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Why do probabilistic clinical models fail to
transport between sites

Check for updates

Thomas A. Lasko , Eric V. Strobl & WilliamW. Stead

The rising popularity of artificial intelligence in healthcare is highlighting the problem that a
computational model achieving super-human clinical performance at its training sites may perform
substantially worse at new sites. In this perspective, we argue that we should typically expect this
failure to transport, and we present common sources for it, divided into those under the control of the
experimenter and those inherent to the clinical data-generating process. Of the inherent sources we
look a little deeper into site-specific clinical practices that can affect the data distribution, and propose
a potential solution intended to isolate the imprint of those practices on the data from the patterns of
disease cause and effect that are the usual target of probabilistic clinical models.

Those of us who build prediction models from Electronic Health Record
(EHR) data commonly find that a model that works well at its original site
doesn’t work nearly as well at some other site1–4. (By sitewemean a location
in time and space, so the failure could be at the same institution, but a later
time). When the new site’s data is included in training and test sets, per-
formance improves tomatch that of the original3, but then performance at a
third site canbeback tonearly random.While this failure to transport is quite
frustrating, we argue that we should expect this sort of behavior from all
probabilistic clinical models, whether they are supervised predictive models
or unsupervised discovery models, whether they use probabilities explicitly
or implicitly, and regardless of how meticulous we are in their training.

Experimental errors, improper analysis, and failure to document
experimental details can lead to a failure to replicate, in which an intended
identical experiment performed at a new site produces conflicting results5–8.
These issues can be difficult to avoid9–11, and the problem is exacerbated by a
weak culture of replication12. But while failure to transport could be con-
sidered an instance of failure to replicate13–16, we see it as a sufficiently
distinct phenomenon to warrant specific attention.

Failure to transportwas recognized as a problemby the earliestmedical
AI pioneers. In 1961, Homer Warner implemented the first probabilistic
model of symptoms and disease17 using a Naïve Bayes method18 with local
conditional probabilities, which then failed on external data19. A follow-up
by Bruce and Yarnall19 using data from three sites noted similar failure to
transport between sites, which they attributed to differences in conditional
probabilities. A decade later, Alvan Feinstein argued that the very idea of
probabilistic diagnosis was fatally flawed, on the grounds that the obser-
vational accuracy, the prevalence, and even the definitions of collected
clinical observations varied across sites20. A decade after that, in the

inaugural issue ofMedical Decision Making, Tim de Dombal doubted ever
being able to design a probabilistic diagnosis engine with data from one site
thatworked at others, because large-scale surveys demonstrated that disease
prevalence and presentation vary dramatically across locations21.

All probabilistic transport failure can be attributed to differences in the
multivariate distribution of the training dataset vs. the application dataset,
because the dataset is the sole means by which site-specific phenomena
communicate with the model. (We define application dataset to mean the
datawithwhich themodelwill be used inpractice, as opposed to the training
and test sets that are usedduringdevelopment.)Thedifference could include
slightmismatches in theunivariate distributionof a variable, ormore radical
differences in the dependencies between many variables.

In this perspective, we consider various sources of these differences,
dividing them into Experimental Sources that can be minimized by the
experimental configuration, and Inherent Sources that, because they are
internal to the way the clinical data are generated, are not so easy to avoid
(Fig. 1). We use the term unstable for distributions that vary between sites
due to either experimental or inherent sources22–24. Of the inherent sources,
we will discuss in some depth the problem of site-specific clinical workflow
processes that are difficult to account for.

Experimental sources
Some distributional differences between training and application datasets
can beminimized by sufficient attention to the training pipeline.We call the
sources of these differences experimental in the broad sense that training any
model is a computational experiment, regardless of whether the model is
supervised or unsupervised, whether it uses observational or interventional
data, or whether it is addressing a hypothesis-driven or discovery-based
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question. Experimental sources of instability are quite common, and they
can be difficult to recognize.

Model overfitting
Anoverfitmodel performswell on trainingdatabutpoorly on test data, even
though the two datasets are drawn from the same underlying distribution25.
Despite the fact that there should benodistributional difference between the
two datasets, an overfit model has come to rely in part on patterns that are
present only by chance in the training set, andwhich are necessarily different
in application data. Getting a model to perform well while avoiding over-
fitting is the central task of machine learning25, and we continue to learn
surprising things about it26–29. A noticeable subset of failure-to-transport
results, including those getting recent attention13, is really just unrecognized
overfitting30.

Information leaks during training
Theunintendedpresence of information in a trainingdataset thatwouldnot
be present at application time is an information leak31,32, amachine-learning
equivalent to inadvertent unblinding in a clinical trial33. For example,
mostly-positive and mostly-negative cases may be collected from separate
sources, then patient identifiers assigned sequentially by source. Given this
data for training, a model can easily learn that earlier patient identifiers are
more likely to be positive31.

A common leak is the use of positive instances constructed from, say,
the time of hospital admission to the predicted event of interest (perhaps the
onset of sepsis), and negative instances constructed from the full length of
the admission (because there was no sepsis). In this case, variables such as
time since admission or the presence of typically near-discharge events
(such as weaning from a ventilator) leak information about the probability
of a positive label.

Any information generated after the intended moment of application
can leak information about the label. Often, this information leaks from
times after the labelwas known, butmore subtle leaks can occur fromearlier
times32. For example, information about treating the condition (perhaps
starting antibiotics for sepsis) can make its way into training instances,
leaking information about the condition’s presence. But other indicators
such as fever or tachycardia can originate from the period before sepsis is
formally labeled, but clinically obvious, and amodel predicting sepsis at that
point would be less clinically useful32.

In addition to information leaking from the future, information can also
leakbetween the training, test, andvalidation sets31. These leaks canbe easy to
miss, as in the well-known CheXNet paper34, where researchers originally
split the dataset by image, rather than by patient, leaking patient-level
information between training and test sets35. (Although even after the leak
was corrected, this impressivemodel still failed to transport toother sites36–38).

Different variable definitions in application data
If an application dataset defines a prediction target differently from the
training data,model performancewill suffer. Thismay seemobvious, but its

role in failure to transport is easily missed, as happened39 when the per-
formance of EHRvendor Epic’s internal sepsis predictionmodel dropped at
least in part due to a more careful definition of the sepsis label in the
application dataset40.

