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AI-based diabetes care: risk prediction
models and implementation concerns

Check for updates

The utilization of artificial intelligence
(AI) in diabetes care has focused on
early intervention and treatment
management. Notably, usage has
expanded to predict an individual’s
risk for developing type 2 diabetes. A
scoping review of 40 studies by
Mohsen et al. shows that while most
studies used unimodal AI models,
multimodal approachesweresuperior
because they integrate multiple types
of data. However, creatingmultimodal
models and determining model
performance are challenging tasks
given the multi-factored nature of
diabetes. For both unimodal and
multimodal models, there are also
concerns of bias with the lack of
external validations and
representation of race, age, and
gender in training data. The barriers in
data quality and evaluation
standardization are ripe areas for
developing new technologies,
especially for entrepreneurs and
innovators. Collaboration amongst
providers, entrepreneurs, and
researchers must be prioritized to
ensure that AI in diabetes care is
providing quality and equitable
patient care.

W
ith the urgent need to address the
increasing incidence and pre-
valence of diabetes globally, pro-
mising new applications of

artificial intelligence (AI) for this chronic dis-
ease have arisen—development of predictive
models, risk stratification, evaluation of novel
risk predictors, and therapeutic management.
Thus far, most FDA-approved AI tools have

been designed for early intervention and treat-
ment management. Several of these tools are
currently used in clinical diabetes care. For early

intervention, in 2018 the FDA approved the
autonomous AI system Digital Diagnostics,
which was found to have high diagnostic accu-
racy in recognizingdiabetes retinopathy in retinal
screening images1. In the same year, the FDA
approved the Guardian Connect System, which
uses AI technology to interpret biomedical data
and predict a hypoglycemic attack an hour in
advance2. Since then, the FDA has also approved
AI technologies that assist with optimizing
insulin dosing and therapy for patients3,4.

Risk prediction
Beyond intervention and treatment, AI is now
being utilized to predict an individual’s risk for
developing type 2 diabetes (T2DM) and potential
complications. Identifying high-risk individuals
and personalizing prevention strategies and tar-
geted treatments could delay or prevent the onset
of diabetes and future health complications.
Mohsen et al. conducted a scoping review of

40 studies that investigated AI-based models for
diabetes risk prediction5. The performance of the
algorithms was measured using the area under
the curve (AUC)metric inmost studies. AUC is a
commonly used metric in machine learning to
determine the performance of AI models; an
AUC value of 1 indicates a perfect model. Of
these models, most were classical machine
learning models with electronic health records as
the predominant data source. Although amodest
number (n = 10) studies adopted multimodal
approaches (combining EHR with multi-omics
ormedical imaging data), these were shown to be
superior to unimodal models (n = 30). For
example, onemultimodal approach revealed that
a model combining genomic, metabolomic, and
clinical risk factors was superior in predicting
T2DM (AUC of 0.96) compared to a genomics-
only model (AUC of 0.586) and clinical-only
model (AUC of 0.798)6. Improved performance
of multimodal models can be attributed to inte-
grating multiple types of data such as clinical,
genetic, and biomarker data, providing a com-
prehensive view of an individual’s health status.
However, developing multimodal models is

extremely time-consuming and as a result, it is

challenging to quickly and easily scale such
models.Merging data sources can complicate the
understanding of interactions among modalities
and the rationale behind predictions, resulting in
a scarcity of multimodal AI models for T2DM.
Still, in light of promising outcomes from mul-
timodal models for chronic conditions such as
T2DM, there is a growing effort to create more
individualized multimodal virtual representa-
tions of patients, also known as digital twins. A
digital twin is created using multimodal indivi-
dual patient data, population data, and real-time
input of patient and environmental variables7.

Implementation concerns
While the review by Mohsen et al. suggests pro-
misingAI technologies forT2DMriskprediction,
the results should be approached with caution.
Determining the best-performing model is chal-
lenging, given that the type and combination of
input risk predictors for diabetes (e.g., BMI, waist
circumference, fasting plasma glucose, age, alco-
hol intake, blood pressure, etc.) can influence the
model’s performance. For example, the XGBoost
algorithm—a machine learning algorithm that
uses a sequentially iterative process to learn and
correct previous errors—was used in three
unimodal studies8. Although the same algorithm
was implemented, each study used different risk
predictors and datasets, which resulted in widely
disparate AUC values of 0.91, 0.83, and 0.679–11.
Even with multimodal models, direct compar-
isons across studies must be considered carefully
due to biases such as variations in datasets, eva-
luation metrics, and prediction horizons.
There are further concerns with bias due to the

variability of demographic representation across
models, with many in this study showing a pro-
nounced imbalance of gender, ethnicity, and age.
Only five studies provided insights into calibra-
tion of models and only five conducted external
validations. Most studies did not evaluate the
algorithm’s performance across different demo-
graphic groups or use calibration and fairness
(e.g., demographic parity, equal opportunity)
metrics to assess disparities in predictions across
these groups12,13. T2DM is amultifactorial disease
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impacted by biological, clinical, and socio-
economic factors. As Black and Mexican Amer-
icans have an increased prevalence of diabetes
compared to their white counterparts, the omis-
sion of certain demographics in training models
could perpetuate existing health inequities for
already at-risk populations and introduce a high
probability of bias14.
To ensure demographic representation in

datasets, it is necessary to implement policies that
require mandatory representation criteria for
approval and adoption. It is important to inte-
grate appropriate evaluation metrics, such as
using Quality Assessment of Diagnostic Accu-
racy Studies (QUADAS) AI frameworks to
evaluate a model’s risk of bias15. External valida-
tion is also crucial to ensure models can gen-
eralize beyond specific datasets used for training.
The QUADAS AI tool is an evidence-based tool
designed to assess the risk of bias—related to
patient selection, diagnostic test interpretation,
and choice of reference standard—and applic-
ability—generalizability of a study’s findings to
the intended population—of diagnostic accuracy
studies that involve AI. A comprehensive
approach will ensure that equitable and unbiased
AI models are used to prevent exacerbating
existing health disparities.

On the horizon
AI tools in diabetes care, specifically those trained
with a multimodal approach, have promising
applications in risk prediction. However, since
unimodal approaches are still more common-
place, there remains untapped potential in this
field to use more accurate tools that meet the
caliber of clinical care patients deserve. Novel
solutions are necessary on two fronts—data
quality and standardized evaluation metrics.
Comprehensive and diverse data sets to train
models are necessary to create accurate tools.
Especially as health data is continuously collected
to create robust datasets, it is important to orga-
nize and structure the data for potential com-
patibility and interoperability for developing
multimodal algorithms16. Universal evaluation
protocols are also necessary to mitigate the pro-
pagation of health inequities. The rapid and lar-
gescale adoption ofAI in healthcare cannot occur

before the problems in data quality and bias are
addressed—making these two fronts ripe areas of
development for innovations and new technolo-
gies from the private sector. Solutions to encou-
rage collaboration and transparency on these two
fronts could be inspired by structures in other AI
fields, such as open-source platforms, ethical
review processes, and enforcement of bias testing
touphold ahigher standardofpractice.To ensure
patient care lies at the center of novel AI tools in
diabetes care, solutions must be rooted in colla-
borative efforts with all stakeholders—clinicians,
researchers, policymakers, and entrepreneurs—
as we continue to innovate in the field of AI and
diabetes.
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