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Progress in sequencing technologies and clinical experiments has revolutionized immunotherapy on
solid and hematologic malignancies. However, the benefits of immunotherapy are limited to specific
patient subsets, posing challenges for broader application. To improve its effectiveness, identifying
biomarkers that can predict patient response is crucial. Machine learning (ML) play a pivotal role in
harnessing multi-omic cancer datasets and unlocking new insights into immunotherapy. This review
provides an overview of cutting-edge ML models applied in omics data for immunotherapy analysis,
including immunotherapy response prediction and immunotherapy-relevant tumor microenvironment
identification. We elucidate how ML leverages diverse data types to identify significant biomarkers,
enhance our understanding of immunotherapy mechanisms, and optimize decision-making process.
Additionally, we discuss current limitations and challenges of ML in this rapidly evolving field. Finally,
we outline future directions aimed at overcoming these barriers and improving the efficiency of ML in

immunotherapy research.

The immune system is crucial in monitoring cancer and identifying
neoantigens produced by tumor cells that can trigger cellular immune
responses'. But tumor cells have developed strategies to evade immune
surveillance’. To address this, cancer immunotherapy was developed,
aiming to stimulate the immune system or create lab-engineered sub-
stances that restore the ability to recognize and eliminate cancer cells.
Immunotherapy options include immune checkpoint inhibitors (ICI),
cancer vaccines, adoptive cellular therapies (ACT), cytokine, tumor-
infecting viruses, targeted antibodies, and adjuvants. While immu-
notherapy has significantly improved patient outcomes, its effective-
ness is confined to a small and unpredictable subset of patients within a
given cancer diagnosis’, and immune-related adverse events (irAEs)
may occur’. Therefore, precise identification of a patient’s tumor
microenvironment (TME) and of the ability to predict its immu-
notherapy response are essential for enhancing overall immunotherapy
effectiveness.

Current prediction of immunotherapy response relies on biomarkers
such as immune-cell infiltration’, tumor mutational burden (TMB)®, PD-1/
PD-L1 expression’, CTLA-4 expression®, mismatch repair (MMR) and
microsatellite instability (MSI)’. However, existing clinical practices based
on simplistic threshold-based methods lack accuracy. In this context,
machine learning (ML) technologies have emerged as valuable tools,

offering the potential to refine the precision of immunotherapy response
prediction. By harnessing sophisticated algorithms and analyzing extensive
datasets, ML models can discern intricate patterns and interactions among
various molecular biomarkers, providing a more nuanced understanding of
the complex immunotherapy tumor microenvironment. These state-of-
the-art ML models not only capture subtle relationships between individual
biomarkers but also adapt to the dynamic nature of immune responses,
offering a more comprehensive and adaptable approach than traditional
threshold-based methods. Indeed, ML-based approaches have shown
capacity in various oncology applications, including early diagnosis"’, cancer
type classification'’, the complexity and plasticity of TME and immune
system deciphering'’, response and prognosis prediction', and potential
neoantigen detection'.

This review summarizes the application of ML in molecular analyses
related to immunotherapy, including prediction of immunotherapy
responses, identification of response-associated biomarkers, and analysis of
the TME (Fig. 1). It also explores ML approaches developed to optimize the
identification of crucial neoantigens in personalized immunotherapy.
Additionally, this review discusses the challenges and opportunities
encountered in current research endeavors, aiming to enhance under-
standing and recognition of the significant contribution of ML in advancing
cancer immunotherapy.
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Fig. 1 | Genomic landscape of machine learning in tumor immunotherapy. We
provide an overview of machine learning methodologies applicable to different
aspects of tumor immunotherapy including prediction of immunotherapy
responses, identification of response-associated biomarkers, and analysis of the
TME. ML machine learning, DEG differentially expressed gene, RFE recursive
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feature elimination, UAF univariate association filtering, LASSO the least absolute
shrinkage and selection operator, LR logistic regression, SVM support vector
machine, RF random forest, FCNN fully-connected neural network, CNN con-
volutional neural network, RNN recurrent neural network, PFS progression-free
survival, TME tumor microenvironment.

Employing machine learning for predicting immu-
notherapy response and identifying biomarkers asso-
ciated with response

While immunotherapy has brought significant benefits to cancer treat-
ments, its effectiveness remains confined to a small and unpredictable subset
of patients with a given cancer diagnosis'*. Moreover, the treatment process
often imposes substantial financial, physical and mental care burden on
patients. Acknowledging these challenges, researchers are increasingly
directing their efforts toward identifying valuable molecular biomarkers
capable of predicting immunotherapy outcomes and improving its overall
utility'®. Considering the complex omics space, conducting extensive sam-
pling through experimental methods is impractical. Consequently, in silico
approaches, including those employing ML algorithms, provide an
opportunity to address this critical need.