Similarly, if semantically equivalent data variables are encoded with
different identifiers in a new dataset, then the performance of a model that
relies on those identifiers will suffer41,42. This may also seem obvious, but it
can be a subtle problem, because, for example, different institutions that
both use LOINC codes43,44 to identify laboratory test resultsmay actually use
different LOINC codes for clinically equivalent tests45. And, of course, test
results can be reported in different units (and possibly mislabeled) even
within the same dataset46.

A definitionalmismatch can also cause themodel to seewhat appear to
be distribution differences in the affected variables, when in reality the
model is seeing different variables with the same name.

Application to the wrong question
Amodel trained to answer questionA is not likely to be as accurate if we try
to use it to answer question B. This is yet another obvious statement, but
again the problem can be subtle and easy to misdiagnose, especially if the
questions are related.

This has happened multiple times with a 1997 model that predicts the
mortality of pneumonia in hospitalized patients47. Researchers trained the
model to answer question A, for which they had data: How likely is this
patient to survive when given usual inpatient care? Then they applied it to
answering question B, which is what they really wanted to know:How likely
is this patient to survive if sent home without inpatient care? The original
researchers explicitly stated that they were assuming that the answer to the
two questions would be similar in patients with low probability of inpatient
mortality.

Unfortunately, subsequent interpretations of the work appear to have
missed the explicit assumption and misdiagnosed the source of resulting
problems. A 2015 evaluation48 of an interpretable learning method identi-
fied cases where the assumption was violated, such as for patients with
asthma. Pneumonia patients with asthma were more likely than other
pneumonia patients to survive with usual inpatient care because they were
more likely to be immediately admitted to the ICU. But they are of course
much less likely to survive if sent home without inpatient care. The 2015
work shows the clear value of interpretable models, because it highlighted
this problem. But rather than pointing out serious assumption violations
and the application to the wrong question, the researchers’ next step was to
patch themodel bymanually changing theweights for theasthma term(and
any others that seemed counterintuitive). Later authors, citing only the 2015
work, claimed that the error was an unintended consequence of machine
learningbecause themodel had learned subtle patterns andwasmissing vital
context49. Others recognized that the data distribution appeared
distorted50,51 (which it was, relative to question B), but that wasn’t the core
problem. The core problem was that the model was answering a different
question than its application users were asking52. Alternatively, we could say
that the users were asking a causal, counterfactual question that the non-
causal, predictivemodelwasnotdesigned to answer: “Whatwouldhappen if
we intervened by sending the patient home instead of the usual practice of
admitting to the hospital?”

Inherent sources
Application data distributions can differ from training data distributions
because some real phenomenon of interest affects them differently (as
opposed to overfitting, in which the difference is only due to random var-
iation). Using a model under these conditions is an Out-of-Distribution
(OOD) application53–56. Optimizing for OODperformance is an interesting
and growing research direction56–66.

The need to consider OOD performance in clinical prediction models
arises from the fact that, as the AI pioneers observed, clinical data dis-
tributions actually do change between sites for reasons inherent to the data-
generating mechanism, a phenomenon now known as dataset shift54 or

Fig. 1 | Potential Sources of Model Transport Failure. These are categorized as
Experimental Sources that are under the direct control of the researcher, and Inherent
Sources that are more difficult to address.
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distribution shift57. As models have grown in their power to use complex
distributional patterns, so has their need to adapt to this shift.

Application data with different causal prevalence
The most obvious distributional difference between sites is the underlying
disease prevalence, which can vary drastically. If the prevalence of the
predicted outcome differs between the training data and the application
data, this can affect the performance of amodel, especially its calibration67,68.
Fortunately, differences in prevalence are easy to accommodate, at least in
simple linear models67,69,70.

However, while we usually speak conceptually about prevalence of
disease, what actually varies is the prevalence of its causes. Consider a naïve
probabilistic causal model of disease (Fig. 2), where Z is the core conceptual
problem, with its causes C, and effects E. When the prevalence of causes
varies with the site T , that will affect the downstream prevalence of the
disease and its effects.

The path C ! Z ! E is an abstraction representing a large network
of causes and effects; we choose a nodeZ as our condition of interest, which
defines upstream nodes as causes, and downstream nodes as effects.

For example, the core conceptual problem of Acute Myocardial
Infarction (AMI, or heart attack) is the sudden death of heartmuscle. There
are many causes of AMI, of which the most immediate is an abrupt
reduction in blood flow to the heart muscle. Causes further upstream in the
networkmay include arteries narrowed by plaque, a sudden rupture of that
plaque, a blood clot abruptly blocking an artery, or vasospasm stimulated by
mediators released from platelets.

So far, noneof the causes should inherently varybetween sites. But even
further upstream are causes related to genetics, diet, exercise, and envir-
onmental or medication exposures, all of which do vary with geographic
location, local patient populations, local practice patterns, or time. That
variation will eventually affect the downstream prevalence of AMI in the
population, as well as that of any downstream effects, such as chest pain,
shortness of breath, release into the bloodstream of intracellular cardiac
enzymes, unconsciousness, or death.

Sometimes, a condition of interest is really the union of a set of sub-
types,withinwhichsomeare easier topredict thanothers38,71,72. In this case, a
change in the distribution of subtypes will affect the performance of the
model. Performance can even improve on an external dataset if it contains a
larger proportion of an easy subtype. This fact can be used nefariously to
construct test sets that dramatically increase the apparent performance of a
model by including a high prevalence of an easily predicted subtype (such as
an easy negative subtype).

Presence of site-specific processes
With some thought, we can identify additional inherent sources of
instability that are not represented in Fig. 2. To understand these, note that
in general, the variables in the C ! Z ! E cause-effect network are not
directly recorded in clinical practice73,74, largely because (as with heart
muscle death) they are not directly observable under typical clinical con-
ditions. Instead, the related observational variablesO (such as laboratory test
results, clinical images, medication records, billing codes, and narrative
clinical text) are observed and recorded using site-specific processes (Fig. 3).
While these are intended to reliably reflect the latent variables in the cause-
effect network, in practice they cover only a subset of those variables, and the
observations depend on case mix, practice patterns, specific instruments,
reagents, and personnel, as well as financial incentives71,75,76. We might

expect this dependence to be standardized across sites, but it turns out to be
an important source of distribution shift, even for observations as
straightforward clinical laboratory tests, which are affected by spectrum
bias72, test ordering patterns77, variation in measurement78, and variation in
reference values79.

