrometry.
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Through this step, theywere able to learn the changes in key parameters and
features associated with T cell response, enabling them to predict whether a
givenMHCclass I peptidewas positive for inducing CD8+T cell response.
Likewise, iTTCA-Hybrid123 utilized the tumor T cell antigen dataset from
Tantigen122 and non-tumor T cell antigen dataset from IEDB98 to train an
ensemblemodel capable of classifying tumor andnon-tumorTcell antigens.
More recently, DLpTCR124 and pMTnet125 suggested that assessing the
propensity of CD8+TCR to recognize the pMHC complex is crucial for
neoantigen prediction, as most in silico predicted antigen peptides fail to
elicit immune responses in vivo. Both models take peptide and TCR
sequences as input data, and their output is a binary classificationofwhether
the TCR-pMHC has an interaction. To achieve better performance,
DLpTCR124 designed an ensemble strategy based on three deep learning
models: FCNN, LeNet-5 andResNet.On the other hand, pMTnet125 utilized
an autoencoder and an LSTMnetwork to obtain the hidden encoding of the
TCR sequence and peptide sequence, respectively. These encodings were
then fed into an FCNN classifier for final prediction.

It is worth noting that peptide sequence encoding plays a crucial role in
neoantigenprediction.Two commonly employedmethods for encoding are
one-hot encoding and BLOcks SUbstitution Matrix (BLOSUM) encoding
(Table 3).Among them,BLOSUMismore prevalent as it offers insights into
the homologies between protein sequences. In addition, personalized
sequencing encoding techniques utilizing ML algorithms have also gained
popularity. These include byte pair encoding103, skip-gram encoding104,
principal component analysis (PCA) encoding124 and physicochemical
properties (PCP) encoding124.

In conclusion,MLhas emerged as a promising approach for evaluating
TME, identifying TME related biomarkers and unraveling the intricate
relationship between TME and immunotherapy. The biomarkers derived
fromMLapproaches hold great potential for predicting clinical outcomes of
immunotherapy and enhancing personalized immunotherapy strategies,
thereby facilitating the advancement and wider application of immu-
notherapy in cancer treatment.

Challenges and opportunities
Despite the extensive application of ML in immunotherapy studies, several
challenges remain to be addressed. These challenges pertain to gaining a
mechanistic understanding of how immunotherapies target and eradicate
tumor cells126 and the neoantigens that can be recognized by immune
cells127. Whether and how ML models prompt the progression of immu-
notherapy will depend on how these challenges, as discussed below, aremet
in the future.

Insufficient amount of available data
Immunotherapy has emerged as a promising cancer treatment, driving
numerous clinical trials worldwide128. Nevertheless, current clinical trials
have primarily focused on PD-1/PD-L1 therapy, result in limited data for
other treatment like CTLA-4 and CAR T therapy (Table 1). This data
scarcity poses a significant barrier for developing ML models, particularly
DL models that require substantial training data to avoid overfitting and
enhance model performance129. To mitigate the limitations, the generation
of pseudo databases has emerged as a potential solution. State-of-the-art
generative models, such as generative adversarial network (GAN)130 and
diffusion models131, have shown promise in computer vision and can gen-
erate synthetic data to supplement training datasets, mitigating overfitting
issues. Likewise, Sové et al.132 developed a model using an ML approach to
capture interpatient diversity in clinical trials, allowing the simulation of
virtual patients. By leveraging these virtual patients, it becomes possible to
mimic a virtual clinical trial scenario to quantitatively assess the efficacy of
ICI treatments in a controlled environment.