Tumors are caused by the accumulation of various genetic variations
that regulate the way cells growth and multiplication'’"". In light of this,
recent studies have turned on ML models to predict a patient’s response to
immunotherapy by leveraging his genomic biomarkers and clinical features
(Table 1, Fig. 2). Somatic mutations, including single-nucleotide variants
(SNVs), insertions, and deletions, provide direct evidence documenting the

driving forces behind tumorigenesis and tumor cell proliferation”. These
mutations have demonstrated their ability in predicting immunotherapy
responses. For example, Peng et al.*' used SNV data and convolutional
neural network (CNN) model to classify anti-PD-1/PD-L1 therapy
response from metastatic non-small-cell lung cancer (NSCLC) patients.
Nonsynonymous mutations can alter transcription, subsequently impacting
pathway activations and gene functions. Leveraging the distinct changes in
gene expression levels, particularly in oncogenes and tumor suppressor
genes, ML models can subtly predict immunotherapy response. According
to our survey, RNA-based features, including bulk RNA sequencing’*™",
single cell RNA sequencing (scRNA-seq)™”, flow cytometry™, and circu-
lating cell-free microRNA sequencing’™*, have been widely implemented in
immunotherapy response prediction. Furthermore, the availability of
numerous accessible RNA-seq datasets, coupled with the outstanding per-
formance of models utilizing RNA-seq data, has been instrumental in
advancing research. From RNA-seq data, many advanced features can be
extracted from bioinformatic or ML tools to better characterize tumor
genomic profiles, such as tumor-infiltrating lymphocytes (TILs)*>”, path-
way activity’® and cell-cell communication®. It is worth noting that some
studies have leveraged these features to extract high-level features, thereby
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Fig. 2 | An overview of machine learning techniques for immunotherapy
response prediction. Advancements in sequencing technologies have paved the way
for exploring diverse approaches in immunotherapy response prediction. To
improve efficiency and mitigate overfitting, dimensionality reduction and feature
selection techniques are performed prior to model training. Multimodal models

offer the flexibility to train on data with multiple modalities. These models first
utilize sub-models to extract unimodal features from each data modality. Subse-
quently, a data fusion step transforms each extracted unimodal feature into a
compact multimodal representation. Finally, a classification sub-model is imple-
mented to infer response based on the integrated features.

enhancing predictive performance. For instance, Wang et al.” utilized TMB
information based on SNV data, gene expression information, and support
vector machines-recursive feature elimination (SVM-RFE) algorithm to
select gene features. Subsequently, they used least absolute shrinkage and
selection operator (LASSO) logistic regression classifier to predict responses
of urothelial carcinoma patients treated with the PD-LI inhibitor atzoli-
zumab using selected gene features. Their approach achieved an AUC of
93% in the test dataset. Additionally, they utilized generalized linear models
(GLMs) to derive a TMB-related LASSO score (TLS) from the LASSO
regression results. The TLS can serve as an effective indicator for immu-
notherapy response prediction like TMB. Lapuente-Santana et al.”’
employed regularized multi-task linear regression (RMTLR) to identify
interpretable biomarkers in relation to immune cells markers, intracellular
networks, and intercellular networks for predicting immunotherapy
response. On the other hand, Zeng et al.” implemented a joint nonnegative
matrix factorization (NMF) to decompose gene expression matrix, mole-
cular phenotype matrix, and immunotherapy response matrix. This
approach aims to identify pivotal genes correlated with immunotherapy
response. Similar to RNA-seq data, Shang et al.”” and Filipski et al.”* have
successfully employed DNA methylation profiles (CpG sites) for ICI
response prediction in NSCLC”” and metastatic melanoma™ patients. Apart
from these conventional biomarkers, clinical information” and Raman
spectroscopy data’ have shown promise as reliable biomarkers of ICI
response prediction. In a separate study, Sidhom et al."' integrated human
leukocyte antigen (HLA) and T cell receptor (TCR) sequencing to predict
ICI response in melanoma. Their approach involved employing a multiple-
instance learning model that incorporated HLA into the featurization of the
TCR sequences to provide a representation of a joint TCR-HLA antigenic
latent space. The contextualization of TCR-HLA was then trained on
multihead attention networks to learn the attention weights, which were
used to predict the final immunotherapy response.

Accompanied by the advancement of sequencing technologies, recent
studies have focused on developing complex ML models incorporating
multi-omics datasets for immunotherapy prediction*. Compared to
single omics approaches, the integration of multiple omics data can provide
a more comprehensive scope of tumor profile, from the original cause of
tumors (genetic, environmental, or developmental) to the functional
consequences'”, and consequently leads to improved performance in
immunotherapy response prediction”. In a recent approach™®, researchers
integrated RNA-seq data with somatic mutations, copy number alterations
and protein expression alterations to comprehensively investigate various
subcohorts within TME using a sparse hierarchical clustering model. By
employing this method, they have successfully identified distinct subcohorts
within the TME, each exhibiting unique responses to different cancer
treatments, including immunotherapy. This model holds significant
potential in guiding precise decision-making for combination therapy
strategies. However, integrating and training multi-omics data, usually
accrued from different platforms, is more challenging than training unim-
odal features. Addressing this challenge, a recent study by Vanguri et al.”’
developed a dynamic deep attention-based multiple-instance learning
model that integrates radiology, pathology, and multiomics data to predict
the response of NSCLC patients treated with anti-PD-1/PD-L1 blockade.
Comparisons demonstrated that the multimodal approach, integrating
these features, enables higher accuracy than unimodal approach in the
prediction of immunotherapy response. Notably, their multimodal model
can also handle redundant information and missing values in combination
with data from different modalities. In addition to ICI prediction, ML
models have been utilized to predict the chimeric antigen receptor (CAR) T
therapy response. Daniels et al.”' developed a DL model to utilize signaling
motifs to evaluate the antitumor efficacy of a given CAR. Their DL fra-
mework takes the motif sequence of the CAR as the input and propagated
the encoded sequence through two CNN layers, a long short-term memory
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(LSTM) network layer and seven fully connected neural network (FCNN)
layers. This approach enables directly prediction of tumor stemness and
cytotoxicity based on the motif combinations designed for CAR T cells,
thereby guiding the design of the engineering of CAR signaling domains in
CAR T therapies.