Instability arises not only from how a variable is observed but also
which variables and when66,77. The which and when decisions are generally
made by expert recognition of a developing clinical picture, and can depend
on any other variable or process at the time of the decision. These include
pathophysiologic phenomena, but also practical phenomena such as the
patientdeciding topresent for care, beingdiscoveredunresponsive inpublic,
brought to the hospital by ambulance, assigned to a particular clinical team,
or other factors that may or may not be recorded in the EHR.

Decisions to observe are represented in our model by a set of selection
variables S (Fig. 3)80. The variable So 2 S represents the decision of when to
record (record when So ¼ 1, not when So ¼ 0), and each SOi

� S is a set of
variables that collectively represent the decision of which Oi to record
(recordOi when all elements of SOi

¼ 1). Any decision in Smay depend on
the site T , causes C, effects E, or observations O. The when and which
decisions together produce what has been described as “selection bias on
selection bias”80. (For simplicity, we omit a discrete time index t in the graph
and the notation. But the notation can be extended for all variables so that,
for example, So becomes So½t�, meaning So at the time t.)

In clinical practice, many measurements are prompted by the suspi-
cion that a relevant observational variable Oi may be outside of its healthy
range, which means that the distribution of observed variables
PðOijSOi

¼ 1Þ is different from the unobserved PðOijSOi
¼ 0Þ, also known

as informative missingness81 or informative presence82. The decision to
observe is subject to disagreement about what is relevant (even between
clinicians of the same specialty trying to answer the same clinical question
about the same patient83–86), and can become subject to feedback loops if the
decisions themselves are used as predictors in a model81,87. Given this var-
iation in how, when, and which observations are made, it is difficult to see
how any of the observational variables could be stable across sites.

Typically, we want to estimate PðY jOÞ. But conditioning on observa-
tionsO does not block the influence of the site T , which is the root cause of
all instability (Fig. 3), and a sufficiently powerful model can estimate that
influence, given enough data. This can happen even if the observations inO
are only the pixels of a radiographic image88. A powerful model can learn
what itmeans clinically that a chestX-raywas done on a particularmachine,
that a laboratory test was done on a weekend, or that it was ordered by a
givenphysician. In amulti-site dataset, the identity of theoriginating site can
easily be inferred from site-specific dependencies and exploited for
prediction37.

Fig. 2 | A naïve conceptual causal model of disease. Green: Variables or processes
that can change between sites. Dotted circle: Unobserved variables. Variable names
as in Table 1.

Fig. 3 | A more complete model of disease, including a predicted target Y.
Conditioning on observations O (shaded green) to produce PðYjOÞ allows the
prediction to be affected by site T and selection variables S. In contrast, conditioning
on the latent but true causes and effects (shaded red) to produce P(Y|C,E), does not.
As in other figures, arrows represent the direction of causality, not the direction of
inference. Variable names as in Table 1.
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Perhaps because themodel is exploiting unanticipateddependencies in
the data that don’t match causal pathophysiologic pathways, these depen-
dencies have been called shortcuts89, and considered cheating. But blaming
themodel isn’t a productive researchdirection. The algorithmdoesn’t know
what we intend for it to learn. It can’t tell the difference between patho-
physiologic and process-related patterns. All it knows is that the task is to
take O 2 Rn and predict Y 2 R or Y 2 f0; 1g, and it uses all available
patterns to do that.

Moreover, human experts also exploit process-related information. A
radiologist doesn’t just look at the film to identify signs of disease, she also
wants to know why the film was ordered, who ordered it, and what was
going on with the patient at the time. A pathologist doesn’t only look at the
slide under the microscope, he also wants to know the location on the body
where the biopsy was taken, and what was the clinical scenario that led to
ordering it. If a computational model can infer such things from the input
data, there is no reason why it shouldn’t use them to improve its
performance.

Potential solutions
Experimental sourcesof instability have known solutions that can take effort
to implement, but these are at least under the control of the
experimenter14,16,90. Minimizing the effects of inherent sources is a harder
problem, because they are actually part of the data-generating
mechanism54,89,91–93. We are unaware of any experiments to quantify the
relative prevalence and magnitude of experimental vs. inherent sources of
instability, although we argue above that inherent sources are likely to drive
many transport failures. If this turns out to be true, how could weminimize
their impact?

An obvious solution is to somehow identify and exclude the inherent
unstable patterns from the model. There are powerful and sophisticated
methods to do this, whether the unstable information resides in nodes,
edges, or a combination51,56,60,65,66,94–96. A related approach is to use data from
multiple sites during training, under leave-one-site-out cross validation, so
the model identifies only stable features to begin with2. These all can be
effective methods in specific circumstances. However, wemight expect that
removing any non-redundant information will decrease a model’s perfor-
mance, inevitably tradingperformance for stability56. If unstablepatterns are
as ubiquitous as expected in clinical data, removing them could have a
disastrous effect.

Is it possible to keep the information contained in unstable patterns,
but minimize their impact on transportability? One potential direction is to
notice that the task of training a stable model reduces to blocking the
influence of the siteT on the estimate of disease variablesZ andY . There are
a host of ways of doing this, including carefully collecting prospectively
randomized data, or specifying an appropriate set of conditioning variables
using prior knowledge to block the effects in a particular dataset66. There are
also measurement error models that can correct for measurement differ-
ences between sites97,98. These methods can be effective, but properly spe-
cifying the appropriate conditioning set or measurement error distribution
remains challenging in this setting. Instead, we would like an approach that
could be more easily applied to untamed EHR data.

In general, we can block the influence of the site T on the estimate of
disease variables Z and Y by conditioning on the latent cause and effect
variables C and E, because Z,Y ⫫ T|C,E (Fig. 3). However, conditioning on
latent variables is difficult; to address this difficulty, we consider separating
our model into a Process Model that estimates the latent variables, and a
Disease Model that uses them for prediction (Fig. 4).

We expect that both models would need to be learned from data. The
Process Model must infer the site-specific relationships PðC; EjO;T; SÞ,
where S is given implicitly by the missing elements of O. It represents the
imprint on the data of local implementations of care processes, andmust be
trained for each site. TheDiseaseModelwould infer the stable relationships
PðZjC; EÞ, and P YjZð Þ if a specific label or target is required (Fig. 4). It
represents howdisease behaves; it generalizes across all sites, and could even
be trained using estimates fC;Z; E;Yg pooled from multiple sites.

