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Text messaging can promote healthy behaviors, like adherence to medication, yet its effectiveness
remains modest, in part becausemessage content is rarely personalized. Reinforcement learning has
been used in consumer technology to personalize content but with limited application in healthcare.
We tested a reinforcement learning program that identifies individual responsiveness (“adherence”) to
text message content and personalizes messaging accordingly. We randomized 60 individuals with
diabetes and glycated hemoglobin A1c [HbA1c] ≥ 7.5% to reinforcement learning intervention or
control (no messages). Both arms received electronic pill bottles to measure adherence. The
intervention improved absolute adjusted adherence by 13.6% (95%CI: 1.7%–27.1%) versus control
andwasmore effective in patientswithHbA1c7.5- < 9.0% (36.6%, 95%CI: 25.1%–48.2%, interaction
p < 0.001). We also explored whether individual patient characteristics were associated with
differential response to tested behavioral factors and unique clusters of responsiveness.
Reinforcement learning may be a promising approach to improve adherence and personalize
communication at scale.

Text messages can be delivered at low cost and provide reminders, educa-
tion, and motivational support for health behaviors on an ongoing basis1.
They have demonstrated effectiveness for supporting physical activity,
medication adherence, and other daily self-management activities that are
guideline recommended for managing chronic diseases, like type 2
diabetes2,3. However, many prior text messaging interventions have used
genericmessage content (i.e., the samemessages delivered to all patients)4–6.

Yet, a key principle for changing health behaviors is personalization
and how information is presented to match an individual’s specific needs,
which may also change over time7–10. Personalization can be based upon
simple characteristics, such as name, age, or health metrics11. More detailed
personalization could potentially be achieved by incorporating routines or
behavioral barriers, and adjusting frequently12,13.

A major obstacle to achieving personalization based on underlying
behavioral tendencies is the ability to predict what patients will actually
respond to. Traditionally, theory-based assessments, or expert opinion (like
barrier elicitation by clinicians), have been used to tailor behavioral mes-
saging particularly at the outset, and sometimes, with updates at
intervals14–18. For example, the REACH trial used interactive texts that asked
participants directly about their adherence through weekly feedback, and
another recent trial used dynamic tailoring based on patients’ imple-
mentation intention plan17,18. An alternative approach is to use observations
of what content patients actually respond to and use that as the basis for
what they will respond to in the future. This process is made feasible by
mobile health tools (like electronic pill bottles) that passivelymeasure health
behaviors on an ongoing basis. Consistent with this, there is emerging
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interest in just-in-time adaptive interventions (JITAIs), or an intervention
design that adapts support (e.g., type, timing, intensity) over time in
response to an individual’s changing status and context19,20.

An efficient approach to achieve such personalized intervention iswith
theuseof reinforcement learning21,22. Thismachine learningmethod trains a
statistical model based on rewards from actions of the model in an envir-
onment. In the context of behavior change, the model observes individual
behaviors in response to cues it provides (like text messages) and learns to
optimize response (like adherence) through systematic trial-and-error23,24.
This technique has technological underpinnings applied in computer
gaming and robotics21,25–27. In contrast to other approaches to achieving
personalization, reinforcement learning uses approaches that predict the
effectiveness of different intervention components and also can use latently
derived estimates for tailoring (rather than end user input); and, as inter-
ventions are deployed, updates the predictions based on their successes and
failures (both at the individual and group level)28. That is, the algorithm
“learns” to personalize as it experiments, or “adapts”29.

Reinforcement learning has thus far had limited use in health
care27,28,30–32 and has not been applied to medication adherence, an essential
daily activity formost patients with chronic disease, and especially diabetes,
which affects 529 million individuals globally2,33. While machine learning
generally has been shown to be helpful in measuring suboptimal
adherence34,35, there remains much opportunity to explore how it and
related techniques can improve adherence. Accordingly, we launched the
REinforcement learning to Improve Non-adherence For diabetes treat-
ments by Optimizing Response and Customizing Engagement trial
(REINFORCE) to evaluate the impact of a text messaging program tailored
using reinforcement learning on medication adherence for patients with
type 2 diabetes22.