In our survey, to improve the computational efficiency and reduce
noise and complexity of ML models, most studies utilized statistical or ML
algorithms, or both to identify a subset of gene markers for model training.
ML techniques for gene selection can handle high-dimensional data and
identify patterns that may not be apparent through manual inspection or
traditional analyses. These ML approaches, including LASSO”, random
forest (RF)*"*’, SVM-RFE**, NMF*, and logistic regression (LR)”, auto-
matically assess the importance of each gene in relation to the immu-
notherapy response prediction. Using these extracted biomarkers, various
algorithms, including LASSO, LR, RF, XGBoost, naive Bayes (NB), SVM,
decision tree (DT) and NN, have demonstrated their ability to accurately
predict immunotherapy responses. By focusing on this refined set of fea-
tures, researchers can also enhance the interpretability and generalizability
of the models, fostering a more effective integration of machine learning into
the complex landscape of immunotherapy research.

Employing machine learning as a supplementary tool
for the identification of biomarkers in the tumor
microenvironment for immunotherapy

The TME refers to the intricate cellular landscape surrounding tumors,
including immune cells, cancer cells, stroma cells, the inflammatory cyto-
kines and chemokines, metabolites, acidity, cytokines and hypoxia™. It plays
a critical role in supporting tumorigenesis and progression, and immu-
notherapy effectiveness”>*. Extensive studies have elucidated the complex
interactions within TME, driving functions like angiogenesis™, metastasis™
and immunosuppression”. Although obtaining accurate datasets for TME
factors such as hypoxia and low pH poses challenges, the integration of
tumor omics data and the implementation of ML models have enabled the
identification of TME characteristics directly or indirectly associated with
cancer immunotherapy (Table 2, Fig. 3).

Microsatellite instability and tumor mutational burden

MSI and TMB are FDA-approved biomarkers that predict immu-
notherapy response. While not directly related to the TME, MSI and
TMB reflect genetic alterations occurring within tumor cells. MSI
indicates microsatellite length polymorphism due to mismatch repair
deficiency, while TMB represents the number of somatic mutations per
million bases in the exome region®. Tumors with higher MSI or TMB
tend to produce neoantigens recognized by the immune system, ren-
dering them more responsive to immunotherapy. Given the high cost of
large-scale genomic sequencing, using ML models to assess MSI or TMB
based on a panel with limited genes can offer a more cost-effective
approach. Zhou et al.”’ successfully identified a 54-microsatellite-site
biomarker using an RF classifier, allowing accurate classification of
microsatellite instability-high (MSI-H) and microsatellite stable (MSS)
tumors. In a similar vein, Lu et al.*” implemented LASSO regression to
identify a gene-targeted panel capable of accurately assessing TMB
levels. Recently, many deep learning (DL) models have been developed
to use whole-slide images (WSIs) to predict MSI®** and TMB status™*,
which enables a more cost-effective means of predicting immunother-
apy response without relying on genomic data.

Cancer stem-like cell

Cancer stem-like cells (CSCs) are a small population of cancer cells that can
reconstitute and propagate tumors. They have been implicated in metas-
tasis, relapse, and resistance to cancer therapies®*’. Numerous studies have
focused on identifying and categorizing CSCs within tumor cell populations.
Researchers such as Wei et al.” and Wang et al*® employed LASSO
regression to identify stemness features in tumor samples using RNA-seq
data. These identified stemness features have shown a strong correlation

with the prognosis of immunotherapy and can serve as valuable biomarkers
for predicting immunotherapy response.

Cancer-associated fibroblast

Cancer-associated fibroblasts (CAFs), also a critical component of TME, can
modulate cancer metastasis through signaling interactions with cancer cells.
They can also influence leukocyte infiltration, drug access and therapy
responses”’. To identify CAF related genes, Wang et al.”’ applied ML models
to classify tumor samples as either CAF-enriched (CAF+) or CAF-absent
(CAF—). Their analysis revealed that the CAF— subtype was associated with
longer overall survival and higher immune cell infiltration compared to the
CAF+- subtype. These findings provide valuable insights for predicting the
response to immunotherapy. Similarly, Tian et al.”" used LASSO regression
to obtain six CAF-related genes that can be used to predict the response to
anti-PD-1 therapy in melanoma patients. These studies demonstrate the
utility of ML models in elucidating the role of CAFs and their associated
genes in immunotherapy response prediction.