To achieve stability under this arrangement, the Process Model must
infer sufficiently accurate point estimates of the latent variables, or else
information about T can leak through the conditioning. Given enough
information in O, such as by a sufficiently large number of variables in O,
acceptable accuracy should be achievable99,100. We know of no imple-
mentations of this strategy, but some promising initial steps have
been made.

First, de Fauw and colleagues101 found that a model of retinal disease
from 3-dimensional optical coherence tomography images ported poorly
between different types of scanners, with an error rate of 46% on external
data for predicting specialty referral (vs. 5.5% on the internal test set). To
address the instability, they created a Process Model that produced a tissue
segmentation P C; EjO;Tð Þ, from the raw image pixels and aDiseaseModel
P Z;Y jC; Eð Þ that recognized retinal pathology from the segmentation and
made a referral recommendation. Retraining only the ProcessModel on the
new scanner’s data dramatically reduced the external error rate to 3%. This
worked because the investigators knew what the latent variables were (the
physical structure of tissue layers), and were able to label them for training
theProcessModel. But the results demonstrate thepromiseof concentrating
the instability into the Process Model.

Next, Lasko and Mesa102 used probabilistic independence to infer
unsupervised data signatures that represent 2000 latent variables in the
C ! Z ! E network from a large EHR dataset. Then they separately
trained a supervised Disease Model using the estimated values of those
variables to predict liver transplant 10 years in the future. The top predictors
in the Disease Model corresponded in correct rank order to the leading
causes of hepatocellular carcinoma, suggesting that the method had accu-
rately estimated causal latent variables. Strobl and Lasko103 later proved
theoretically that the latent variables learned by this approach do, in fact,
correspond to root causes of disease (meaning the furthest upstream

Fig. 4 | Separating the site-specific Process Model P(C,E|O,T,S) from the stable
Disease Model P(Z,Y|C,E). The Process Model produces point estimates for C and
E, which are used by theDiseaseModel to infer values forZ andY . Variable names as
in Table 1.

Table 1 | Variable Definitions

Variable Definition

T Data Collection Site (in time and space)

C (Latent) Disease causes or risk factors.

Z (Latent) Core disease characteristics.

E (Latent) Downstream effects.

Y Binary label or continuous target

O Observed variables

S Selection variables
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variables in C or Z with unique causal effects on Y), and can identify those
causes specific to eachpatient case.These results demonstrate thepromiseof
estimating and thenconditioningon latentdisease variables, evenwhen they
are not known in advance. The approach has since been extended to
accommodate heteroscedasticity104 and latent confounders105.

But is it actually worth the effort to separate one model into two? If we
must retrain a Process Model at each site anyway, why not just retrain the
whole thing? For example, why not start with a dataset from just a few sites,
using a site identifier as an input variable? Additional sites could be added to
themodel by simply continuing the trainingusing thenewsite’s data,with its
new site identifier. The question recalls deDombal’s note that amodel using
global probabilities performed much better at each data-contributing site
than cross-site probabilities did, though not quite as well as same-site
probabilities21. A lighter variation on this could be to develop a single
foundational model, which each site would fine-tune or update separately
with local data3,69,106–108. These approaches canbequitepractical and effective.

The largest benefit we see to our proposal of isolating the two types of
patterns is that while the updated or cumulative model solutions may
address the transportability problem, they miss out on what could be sub-
stantial advances that exploit the natural division between process rela-
tionships and disease relationships.

First, we see the Disease Model as representing what we actually want
to know about health and disease. It is described using the same relation-
ships that clinicians learn in the classroom phase of medical school to guide
clinical thinking. It is stable, transferrable knowledge that can be directly
shared between institutions, forming the core of a learning healthcare sys-
tem. It is the representation that abstracts away all site-specific information.

Second, we see the Process Model as representing the site-specific
processes that clinicians learn in their clerkships and residency, by which
patients are diagnosed,monitored, and treated. It gives a window ontowhat
we want to know about healthcare delivery: What are our care processes?
How do they differ between institutions? How do they evolve over time?
What are their inefficiencies and conflicts? Those questions are probably
best answered by direct observation, but the processes involved do leave an
imprint on the data record, which when isolated could provide clues or
signals about the processes. This idea recalls Hripcsak and Albers76 from a
decade ago, who insightfully described the EHR as an artifact of the
recording process, rather than a direct record of disease. They called for
studying the EHR as a phenomenon of its own, “deconvolving” the actual
patient state from what is recorded. Their call maps directly onto learning
and analyzing Process Models .

Summary
It should not surprise us when high-performance probabilistic clinical
models fail to transport to new sites. The failure is directly caused by dif-
ferences in the multivariate distribution between the training data and the
application data. Some of these differences are due to controllable experi-
mental factors, such as overfitting, information leaks, data definitions, and
misuse, but others are inherent in site-specific data-generatingmechanisms,
andmuchmoredifficult to avoid.Howbest tominimize the inherent factors
is an open question, as is the relative impact of experimental vs. inherent
sources in transport failure. However, we argue that simply removing
unstable patterns and variables from clinical datasets is unlikely to succeed,
because nearly all recorded observations and their relationshipswith disease
variables are rendered unstable by site-specific clinical practices. Instead, we
propose embracing the instability and exploiting all information in a record
to maximize performance, by training first a Process Model that uses the
site-specific information to infer latent cause and effect variables, and then a
Disease Model that uses those latent variables to make stable inferences
about a patient’s clinical state. There are early but promising indicators of
potential merit in the approach.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Received: 9 June 2023; Accepted: 14 February 2024;

References
1. Van Calster, B., Steyerberg, E. W., Wynants, L. & van Smeden, M.

There is no such thing as a validated prediction model. BMC Med.
21, 70 (2023).

2. de Jong, V.M. T., Moons, K. G.M., Eijkemans,M. J. C., Riley, R. D. &
Debray, T. P. A. Developing more generalizable prediction models
from pooled studies and large clustered data sets. Stat. Med. 40,
3533–3559 (2021).

3. Debray, T. P. A. et al. Meta-analysis and aggregation of multiple
published prediction models. Stat. Med. 33, 2341–2362 (2014).