Multi-omics data integration and analysis
The advent of multi-omics technologies has revolutionized our under-
standing of the biological mechanisms of driving immunotherapy. How-
ever, analyzing these large multi-omics data, particularly those from single-

cell-based133 and spatial-based134 technologies, has brought new computa-
tional challenges. One challenge is the batch effects, resulting from diverse
platforms used for data generation. To ensure accurate downstream ana-
lyses, removing platform-specific noise is crucial. Recently, ML models,
particularly joint dimension reduction algorithms such as negative matrix
factorization (NMF), PCA, singular value decomposition (SVD), canonical
correlation analysis (CCA), have emerged as powerful tools for encoding
data from diverse platforms into a shared latent space, thereby enabling
effective batch effect removal135. Additionally, the training data often exhibit
distinct statistical modalities. To tackle this challenge, multimodal learning
with specialized modelling strategies has gained attention for integrating
diverse data modalities, such as medical imaging and genomics41,47. By
harnessing the strengths of multiple modalities, multimodal learning
models offer the potential to address immunotherapy-related questions.

Meta-analysis
In the field of immunotherapy response prediction, the definitions of
“response” vary across studies. For example, Vanguri et al.47 and Chowell
et al.42 employedResponse EvaluationCriteria in Solid Tumors (RECIST)136

as their criterion for defining response, whereas Filipski et al.38 utilized
survival (definedas the time fromstart of ICI treatment todateof decease) to
characterize response. The disparate use of these distinct criteria under-
scores the considerable variability in how the concept of “response” is
operationalized across studies, posing a challenge to the synthesis of studies
and the establishment of a standardized framework for meta-analysis.
Standardization the definition and harmonization data are necessary to
achieve a consensus on common criteria or thresholds for defining
immunotherapy response.

Neoantigen prediction
With ongoing developments of new algorithms, the field of cancer neoan-
tigen identification holds promise for immunotherapies94. Given the
uniqueness of the neoantigen landscape to each individual, the accurate
targeting of neoantigens establishes a solid foundation for conducting sys-
tematic studies in precision medicine and providing clinical decision sup-
port for cancer immunotherapy. Computational models, especially ML
algorithms, are commonly used for immunogenic neoantigen prediction.
However, comparative studies have revealed that, thus far, none of the
existing studies have achieved accurate identification of immunogenic
neoantigens127. Factors such as tumor heterogeneity, diversity within the
TCR repertoire, and the absence of true labeled data contribute to this
inaccuracy. Future studies should focus on developingmore comprehensive
models integrating both pMHCs and TCR sequencing data to improve
predictive performance of neoantigen identification. It is worth noting that
certain studies have explored targeting tumor-specific gene fusion137 and
MHCgene loss of heterozygosity (LOH)138 to improve immune recognition
in neoantigen identification. Incorporating these factors could augment
neoantigen predictions and contribute to higher accuracy in future studies.

Model generalizability and interpretability
While numerous ML models have been developed for immunotherapy
response prediction, they often struggle to adapt well to unseen data. Their
performance on new data is oftenmoderate or deficient, indicating a lack of
generalizability. Moreover, these models typically employ ML or statistical
approaches to selectmarker genes. However, the selectedmarker genes vary
between studies andmay have limited effectiveness within specific datasets.
To address these challenges, recent studies have employed transfer learning
algorithms for immunotherapy response prediction. By leveraging pre-
trained models and applying them to train on new, similar datasets39, this
approach can enhance the efficiency and robustness139. In addition, the
interpretability of ML models in immunotherapy remains a persistent
concern,ML algorithms often function as black boxes, making it difficult to
understand the decision-making process and the underlying biological
rationale behind their predictions. To improve the generalizability,
researchers are exploring feature insights and interactions through
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explainable AI (XAI) models140. XAI approaches can provide global and
local explanations, enabling a deeper understanding of predictions and
facilitating effective fine-tuning on new data.

Models in handlingcontinual incremental datasetswith real-time
adaptation
In our studies we reviewed, almost all models applied for immunotherapy
analyses are traditional batch learning approaches. These methods utilized
entire datasets simultaneously for training, deploying the trained model for
inference without frequent updates. However, they usually encounter high
retraining cost when adapting to new training data141. With the growing of
clinical and genomics data during the patient treatment, there is a need to
developmodelswith the capacity to conduct incremental datasets and adapt
in real-time to new information. Online learning emerges as a scalable and
efficient approach that learn to continuously updates the model based on
feedback on its decisions in the form of a sequence of examples141–143,
demonstrating premium performance in clinical applications144. This
approach holds the potential to significantly assist clinicians via providing
diagnoses or making management decisions.