Tumor-infiltrating lymphocyte

TILs are highly specific immunological reactive lymphocytic cell popu-
lations that can recognize and kill tumor cells”. Their presence is crucial in
mediating response to cancer therapy, and a higher abundance of TILs is
often associated with better clinical outcomes after immunotherapy’>”°.
Currently, ML models have been broadly implemented to quantify var-
ious TIL-based biomarkers for immunotherapy response prediction.
These biomarkers encompass RNA-seq data and somatic mutation
features’, including protein-protein interaction (PPI) networks”’, tumor-
infiltrating immune cell-associated IncRNAs™”, T cell signatures*"', B
cell signatures*” and immunophenotype-related DNA methylation sig-
natures (iPMS)*. A general approach adopted in these models involves
clustering tumor samples based on the tumor immune microenviron-
ment, such as immunoactivity, disease stages, and survival outcomes. ML
models are then employed to extract significant biomarkers for cluster
classification. Subsequently, another ML model was then utilized for
predicting immunotherapy response to validate the selected biomarkers
for each cluster. Typically, TILs comprise both mononuclear and poly-
morphonuclear immune cells, including T cells, B cells, natural killer cells,
macrophages, neutrophils, dendritic cells, mast cells, eosinophils, and
basophils. Accurately assessing the abundance of each immune cell type
within tumor tissues is essential for treatment decision-making and
evaluating drug response. To this end, ML models have been developed to
automatically estimate the abundance of these immune cells*>*,
enabling precise deconvolution. In a recent study, Ferndndez et al.** used
their deconvolved proportions of 22 immune cells as the input feature,
which could accurately predict the response of patients treated with ICI
therapy.

Metabolism

Metabolism refers to the changes observed in cellular metabolic pathways in
tumor cells. Typically, oncogenic transformation can induce cancer cells to
adopt a well-characterized metabolic phenotype that can profoundly
influence the TME™. Increasing evidence has highlighted the role of
metabolism in tumor immunosuppressive responses and resistance to
immunotherapy*”. For instance, tumor cells can alter metabolism by
increasing glucose uptake and fermentation of glucose to lactate, promoting
tumor growth, survival, proliferation, and long-term maintenance’’. To
improve immunotherapy efficacy, researchers have proposed employing
ML models to identify metabolic TME subtype that respond favorably to
immunotherapy. Ge etal.”” conducted an analysis of lipid metabolism genes
and immune-related genes of lung adenocarcinoma (LUAD) patients and
identified two distinct subtypes, namely “metabolism phenotype” and
“immunoactive phenotype”, using Cox regression. The “metabolism sub-
type” exhibited reduced sensitivity and poorer prognosis to immunother-
apy. The identified metabolic features hold promise as potential biomarkers
to predict immunotherapy response.
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Fig. 3 | Machine learning offers promising strategies for evaluating tumor
microenvironment. Various machine learning models have been developed to
effectively identify biomarkers and comprehend the relationship between tumor
microenvironment and immunotherapy, including risk, development and treat-
ment. These models aim to improve the efficiency of immunotherapies by providing
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valuable insights and understanding. ML machine learning, TME tumor micro-
environment, TIL tumor-infiltrating lymphocytes, CAF cancer-associated fibro-
blast, CSC cancer stem-like cell, MSI microsatellite instability, TMB tumor
mutational burden.

Neoantigen

Neoantigens are novel peptides that form in tumor cells due to certain
somatic mutations. Neoantigens have the potential to be recognized by
immune cells, triggering immune responses against tumor cells™.
Immunogenic neoantigens have been identified as crucial for developing

personalized neoantigen-targeted cancer immunotherapies™”, including
vaccines and adoptive T-cell therapies’’. However, the process of neoantigen
discovery and validation remains a daunting question that must be
addressed before neoantigen-based immunotherapies can become promi-
nent in cancer treatment”. For example, many tumor peptides lack
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Table 3 | Application of machine learning technologies in neoantigen and immunogenicity prediction

Model Task ML Model Encoding method MHC class Ref
NetMHC-4.0 Predict binding affinity NN BLOSUM class | 9
NetMHCpan-4.0  Predict binding affinity NN BLOSUM class | 10
MHCflurry Predict binding affinity A deep learning model includes locally connected BLOSUM class | o1
1D-CNN and FCNN
EDGE Predict binding affinity NN One-hot class | 102
MHCRoBERTa Predict binding affinity BPE Byte pair class | 108
Vang et al. Predict binding affinity CNN Skip-gram class | 104
ForestMHC Predict binding affinity RF NA class | 108
Anthem Predict binding affinity NB, XGBoost, LR, NN, SVM, DT, RF BLOSUM class | 3
Gartner et al. Rank binding affinity RF NA class | 1o
NN-align Predict binding affinity NN BLOSUM class Il o
MixMHC2pred Predict binding affinity Linear regression BLOSUM class Il m
NeonMHC2 Predict binding affinity CNN One-hot class Il e
NetMHClIpan Predict binding affinity NN BLOSUM class Il s
MARIA Predict binding affinity LSTM One-hot class Il e
Neopepsee Predict immunogenicity LNB, GNB, RF, SVM NA class | s
DeepNetBim Predict immunogenicity A deep learning model includes CNN and attention BLOSUM class | e
module
DeepHLApan Predict immunogenicity BiGRU + attention One-hot class | w
Seqg2Neo Predict immunogenicity CNN One-hot class | e
TCIA Predict cancer immunogenicity ~RF NA class I, class Il, non- 120
classical
Besser et al. Predict CD8 + T cell response ~ RF NA class | 12
iTTCA-Hybrid Predict CD8 + T cell response ~ SVM, RF NA class | 128
DLpTCR Predict TCR-pMHC interaction A multimodal model based on FCNN, LeNet-5, One-hot, PCA, PCP  class | 124
ResNet-20
pMTnet Predict TCR-pMHC interaction =~ AE + LSTM + NN BLOSUM class | 12