4. Siontis, G. C. M., Tzoulaki, I., Castaldi, P. J. & Ioannidis, J. P. A.
External validation of new risk prediction models is infrequent and
reveals worse prognostic discrimination. J. Clin. Epidemiol. 68,
25–34 (2015).

5. Begley, C. G. & Ioannidis, J. P. A. Reproducibility in science. Circ.
Res. 116, 116–126 (2015).

6. Motulsky, H. J. Common misconceptions about data analysis and
statistics. Naunyn. Schmiedebergs Arch. Pharmacol. 387,
1017–1023 (2014).

7. Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does research
reproducibilitymean?Sci. Transl.Med. 8, 341ps12–341ps12 (2016).

8. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533,
452–454 (2016).

9. Ostropolets, A. et al. Reproducible variability: assessing investigator
discordance across 9 research teams attempting to reproduce the
same observational study. J. Am. Med. Inform. Assoc. 30,
859–868 (2023).

10. Botvinik-Nezer, R. et al. Variability in the analysis of a single
neuroimaging dataset by many teams. Nature 582, 84–88 (2020).

11. Errington, T. M., Denis, A., Perfito, N., Iorns, E. & Nosek, B. A.
Challenges for assessing replicability in preclinical cancer biology.
eLife 10, e67995 (2021).

12. Coiera, E. & Tong, H. L. Replication studies in the clinical decision
support literature–frequency, fidelity, and impact. J. Am. Med.
Inform. Assoc. 28, 1815–1825 (2021).

13. Sohn, E. The reproducibility issues that haunt health-care AI.Nature
613, 402–403 (2023).

14. McDermott, M. B. A. et al. Reproducibility in machine learning for
health research: Still a ways to go. Sci. Transl. Med. 13,
eabb1655 (2021).

15. Van Calster, B., Wynants, L., Timmerman, D., Steyerberg, E. W. &
Collins, G. S. Predictive analytics in health care: how can we know it
works? J. Am. Med. Inform. Assoc. 26, 1651–1654 (2019).

16. Heil, B. J. et al. Reproducibility standards for machine learning in the
life sciences. Nat. Methods 18, 1132–1135 (2021).

17. Warner, H. R., Toronto, A. F., Veasey, L. G. & Stephenson, R. A
Mathematical approach to medical diagnosis: application to
congenital heart disease. JAMA 177, 177–183 (1961).

18. Ledley, R. S. & Lusted, L. B. Reasoning foundations of medical
diagnosis. Science 130, 9–21 (1959).

19. Bruce, R. A. & Yarnall, S. R. Computer-aided diagnosis of
cardiovascular disorders. J. Chronic Dis. 19, 473–484 (1966).

20. Feinstein, A. R. An analysis of diagnostic reasoning. II. The strategy
of intermediate decisions. Yale J. Biol. Med. 46, 264–283 (1973).

21. de Dombal, F. T., Staniland, J. R. & Clamp, S. E. Geographical
variation in disease presentation: does it constitute a problem and
can information science help?Med. Decis. Mak. 1, 59–69 (1981).

22. Bao, Y. et al. Association of nut consumption with total and cause-
specific mortality. N. Engl. J. Med. 369, 2001–2011 (2013).

23. Yu, B. Stability. Bernoulli 19, 1484–1500 (2013).
24. Yu, B. & Kumbier, K. Veridical data science. Proc. Natl. Acad. Sci.

117, 3920–3929 (2020).

https://doi.org/10.1038/s41746-024-01037-4 Perspective

npj Digital Medicine |            (2024) 7:53 5



25. Abu-Mostafa, Y. S., Magdon-Ismail, M. & Lin, H.-T. Overfitting. in
Learning from data: A short course (AMLbook, 2012).

26. Advani, M. S., Saxe, A. M. & Sompolinsky, H. High-dimensional
dynamics of generalization error in neural networks. Neural Netw.
132, 428–446 (2020).

27. Belkin, M., Hsu, D., Ma, S. & Mandal, S. Reconciling modern
machine-learning practice and the classical bias-variance trade-off.
Proc. Natl. Acad. Sci. USA 116, 15849–15854 (2019).

28. Belkin, M. Fit without fear: remarkable mathematical phenomena of
deep learning through the prism of interpolation. Acta Numer. 30,
203–248 (2021).

29. d’Ascoli, S., Sagun, L. &Biroli, G. Triple descent and the two kinds of
overfitting: where and why do they appear? In Advances in neural
information processing systems (eds. Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M. F. & Lin, H.) vol. 33 3058–3069 (Curran
Associates, Inc., 2020).

30. Yu, K.-H. et al. Reproducible machine learning methods for lung
cancer detection using computed tomography images: algorithm
development and validation. J. Med. Internet Res. 22,
e16709 (2020).

31. Kaufman, S., Rosset, S. & Perlich, C. Leakage. in data mining:
formulation, detection, and avoidance. In Proce. 17th ACM
SIGKDD international conference on Knowledge discovery and
data mining 556–563 (Association for ComputingMachinery, New
York, NY, USA, 2011). https://doi.org/10.1145/2020408.
2020496.

32. Davis, S. E.,Matheny,M.E., Balu,S. &Sendak,M.P. A framework for
understanding label leakage in machine learning for health care. J.
Am. Med. Inform. Assoc. https://doi.org/10.1093/jamia/
ocad178 (2023).

33. Rosset, S., Perlich, C., Świrszcz, G., Melville, P. & Liu, Y. Medical
data mining: insights from winning two competitions. Data Min.
Knowl. Discov. 20, 439–468 (2010).

34. Rajpurkar, P. et al. CheXNet: Radiologist-Level Pneumonia
Detection on Chest X-Rays with Deep Learning. Preprint at https://
doi.org/10.48550/arXiv.1711.05225 (2017).

35. Guts, Y. Target Leakage inMachine Learning. https://www.youtube.
com/watch?v=dWhdWxgt5SU (2018).

36. Perry, T. Andrew Ng X-Rays the AI Hype. IEEE Spectrum. https://
spectrum.ieee.org/andrew-ng-xrays-the-ai-hype (2021).

37. Zech, J. R. et al. Confounding variables can degrade generalization
performance of radiological deep learning models. PLOS Med. 15,
e1002683 (2018).

38. Oakden-Rayner, L., Dunnmon, J., Carneiro, G. & Ré, C. Hidden
stratification causes clinically meaningful failures in machine
learning for medical imaging. Proc. ACM Conf. Health Inference
Learn. 2020, 151–159 (2020).