Clinical translation
While numerous ML models have been developed for predicting immu-
notherapy outcomes, our review reveals that almost none of these models
have undergone clinical testing. Furthermore, contemporary ML-based
clinical decision support systems, such as IBM Watson Health145 and
Google DeepMind Health146, encounter obstacles hindering the smooth
transition of models from research settings to standard clinical practice.
This discrepancy underscores the critical necessity for rigorous clinical
validation to evaluate the real-world efficacy and reliability of these pre-
dictive models. The complexity of the immune system, the dynamic
nature of immunological responses, the lack of data quality and stan-
dardization, and the absence of highly reliable biomarkers all contribute to
the challenges impacting the performance of these models. Conducting
comprehensive clinical trials and validation studies is crucial to bridging
the gap between theoretical concepts andpractical applications in thefield
of immunotherapy.

Opportunities
Despite the limited number of databases, there are still a growing number of
resources available for immunotherapy research. TheCancerGenomeAtlas
(TCGA)147 is a prevalent curated database containing genomic, epigenomic,
transcriptomic, proteomic and whole slide imaging data across 33 cancer
types. Among them, a significant number of patients were treated with
immunotherapy, and these samples have been widely used in training ML
models as reviewed in this study. In addition, themedical images (MRI, CT,
digital histopathology, etc.) of some of these patients can be downloaded
from The Cancer Imaging Archive (TCIA)148 database, enabling the multi-
modality analysis of immunotherapy studies. Tumor ImmunotherapyGene
Expression Resource (TIGER)149 and ICBatlas150 are comprehensive
resources for integrative analysis of the transcriptome profiles related to
tumor immunology. The Cancer Immunome Atlas120 is a web-accessible
database that characterizes the intratumoral immune landscapes and the
cancer antigenomes of 20 solid cancers. This database has also developed an
immunophenoscore to quantify tumor immunogenicity from genomic
features, which helps inform cancer immunotherapy and facilitate the
development of precision immuno-oncology. To ensure safe cancer treat-
ment,Wang et al.151 developed an irAE data resource consisting of a total of
893 irAEs. They also performed comparative analyses on these irAEs,
making it more intuitive to identify and understand how off-targets of ICIs
are involved in irAEs. In addition to clinical resources, there are datasets
available for other immunotherapy-related collections. IEDB98 and
Tantigen122 provide a comprehensive set of data related to antibody, B andT
cell epitopes for humans, along with tools to assist in the prediction and
analysis of neoantigens for immunotherapy. In summary, these resources
and databases have facilitated the generation of new research tools,

diagnostic techniques, vaccines and therapeutics that were previously used
in immunotherapy studies.

Conclusions
Immunotherapy holds promise for cancer treatment, but the rapid accu-
mulation of immunotherapy-related data has raised challenges. This review
summarizes the use of ML approaches in addressing these challenges.
Conventional ML algorithms (LR, RF, SVM, LASSO, XGBoost) have
demonstrated their versatility in handling various omics datasets, including
mutations, CNVs, methylation profiles, and expression profiles, to predict
immunotherapy responses. ML models also analyze TME to identify bio-
markers and subcohorts with distinct immunotherapy responses. Unsu-
pervised clustering algorithms are typically utilized for subcohort
identification, while LASSO regression is employed to identify subcohort
biomarkers. Notably, DL approaches are extensively implemented for
handling the sequencing data in neoantigen prediction. Natural language
processing-related models, including word-to-vector models, are broadly
used for sequence encoding, whereas recurrent neural networks-based
models or transformers are commonly utilized for task training. Moreover,
we highlight the prevailing challenges, emphasizing the need forMLmodels
to handle multi-modal data to facilitate the rapid accumulation of imaging
and omics data. Ultimately, this review aims to inspire cutting-edge ML
research in maximizing the potential of immunotherapies.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The authors herebydeclare that all pertinent data has alreadybeendisplayed
within the article. Additional data can be accessed upon request to the
corresponding author.
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