NN neural network, BPE byte pair encoding, CNN convolutional neural network, FCNN fully connected neural network, RF random forest, NA not applicable, NB naive Bayes, LR logistic regression, SVM
support vector machines, DT decision tree, LSTM long short-term memory, LNB locally weighted naive Bayes, GNB Gaussian naive Bayes, BiGRU bidirectional Gated Recurrent Unit, p)MHC peptide-MHC,

PCA principal component analysis, PCP physicochemical properties, AE autoencoder.

immunogenicity, highlighting the importance and complexity of accurately
identifying which neoantigens can effectively stimulate immune cell
responses.

Recently, novel pipelines and state-of-the-art ML algorithms have been
developed to identify T-cell neoantigens through major histocompatibility
complex (MHC) class I and II presentations (Table 3, Fig. 4). Pipelines
utilize genomics data, usually derived from whole-genome sequencing
(WGS) or whole-exome sequencing (WES), obtained from tumor samples
to infer the mutated peptides based on the somatic non-synonymous SN'Vs.
To facilitate neoantigen prediction, researchers have conducted The
Immune Epitope Database (IEDB), which provides experimentally char-
acterized T cell epitopes and a comprehensive set of MHC-binding and
MHOC eluted ligand (EL) data for humans™. These resources significantly
enhance the convenience and accuracy of neoantigen prediction. Based on
our review, the majority of ML models focus on identifying class I MHC
alleles, which have the ability to bind peptides derived from intracellular
proteins and present them on the cell surface to CD8 + T cells. Some studies
employ ML models to predict neoantigens by estimating the binding affinity
between a given mutated peptide and a class I MHC molecule, known as
peptide-MHC (pMHC) binding affinity”’~'*. These models can be cate-
gorized into two groups based on their output. The first group predicts a
score representing the relative binding affinity between a peptide and
MHC”'”. Among these models, NetMHC” and NetMHCpan'” used the
FCNN framework. While NetMHC was trained solely on binding affinity
datasets and can predict peptide binding to specific MHC alleles,
NetMHCpan integrated information from both binding affinity data and

mass spectrometry (MS) EL data, allowing it to predict binding for a wider
range of MHC molecules with high accuracy. Different from NetMHC and
NetMHCpan, MHCflurry'”" added two one-dimensional convolutional
layers before fully connected layers, resulting in higher accuracy. EDGE'”,
on the other hand, used three peptide-extrinsic features (RNA abundance,
flanking sequence, per-gene coefficients) captured from MS data as the
input, propagating them into three locally connected layers respectively
before merging them into fully connected layers for binding affinity pre-
diction. This approach extracts more information than using a single input,
resulting in higher positive predictive values (PPV) compared to bench-
marked models. Another model, MHCRoBERTa'”, built a transfer learning
model by pre-training on the UniprotKB/Swiss-Prot dataset and fine-
tuning on IEDB dataset. This strategy allows the model to maintain high
accuracy and efficiency simultaneously. The second form of binding affinity
prediction in these models involves providing a binary classification result to
determine whether a given peptide is a binder'*'”. In most studies, a
threshold of <500 nM of the IC50 value is used to define candidate peptides
that are likely to bind to MHC. Notably, to improve performance,
ForestMHC'” considered six different sequence-related features and their
combinations as input features to select the optimal feature subset. Similarly,
Anthem'® collected five published sequence scoring functions that can
calculate a binding probability based on sequence information. These
scoring functions, along with their combinations, were used as input fea-
tures to select the optimal subset of scoring functions for binder classifica-
tion. Considering the distinct advantages and limitations of each binding
affinity model, Gartner et al.'” built a random forest-based model that
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Fig. 4 | Identification of tumor neoantigens using machine learning models. The
identification of tumor neoantigens involves the elution of MHC epitopes from

tumor cells and the extraction of somatic mutations from sequencing data. Machine
learning algorithms are then processed to model the binding affinity between mutant
peptides and MHC proteins, allowing for the prediction of candidate neoantigens.
To improve performance, some models incorporate TCR sequencing data to screen

for candidate neoantigens with high proportions that interact with TCR and induce
T cell responses. MHC major histocompatibility complex, TCR T-cell receptor, APC
antigen-presenting cell, pMHC peptide-MHC, WES whole-exome sequencing,
WGS whole-genome sequencing, LC/MS liquid chromatography/mass
spectrometry.