39. Habib,A.R., Lin, A. L. &Grant,R.W. Theepic sepsismodel falls short
—the importance of external validation. JAMA Intern. Med. 181,
1040–1041 (2021).

40. Wong, A. et al. External Validation of a Widely Implemented
Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA
Intern. Med. 181, 1065–1070 (2021).

41. Nestor, B. et al. Feature Robustness in Non-stationary Health
Records: Caveats to Deployable Model Performance in Common
Clinical Machine Learning Tasks. Proceedings of the 4th Machine
Learning for Healthcare Conference, in Proceedings of Machine
Learning Research 106, 381–405 (2019). Available from https://
proceedings.mlr.press/v106/nestor19a.html.

42. Gong, J. J., Naumann, T., Szolovits, P. & Guttag, J. V. Predicting
Clinical Outcomes Across Changing Electronic Health Record
Systems. In Proc. 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 1497–1505 (Association for
Computing Machinery, New York, NY, USA, 2017); https://doi.org/
10.1145/3097983.3098064.

43. McDonald, C. J. et al. LOINC, a universal standard for identifying
laboratory observations: A 5-Year Update. Clin. Chem. 49,
624–633 (2003).

44. Stram, M. et al. Logical observation identifiers names and codes for
laboratorians: potential solutions and challenges for interoperability.
Arch. Pathol. Lab. Med. 144, 229–239 (2019).

45. Parr, S. K., Shotwell, M. S., Jeffery, A. D., Lasko, T. A. &Matheny, M.
E. Automated mapping of laboratory tests to LOINC codes using
noisy labels in a national electronic health record system database.
J. Am. Med. Inform. Assoc. 25, 1292–1300 (2018).

46. Abhyankar, S., Demner-Fushman, D. & McDonald, C. J.
Standardizing clinical laboratory data for secondary use. J. Biomed.
Inform. 45, 642–650 (2012).

47. Cooper, G. F. et al. An evaluation of machine-learning methods for
predicting pneumoniamortality.Artif. Intell. Med. 9, 107–138 (1997).

48. Caruana, R. et al. Intelligible models for HealthCare: predicting
pneumonia risk and hospital 30-day readmission. InProc. 21th ACM
SIGKDD international conference on knowledge discovery and data
mining (KDD’15) (2015). https://doi.org/10.1145/2783258.2788613.

49. Cabitza, F., Rasoini,R. &Gensini,G. F.Unintendedconsequencesof
machine learning in medicine. JAMA J. Am. Med. Assoc. 318,
517–518 (2017).

50. Subbaswamy, A. & Saria, S. From development to deployment:
dataset shift, causality, and shift-stable models in health AI.
Biostatistics 21, 345–352 (2020).

51. Subbaswamy, A. & Saria, S. I-SPEC: An End-to-End Framework for
Learning Transportable, Shift-StableModels. Preprint at https://doi.
org/10.48550/arXiv.2002.08948 (2020).

52. Lasko, T. A., Walsh, C. G. & Malin, B. Benefits and risks of machine
learning decision support systems. JAMA J. Am. Med. Assoc. 318,
2355 (2017).

53. Shen, Z. et al. Towards Out-Of-Distribution Generalization: A
Survey. Preprint at https://doi.org/10.48550/arXiv.2108.
13624 (2021).

54. Dataset Shift in Machine Learning. (The MIT Press, Cambridge,
Mass, 2008).

55. Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V.
&Herrera, F. A unifying view ondataset shift in classification.Pattern
Recognit. 45, 521–530 (2012).

56. Subbaswamy, A., Chen, B. & Saria, S. A unifying causal framework
for analyzing dataset shift-stable learning algorithms. J. Causal
Inference 10, 64–89 (2022).

57. Koh, P. W. et al. WILDS: A Benchmark of in-the-Wild Distribution
Shifts.Proceedings of the 38th InternationalConferenceonMachine
Learning, in Proceedings of Machine Learning Research 139,
5637–5664 (2021). Available from https://proceedings.mlr.press/
v139/koh21a.html.

58. Zhou, K., Liu, Z., Qiao, Y., Xiang, T. & Loy, C. C. Domain
Generalization:ASurvey. IEEETrans.PatternAnal.Mach. Intell. 1–20
https://doi.org/10.1109/TPAMI.2022.3195549 (2022)

59. Wang, J., Lan, C., Liu, C., Ouyang, Y. & Qin, T. Generalizing to
Unseen Domains: A Survey on Domain Generalization. In Proc.
Thirtieth International Joint Conference on Artificial Intelligence
4627–4635 (International Joint Conferences on Artificial Intelligence
Organization, Montreal, Canada, 2021); https://doi.org/10.24963/
ijcai.2021/628.

60. Pearl, J. & Bareinboim, E. Transportability of causal and statistical
relations: a formal approach. Proc. AAAI Conf. Artif. Intell. 25,
247–254 (2011).

61. Arjovsky, M., Bottou, L., Gulrajani, I. & Lopez-Paz, D. Invariant Risk
Minimization. Preprint at https://doi.org/10.48550/arXiv.1907.
02893 (2020).

62. Bellot, A. & van der Schaar, M. Accounting for Unobserved
Confounding in Domain Generalization. Preprint at https://doi.org/
10.48550/arXiv.2007.10653 (2022).

https://doi.org/10.1038/s41746-024-01037-4 Perspective

npj Digital Medicine |            (2024) 7:53 6

https://doi.org/10.1145/2020408.2020496
https://doi.org/10.1145/2020408.2020496
https://doi.org/10.1145/2020408.2020496
https://doi.org/10.1093/jamia/ocad178
https://doi.org/10.1093/jamia/ocad178
https://doi.org/10.1093/jamia/ocad178
https://doi.org/10.48550/arXiv.1711.05225
https://doi.org/10.48550/arXiv.1711.05225
https://doi.org/10.48550/arXiv.1711.05225
https://www.youtube.com/watch?v=dWhdWxgt5SU
https://www.youtube.com/watch?v=dWhdWxgt5SU
https://www.youtube.com/watch?v=dWhdWxgt5SU
https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype
https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype
https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype
https://proceedings.mlr.press/v106/nestor19a.html
https://proceedings.mlr.press/v106/nestor19a.html
https://proceedings.mlr.press/v106/nestor19a.html
https://doi.org/10.1145/3097983.3098064
https://doi.org/10.1145/3097983.3098064
https://doi.org/10.1145/3097983.3098064
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.48550/arXiv.2002.08948
https://doi.org/10.48550/arXiv.2002.08948
https://doi.org/10.48550/arXiv.2002.08948
https://doi.org/10.48550/arXiv.2108.13624
https://doi.org/10.48550/arXiv.2108.13624
https://doi.org/10.48550/arXiv.2108.13624
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.mlr.press/v139/koh21a.html
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.24963/ijcai.2021/628
https://doi.org/10.24963/ijcai.2021/628
https://doi.org/10.24963/ijcai.2021/628
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.48550/arXiv.2007.10653
https://doi.org/10.48550/arXiv.2007.10653
https://doi.org/10.48550/arXiv.2007.10653