The trial design has been published22 with expanded details in the
Methods. In brief, 60 patients with type 2 diabetes (with their latest glycated
hemoglobin A1c [HbA1c] lab value ≥ 7.5% in the past 180 days) were
randomized to a reinforcement learning intervention or control (no inter-
vention) based on pre-specified power calculations. In both arms, patients
received a separate electronic pill bottle for each of their diabetes medica-
tions, with bottles that look like those dispensed by retail pharmacies but
with an electronic cap that recorded the dates and times in which partici-
pants took their medications. A figure of the infrastructure was previously
published22. The reinforcement learning algorithm personalized daily texts
based on adherence, patient characteristics, and message history using the
following 5 behavioral factors: (1) how the messages are structured
(“Framing”; classified as neutral, positive [invoking positive outcomes of
medication use], or negative [invoking consequences of medication non-
use]), (2) observed feedback (“History”, i.e., including the number of days in
the prior week the patient was adherent), (3) social reinforcement (“Social”,
i.e., referring to loved ones), (4) whether content was a reminder or infor-
mational (“Content”), and (5)whether the text includeda reflective question
(“Reflective”). Individual messages contained elements from these different
factor sets, examples of which have been published previously22. The pri-
mary outcome was average pill bottle-measured adherence over a 6-month
follow-up. After trial completion, we described the performance of the
reinforcement learning algorithmprocess itself and explored responsiveness
to behavioral factors using subgroup analyses and clustering methods, as
prior work has suggested that there may be important differences in
responsiveness24.

Results
Among 60 patients, 29 and 31 were randomized to the intervention and
control arms, respectively, ofwhich1 intervention and3 control patients did
not complete follow-up (Fig. 1). All 60 patients were included in the
intention-to-treat analysis.

In total, 26patients (43%)were female and35 (58%)wereWhite (Table
1). Baseline characteristicswere slightly different between the arms basedon
absolute standardized differences but were well-balanced on key metrics
including age, sex, baseline HbA1c values, and baseline adherence.

Intervention group patients had less formal education (e.g., 24.1% vs. 16.1%
having no more than a high school education) and took more oral diabetes
medications (31% vs. 19% taking ≥2 medications) versus control patients.

Description of the reinforcement learning algorithm learning
process
In total, 5143 text messages were sent to patients in the intervention arm
(n = 29) during the 6-month study period. Intervention patients received
daily messages; an average of 27.7 (SD: 5.9) unique messages were sent to
each patient (Table 2). In aggregate, 514 (10.0%), 2473 (48.1%), and 2058
(40.0%) of text messages contained ≥3, ≥4, and ≥5 behavioral factors
respectively.

The reinforcement learning algorithm also adapted its selection of
behavioral factors in the text messages; the proportions of intervention arm
patientswho received thefive factors over the trial are showndescriptively in
Supplemental Fig. 1 panels. For example, positive framing as a factor
(Supplemental Fig. 1a) was initially not frequently selected by the algorithm
during the first twomonths of the trial but becamemore prevalent later. By
contrast, negative framing was more commonly selected at first but
decreased over time (Supplemental Fig. 1b). Other plots for receipt of his-
tory, social reinforcement, content, and reflection are shown in Supple-
mental Fig. 1c–f, respectively. More patients were selected to receive social
reinforcement, content, and reflection as factors as the trial progressed,
while the proportion of patients receiving history (observed feedback)
remained relatively equal over time.

Figure 2 shows the change in adjusted R2 of the reinforcement learning
algorithm over the trial. This statistic, which describes the extent to which
adherence is explained by algorithm predictions for behavior following a
message sent to participants, increased over time, indicating that the algo-
rithm learned to send more effective messages to patients.

The most influential features and interactions from the reinforcement
learning algorithm are shown in Fig. 3. Fixed characteristics that carried the
most weight within the model were baseline HbA1c, self-reported level of
patient activation, number ofmedications included in electronic pill bottles,
concomitant insulinuse, and employment status basedon their interactions.
The behavioral factors with the largest weight included positive framing,
observed feedback, and social reinforcement.

Effect of the reinforcement learning intervention on the primary
outcome
Over the 6-month follow-up, average adherence to medication was 74.3%
(SD: 30.8%) in the reinforcement learning intervention arm compared with
67.7% (SD: 29.4%) in the control arm (Fig. 4). After adjusting for the block
randomized design and baseline characteristics, average adherence among
intervention patients was 13.6% (95%CI: 1.7%, 27.1%, p = 0.047) higher than
control (shown in Fig. 4). Sensitivity analyses, including omitting thefirst two
weeks of pill bottle data and censoring patients in both arms after 30 days of
pill bottle non-use (3 patient and 1 patient in intervention and control arms,
respectively) did not change the results (Supplemental Table 1).