integrates known class I candidate human tumor neoantigens predicted by
other models and next-generation sequencing (NGS) data from individuals
with metastatic cancers. This model can rank the candidate neoantigens,
providing a ranked list that can serve as therapeutic targets and facilitate
studies aimed at developing more effective immunotherapies. Recently,
increasing evidence indicates that CD4 4T cells can recognize cancer-
specific antigens and control tumor growth. As a result, MHC class 1I
neoantigen prediction has become important in immunotherapies like
vaccine design and targeted therapy development. However, unlike MHC
class I molecules that are highly specific and bind a limited set of peptides of
a narrow length distribution'”®, MHC class II molecules are highly poly-
morphicand the size of the peptides presented are promiscuous'”, making it
more challenging for neoantigen prediction. In response to this challenge,
several models have been established to predict the binding affinity of
pMHC class II complexes'*""*. Compared with class I binding affinity
prediction models, the MHC class II prediction models were generally
trained on more complicated datasets, such as the IEDB MHC class II cell
surface receptor (IEDB MHC-DR) restricted peptide-binding dataset. In
particular, MHC class II prediction models need to consider longer or even
variable peptide lengths as their inputs.

Typically, identifying binding affinity between MHC and peptides
alone is insufficient for accurate neoantigen predictions with high con-
fidence. To overcome the limitation, some studies have focused on assessing
the immunogenicity of the predicted binding molecules'*'"*. Immuno-
genicity refers to the ability of protein products to provoke an immune
response, and it depends on several factors, including protein expression,
peptide-MHC binding affinity and stability, peptide competition for MHC

binding, and more™'”’. Among these models, DeepHLApan'"’ designed a
multi-task neural network model consisting of three layers of bidirectional
Gated Recurrent Unit (BiGRU) with an attention layer. This model can
simultaneously predict the binding affinity and the immunogenicity. Similar
to DeepHLApan, DeepNetBim'' used a CNN model with an attention layer
to predict binding affinity and binary immunogenic categories. In com-
parison to DeepHLApan, DeepNetBim incorporated an additional layer to
merge the two independent outputs together, namely the binding affinity
and the binary immunogenic category, in order to calibrate the final
immunogenicity prediction. Seq2Neo'® took a different approach by
developing an end-to-end software that directly utilize raw sequencing data
(WES/WGS, RNA) in FASTQ, SAM and BAM formats to predict the
immunogenicity directly through a CNN-based model. In contrast, Char-
oentong etal.”’ did not focus on developing a state-of-the-art DL model like
most approaches. Instead, they designed a comprehensive biomarker con-
sisting of 127 features, including somatic mutation features, class-I and
class-II MHCs, immune inhibitory and stimulatory genes, adaptive
immunity cells and innate immunity cells from integrated WES, RNA-seq
and clinical data. Their results demonstrated that proper feature extraction
could achieve a high accuracy for tumor immunogenicity prediction using
only an RF classifier. In addition to assessing the immunogenicity of the
predicted binding molecules, some studies have explored the integration of
TCR sequence to predict the likelihood of peptide-TCR interaction for
neoantigen prediction. Besser et al.”' proposed using CD8 +T cell
responses as the task of their models to detect neoantigens. To accomplish
this, they employed an additional step in their ML models, training them on
the Tantigen dataset'”, a comprehensive database of tumor T cell antigens.
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Through this step, they were able to learn the changes in key parameters and
features associated with T cell response, enabling them to predict whether a
given MHC class I peptide was positive for inducing CD8 + T cell response.
Likewise, iTTCA-Hybrid'* utilized the tumor T cell antigen dataset from
Tantigen'” and non-tumor T cell antigen dataset from IEDB” to train an
ensemble model capable of classifying tumor and non-tumor T cell antigens.
More recently, DLpPTCR'"** and pMTnet'” suggested that assessing the
propensity of CD8 + TCR to recognize the pMHC complex is crucial for
neoantigen prediction, as most in silico predicted antigen peptides fail to
elicit immune responses in vivo. Both models take peptide and TCR
sequences as input data, and their output is a binary classification of whether
the TCR-pMHC has an interaction. To achieve better performance,
DLpTCR'* designed an ensemble strategy based on three deep learning
models: FCNN, LeNet-5 and ResNet. On the other hand, pMTnet'* utilized
an autoencoder and an LSTM network to obtain the hidden encoding of the
TCR sequence and peptide sequence, respectively. These encodings were
then fed into an FCNN classifier for final prediction.

It is worth noting that peptide sequence encoding plays a crucial role in
neoantigen prediction. Two commonly employed methods for encoding are
one-hot encoding and BLOcks SUbstitution Matrix (BLOSUM) encoding
(Table 3). Among them, BLOSUM is more prevalent as it offers insights into
the homologies between protein sequences. In addition, personalized
sequencing encoding techniques utilizing ML algorithms have also gained
popularity. These include byte pair encoding'”, skip-gram encoding'”,
principal component analysis (PCA) encoding”* and physicochemical
properties (PCP) encoding'*.