63. Amodei, D. et al. Concrete Problems in AI Safety. Preprint at https://
doi.org/10.48550/arXiv.1606.06565 (2016).

64. Degtiar, I. & Rose, S. A Review of Generalizability and
Transportability. Annu. Rev. Stat. Appl. 10, 501–524 (2023).

65. Correa, J. D., Lee, S. & Bareinboim, E. Counterfactual
Transportability: A Formal Approach. Proceedings of the 39th
International Conference on Machine Learning, in Proceedings of
Machine Learning Research 162, 4370–4390 (2022). Available from
https://proceedings.mlr.press/v162/correa22a.html.

66. Bareinboim, E., Tian, J. & Pearl, J. Recovering from selection bias in
causal and statistical inference. Proceedings of the AAAI
Conference on Artificial Intelligence 28 (2014). https://doi.org/10.
1609/aaai.v28i1.9074.

67. Morise, A. P., Diamond, G. A., Detrano, R., Bobbio, M. & Gunel, E.
The effect of disease-prevalence adjustments on the accuracy of a
logistic prediction model.Med. Decis. Mak. 16, 133–142 (1996).

68. Davis, S. E., Lasko, T. A., Chen, G., Siew, E. D. & Matheny, M. E.
Calibration drift in regression andmachine learningmodels for acute
kidney injury. J. Am. Med. Inform. Assoc. JAMIA 24,
1052–1061 (2017).

69. Davis, S. E. et al. A nonparametric updating method to correct
clinical prediction model drift. J. Am. Med. Inform. Assoc. 26,
1448–1457 (2019).

70. Poses, R. M., Cebul, R. D., Collins, M. & Fager, S. S. The importance
of disease prevalence in transporting clinical prediction rules. Ann.
Intern. Med. 105, 586–591 (1986).

71. Riley, R. D. et al. External validation of clinical prediction models
using big datasets from e-health records or IPD meta-analysis:
opportunities and challenges. BMJ 353, i3140 (2016).

72. Mulherin, S. A. & Miller, W. C. Spectrum bias or spectrum effect?
Subgroup variation in diagnostic test evaluation. Ann. Intern. Med.
137, 598–602 (2002).

73. Botsis, T., Hartvigsen, G., Chen, F. & Weng, C. Secondary use of
EHR: data quality issues and informatics opportunities. Summits
Transl. Bioinform. 2010, 1–5 (2010).

74. Sarwar, T. et al. The secondary use of electronic health records for
data mining: data characteristics and challenges. ACM Comput.
Surv. 55, 33:1–33:40 (2022).

75. Tellez, D. et al. Quantifying the effects of data augmentation and
stain color normalization in convolutional neural networks
for computational pathology. Med. Image Anal. 58,
101544 (2019).

76. Hripcsak, G. & Albers, D. J. Next-generation phenotyping of
electronic health records. J. Am. Med. Inform. Assoc. 20,
117–121 (2013).

77. Agniel, D., Kohane, I. S. & Weber, G. M. Biases in electronic health
record data due to processes within the healthcare system:
retrospective observational study. BMJ 361, k1479 (2018).

78. Joffe, M. et al. Variability of creatinine measurements in clinical
laboratories: results from the CRIC study. Am. J. Nephrol. 31,
426–434 (2010).

79. Siest, G. et al. The theory of reference values: an unfinished
symphony. Clin. Chem. Lab. Med. 51, 47–64 (2013).

80. Strobl, E. V., Visweswaran, S. & Spirtes, P. L. Fast causal inference
with non-randommissingness by test-wise deletion. Int. J. Data Sci.
Anal. 6, 47–62 (2018).

81. Groenwold, R. H. H. Informative missingness in electronic health
record systems: the curse of knowing. Diagn. Progn. Res. 4,
8 (2020).

82. Sisk, R. et al. Informative presence and observation in routine health
data: a reviewofmethodology for clinical risk prediction.J. Am.Med.
Inform. Assoc. 28, 155–166 (2021).

83. Herasevich, V., Ellsworth,M.A., Hebl, J. R., Brown,M. J. &Pickering,
B. W. Information needs for the OR and PACU electronic medical
record. Appl. Clin. Inform. 5, 630–641 (2014).

84. Zeng,Q.,Cimino, J. J. &Zou,K.H.Providingconcept-orientedviews
for clinical data using a knowledge-based system: An Evaluation. J.
Am. Med. Inform. Assoc. JAMIA 9, 294–305 (2002).

85. Van Vleck, T. T., Stein, D. M., Stetson, P. D. & Johnson, S. B.
Assessing data relevance for automated generation of a clinical
summary. Annu. Symp. Proc. AMIA Symp. 2007, 761–765 (2007).

86. Lasko, T. A. et al. User-centered clinical display design issues for
inpatient providers. Appl. Clin. Inform. 11, 700–709 (2020).

87. vanSmeden,M.,Groenwold,R.H.H. &Moons,K.G.M.Acautionary
note on the use of themissing indicatormethod for handlingmissing
data in prediction research. J. Clin. Epidemiol. 125, 188–190 (2020).

88. Badgeley, M. A. et al. Deep learning predicts hip fracture using
confounding patient and healthcare variables. Npj Digit. Med. 2,
1–10 (2019).

89. Geirhos, R. et al. Shortcut learning in deep neural networks. Nat.
Mach. Intell. 2, 665–673 (2020).

90. Van Calster, B. et al. A calibration hierarchy for risk models was
defined: from utopia to empirical data. J. Clin. Epidemiol. 74,
167–176 (2016).

91. Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans.
Knowl. Data Eng. 22, 1345–1359 (2010).

92. D’Amour, A. et al. Underspecification presents challenges for
credibility in modern machine learning. J. Mach. Learn. Res. 23,
1–61 (2022).

93. Delétang,G. et al. Neural Networks and theChomskyHierarchy. The
Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=WbxHAzkeQcn (2023).

94. Saranrittichai, P.,Mummadi, C. K., Blaiotta, C.,Munoz,M. &Fischer,
V. Overcoming Shortcut Learning in a Target Domain by
Generalizing Basic Visual Factors from a Source Domain. In
Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in
Computer Science, Vol. 13685 (eds Avidan, S., Brostow, G., Cissé,
M., Farinella, G. M. & Hassner, T.) (Springer, Cham., 2022). https://
doi.org/10.1007/978-3-031-19806-9_17.

95. Magliacane, S. et al. Domain adaptation by using causal inference to
predict invariant conditional distributions. In Advances in Neural
Information Processing Systems vol. 31 (Curran Associates,
Inc., 2018).

96. Atzmon, Y., Kreuk, F., Shalit, U. & Chechik, G. A causal view of
compositional zero-shot recognition. In Advances in Neural
Information Processing Systems vol. 33 1462–1473 (Curran
Associates, Inc., 2020).

97. Stefanski, L. A. & Cook, J. R. Simulation-extrapolation: the
measurement error Jackknife. J. Am. Stat. Assoc. 90,
1247–1256 (1995).

98. Carroll, R. J., Roeder, K. & Wasserman, L. Flexible parametric
measurement error models. Biometrics 55, 44–54 (1999).

99. Wang, Y. & Blei, D. M. The blessings of multiple causes. J. Am. Stat.
Assoc. 114, 1574–1596 (2019).

100. Ogburn, E. L., Shpitser, I. & Tchetgen, E. J. T. Counterexamples to
‘The Blessings of Multiple Causes’ by Wang and Blei. Preprint at
https://doi.org/10.48550/arXiv.2001.06555 (2020).

101. De Fauw, J. et al. Clinically applicable deep learning for diagnosis
and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).

102. Lasko, T. A. & Mesa, D. A. Computational phenotype discovery via
probabilistic independence. In Proc KDD workshop on appl data sci
for healthcare (DSHealth) (2019). Available from https://doi.org/10.
48550/arXiv.1907.11051.

103. Strobl, E. V. & Lasko, T. A. Identifying patient-specific root causes of
disease. In Proc. 13th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics 1–10
(Association for Computing Machinery, New York, NY, USA, 2022);
https://doi.org/10.1145/3535508.3545553.

104. Strobl, E. V. & Lasko, T. A. Identifying patient-Specific root causes
heteroscedastic noise model. J. Comput. Sci. 72, 102099 (2023).

https://doi.org/10.1038/s41746-024-01037-4 Perspective

npj Digital Medicine |            (2024) 7:53 7

https://doi.org/10.48550/arXiv.1606.06565
https://doi.org/10.48550/arXiv.1606.06565
https://doi.org/10.48550/arXiv.1606.06565
https://proceedings.mlr.press/v162/correa22a.html
https://proceedings.mlr.press/v162/correa22a.html
https://doi.org/10.1609/aaai.�v28i1.9074
https://doi.org/10.1609/aaai.�v28i1.9074
https://doi.org/10.1609/aaai.�v28i1.9074
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://doi.org/10.1007/978-3-031-19806-9_17
https://doi.org/10.1007/978-3-031-19806-9_17
https://doi.org/10.1007/978-3-031-19806-9_17
https://doi.org/10.48550/arXiv.2001.06555
https://doi.org/10.48550/arXiv.2001.06555
https://doi.org/10.48550/arXiv.1907.11051
https://doi.org/10.48550/arXiv.1907.11051
https://doi.org/10.48550/arXiv.1907.11051
https://doi.org/10.1145/3535508.3545553
https://doi.org/10.1145/3535508.3545553


105. Strobl, E. & Lasko, T. A. Sample-SpecificRootCausal Inferencewith
Latent Variables. Proceedings of the Second Conference on Causal
Learning and Reasoning, in Proceedings of Machine Learning
Research 213, 895–915 (2023). Available from https://proceedings.
mlr.press/v213/strobl23b.html.

106. Vergouwe, Y. et al. A closed testing procedure to select an
appropriate method for updating prediction models. Stat. Med. 36,
4529–4539 (2017).

107. Janssen, K. J. M., Moons, K. G. M., Kalkman, C. J., Grobbee, D. E. &
Vergouwe, Y. Updating methods improved the performance of a
clinical prediction model in new patients. J. Clin. Epidemiol. 61,
76–86 (2008).

108. Tanner, K., Keogh, R. H., Coupland, C. A. C., Hippisley-Cox, J. &
Diaz-Ordaz, K. Dynamic updating of clinical survival prediction
models in a rapidly changing environment. Diagn. Progn. Res. 7, 24
(2023). https://doi.org/10.1186/s41512-023-00163-z.

Acknowledgements
Thisworkwas funded in part by grants from theNational Library ofMedicine
(LM013807), the National Cancer Institute (CA253923), and the National
Institute of Arthritis and Musculoskeletal and Skin Diseases (AR076516).

Author contributions
T.A.L. conceived the original direction, with substantial scientific refinement
indiscussionwithE.V.S.andW.W.S.T.A.L.wrote the initialmanuscript draft,
with critical revision by E.V.S. and W.W.S. All authors accept responsibility
for the final article.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-024-01037-4.

Correspondence and requests for materials should be addressed to
Thomas A. Lasko.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41746-024-01037-4 Perspective

npj Digital Medicine |            (2024) 7:53 8

https://proceedings.mlr.press/v213/strobl23b.html
https://proceedings.mlr.press/v213/strobl23b.html
https://proceedings.mlr.press/v213/strobl23b.html
https://doi.org/10.1186/s41512-023-00163-z
https://doi.org/10.1186/s41512-023-00163-z
https://doi.org/10.1038/s41746-024-01037-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Why do probabilistic clinical models fail to transport between�sites
	Experimental sources
	Model overfitting
	Information leaks during training
	Different variable definitions in application�data
	Application to the wrong question

	Inherent sources
	Application data with different causal prevalence
	Presence of site-specific processes

	Potential solutions
	Summary
	Reporting summary

	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