In conclusion, ML has emerged as a promising approach for evaluating
TME, identifying TME related biomarkers and unraveling the intricate
relationship between TME and immunotherapy. The biomarkers derived
from ML approaches hold great potential for predicting clinical outcomes of
immunotherapy and enhancing personalized immunotherapy strategies,
thereby facilitating the advancement and wider application of immu-
notherapy in cancer treatment.

Challenges and opportunities

Despite the extensive application of ML in immunotherapy studies, several
challenges remain to be addressed. These challenges pertain to gaining a
mechanistic understanding of how immunotherapies target and eradicate
tumor cells"® and the neoantigens that can be recognized by immune
cells'”. Whether and how ML models prompt the progression of immu-
notherapy will depend on how these challenges, as discussed below, are met
in the future.

Insufficient amount of available data

Immunotherapy has emerged as a promising cancer treatment, driving
numerous clinical trials worldwide'”. Nevertheless, current clinical trials
have primarily focused on PD-1/PD-L1 therapy, result in limited data for
other treatment like CTLA-4 and CAR T therapy (Table 1). This data
scarcity poses a significant barrier for developing ML models, particularly
DL models that require substantial training data to avoid overfitting and
enhance model performance'”. To mitigate the limitations, the generation
of pseudo databases has emerged as a potential solution. State-of-the-art
generative models, such as generative adversarial network (GAN)"* and
diffusion models""', have shown promise in computer vision and can gen-
erate synthetic data to supplement training datasets, mitigating overfitting
issues. Likewise, Sové et al."** developed a model using an ML approach to
capture interpatient diversity in clinical trials, allowing the simulation of
virtual patients. By leveraging these virtual patients, it becomes possible to
mimic a virtual clinical trial scenario to quantitatively assess the efficacy of
ICI treatments in a controlled environment.

Multi-omics data integration and analysis

The advent of multi-omics technologies has revolutionized our under-
standing of the biological mechanisms of driving immunotherapy. How-
ever, analyzing these large multi-omics data, particularly those from single-

cell-based'” and spatial-based"** technologies, has brought new computa-
tional challenges. One challenge is the batch effects, resulting from diverse
platforms used for data generation. To ensure accurate downstream ana-
lyses, removing platform-specific noise is crucial. Recently, ML models,
particularly joint dimension reduction algorithms such as negative matrix
factorization (NMF), PCA, singular value decomposition (SVD), canonical
correlation analysis (CCA), have emerged as powerful tools for encoding
data from diverse platforms into a shared latent space, thereby enabling
effective batch effect removal'*. Additionally, the training data often exhibit
distinct statistical modalities. To tackle this challenge, multimodal learning
with specialized modelling strategies has gained attention for integrating
diverse data modalities, such as medical imaging and genomics'""". By
harnessing the strengths of multiple modalities, multimodal learning
models offer the potential to address immunotherapy-related questions.

Meta-analysis

In the field of immunotherapy response prediction, the definitions of
“response” vary across studies. For example, Vanguri et al.” and Chowell
et al.*” employed Response Evaluation Criteria in Solid Tumors (RECIST)"*
as their criterion for defining response, whereas Filipski et al.”* utilized
survival (defined as the time from start of ICI treatment to date of decease) to
characterize response. The disparate use of these distinct criteria under-
scores the considerable variability in how the concept of “response” is
operationalized across studies, posing a challenge to the synthesis of studies
and the establishment of a standardized framework for meta-analysis.
Standardization the definition and harmonization data are necessary to
achieve a consensus on common criteria or thresholds for defining
immunotherapy response.

Neoantigen prediction

With ongoing developments of new algorithms, the field of cancer neoan-
tigen identification holds promise for immunotherapies™. Given the
uniqueness of the neoantigen landscape to each individual, the accurate
targeting of neoantigens establishes a solid foundation for conducting sys-
tematic studies in precision medicine and providing clinical decision sup-
port for cancer immunotherapy. Computational models, especially ML
algorithms, are commonly used for immunogenic neoantigen prediction.
However, comparative studies have revealed that, thus far, none of the
existing studies have achieved accurate identification of immunogenic
neoantigens'”. Factors such as tumor heterogeneity, diversity within the
TCR repertoire, and the absence of true labeled data contribute to this
inaccuracy. Future studies should focus on developing more comprehensive
models integrating both pMHCs and TCR sequencing data to improve
predictive performance of neoantigen identification. It is worth noting that
certain studies have explored targeting tumor-specific gene fusion'”” and
MHC gene loss of heterozygosity (LOH)'** to improve immune recognition
in neoantigen identification. Incorporating these factors could augment
neoantigen predictions and contribute to higher accuracy in future studies.

Model generalizability and interpretability

While numerous ML models have been developed for immunotherapy
response prediction, they often struggle to adapt well to unseen data. Their
performance on new data is often moderate or deficient, indicating a lack of
generalizability. Moreover, these models typically employ ML or statistical
approaches to select marker genes. However, the selected marker genes vary
between studies and may have limited effectiveness within specific datasets.
To address these challenges, recent studies have employed transfer learning
algorithms for immunotherapy response prediction. By leveraging pre-
trained models and applying them to train on new, similar datasets™, this
approach can enhance the efficiency and robustness'”. In addition, the
interpretability of ML models in immunotherapy remains a persistent
concern, ML algorithms often function as black boxes, making it difficult to
understand the decision-making process and the underlying biological
rationale behind their predictions. To improve the generalizability,
researchers are exploring feature insights and interactions through
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explainable AT (XAI) models'*’. XAI approaches can provide global and
local explanations, enabling a deeper understanding of predictions and
facilitating effective fine-tuning on new data.

Models in handling continual incremental datasets with real-time
adaptation

In our studies we reviewed, almost all models applied for immunotherapy
analyses are traditional batch learning approaches. These methods utilized
entire datasets simultaneously for training, deploying the trained model for
inference without frequent updates. However, they usually encounter high
retraining cost when adapting to new training data'*'. With the growing of
clinical and genomics data during the patient treatment, there is a need to
develop models with the capacity to conduct incremental datasets and adapt
in real-time to new information. Online learning emerges as a scalable and
efficient approach that learn to continuously updates the model based on
feedback on its decisions in the form of a sequence of examples™'™*,
demonstrating premium performance in clinical applications'. This
approach holds the potential to significantly assist clinicians via providing
diagnoses or making management decisions.

Clinical translation

While numerous ML models have been developed for predicting immu-
notherapy outcomes, our review reveals that almost none of these models
have undergone clinical testing. Furthermore, contemporary ML-based
clinical decision support systems, such as IBM Watson Health'”® and
Google DeepMind Health'*’, encounter obstacles hindering the smooth
transition of models from research settings to standard clinical practice.
This discrepancy underscores the critical necessity for rigorous clinical
validation to evaluate the real-world efficacy and reliability of these pre-
dictive models. The complexity of the immune system, the dynamic
nature of immunological responses, the lack of data quality and stan-
dardization, and the absence of highly reliable biomarkers all contribute to
the challenges impacting the performance of these models. Conducting
comprehensive clinical trials and validation studies is crucial to bridging
the gap between theoretical concepts and practical applications in the field
of immunotherapy.

Opportunities

Despite the limited number of databases, there are still a growing number of
resources available for immunotherapy research. The Cancer Genome Atlas
(TCGA)'" is a prevalent curated database containing genomic, epigenomic,
transcriptomic, proteomic and whole slide imaging data across 33 cancer
types. Among them, a significant number of patients were treated with
immunotherapy, and these samples have been widely used in training ML
models as reviewed in this study. In addition, the medical images (MRI, CT,
digital histopathology, etc.) of some of these patients can be downloaded
from The Cancer Imaging Archive (TCIA)'* database, enabling the multi-
modality analysis of immunotherapy studies. Tumor Immunotherapy Gene
Expression Resource (TIGER)'® and ICBatlas' are comprehensive
resources for integrative analysis of the transcriptome profiles related to
tumor immunology. The Cancer Immunome Atlas' is a web-accessible
database that characterizes the intratumoral immune landscapes and the
cancer antigenomes of 20 solid cancers. This database has also developed an
immunophenoscore to quantify tumor immunogenicity from genomic
features, which helps inform cancer immunotherapy and facilitate the
development of precision immuno-oncology. To ensure safe cancer treat-
ment, Wang et al.”" developed an irAE data resource consisting of a total of
893 irAEs. They also performed comparative analyses on these irAEs,
making it more intuitive to identify and understand how off-targets of ICIs
are involved in irAEs. In addition to clinical resources, there are datasets
available for other immunotherapy-related collections. IEDB* and
Tantigen'” provide a comprehensive set of data related to antibody, Band T
cell epitopes for humans, along with tools to assist in the prediction and
analysis of neoantigens for immunotherapy. In summary, these resources
and databases have facilitated the generation of new research tools,

diagnostic techniques, vaccines and therapeutics that were previously used
in immunotherapy studies.

Conclusions

Immunotherapy holds promise for cancer treatment, but the rapid accu-
mulation of immunotherapy-related data has raised challenges. This review
summarizes the use of ML approaches in addressing these challenges.
Conventional ML algorithms (LR, RF, SVM, LASSO, XGBoost) have
demonstrated their versatility in handling various omics datasets, including
mutations, CNVs, methylation profiles, and expression profiles, to predict
immunotherapy responses. ML models also analyze TME to identify bio-
markers and subcohorts with distinct immunotherapy responses. Unsu-
pervised clustering algorithms are typically utilized for subcohort
identification, while LASSO regression is employed to identify subcohort
biomarkers. Notably, DL approaches are extensively implemented for
handling the sequencing data in neoantigen prediction. Natural language
processing-related models, including word-to-vector models, are broadly
used for sequence encoding, whereas recurrent neural networks-based
models or transformers are commonly utilized for task training. Moreover,
we highlight the prevailing challenges, emphasizing the need for ML models
to handle multi-modal data to facilitate the rapid accumulation of imaging
and omics data. Ultimately, this review aims to inspire cutting-edge ML
research in maximizing the potential of immunotherapies.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The authors hereby declare that all pertinent data has already been displayed
within the article. Additional data can be accessed upon request to the
corresponding author.
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