Hypothesis-generatingdemographic andclinical subgroupanalyses that
explored interactions between patient characteristics and the intervention’s
effectiveness on adherence are also shown in Fig. 4. The strongest interaction
between the overall effectiveness of reinforcement learning and adherence
was by baselineHbA1c level. Specifically, in patientswithHbA1c 7.5- < 9.0%,
the intervention improvedadherence by 33.6%(95%CI: 15.9%, 51.4%)versus
control contrastedwith thosewith baselineHbA1c≥ 9% (interaction p value:
0.001) inwhich there was no significant difference comparedwith control. In
patients who were non-adherent at baseline (i.e., self-reported missing >1
medicationdose in the30daysbefore enrollment), the intervention improved
adherence by 33.0% (95%CI: 13.1%, 52.8%) versus control, but this interac-
tion was not significant (interaction p value: 0.214).

Exploratory analyses of responsiveness to behavioral factors
In hypothesis-generating analyses, we whether responsiveness to the tested
behavioral factors (determined by optimal adherence) differed by patient
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baseline characteristics. As shown in Fig. 5, patients whowere aged <65 years
(compared with ≥65), were of White race/ethnicity (compared with non-
White), hadHbA1c < 9% (compared with≥9%), were of othermarital status
(compared with married/partnered), and were taking multiple medications
(compared with 1) responded better than their counterparts to most or
almost all behavioral factors. In contrast, women were more responsive to
messages reporting their medication-taking history than men but were less
responsive to other factors. Finally, patients who weremore non-adherent at
baseline (self-reported missing >1 dose, compared to those who reported
missing ≤1 doses in the last 30 days) were more responsive to positively-
framedmessages and less responsive tomessages reporting theirmedication-
taking history, but had similar responsiveness to all other factors.

Adherence differed based on whether that behavioral factor had been
sent the prior day (Fig. 6). For instance, adherence was highest when
negatively-framedmessages and messages containing observed medication
feedback were sent two days in a row (i.e., red columns). By contrast, no
difference in adherencewas observedwhen textmessages including and not
including the behavioral factor were alternated.

Using k-means clustering analysis of average adherence given the
behavioral factors, we identified three unique patient clusters (Fig. 7). These
clusters included: (1) Group 1 (Orange, n = 9) responding best to observed
feedback, (2)Group2 (Yellow,n = 4) responding best to social reinforcement
and observed feedback, and (3) Group 3 (Blue, n = 16) responding equally to
all message types. Individuals who were married/partnered were more likely
to be in Group 1 compared with the other two groups, but most associations
were non-significant owing at least in part to small sample size (Table 3).

Discussion
In this randomized-controlled trial of a reinforcement learning intervention
that personalized text messaging content for patients with diabetes (and

HbA1c ≥ 7.5%, above most guideline targets), we found that the interven-
tion improved adherence to medication over a 6-month follow-up. The
intervention was particularly effective among patients withHbA1c between
7.5 and 9.0%. Adherence changes of this magnitude have been associated
with differences in patient outcomes and health care spending36,37.

Numerous trials have demonstrated that text messages support
adherence tomedication1,4–6,11,38–40. However, the effectiveness ofmany prior
approaches has been limited, in part because they have not personalized the
content and presentation of the messages patients receive38. To our
knowledge, no study has personalized text messages for adherence in real-
time on a daily basis through latent measurement of adherence and
response, especially using reinforcement learning. Some prior work has
personalized text messages for adherence based on simple user character-
istics, preferences or self-reported adherence, at pre-specified intervals, or
through relatively static “if-then” rules, but have not adapted based on
observing what patients respond to11,17–19. Reinforcement learning has
indicated early promise for other health behaviors. For example, a 3-arm
trial of 27 patients tested the impact on physical activity of different text
messaging approaches for individuals with type 2 diabetes, finding that text
messaging using reinforcement learning resulted in significant more phy-
sical activity and lowerHbA1c values than non-personalizedweekly texting
strategies24,27. Reinforcement learning interventions for titrating anti-
epilepsy medications and selecting sepsis protocols have also demon-
strated effectiveness31,32,41.

The reinforcement learning intervention appears to have learned
from patient observations and changed themessages that it selected over
time. This was particularly evident in its approach to message framing.
The algorithm initially favored negatively framed messages (e.g., high-
lighting the negative disease consequences of non-adherence to medi-
cation) but over time, there was a noticeable shift such thatmore patients

262 patients approved by 
providers (89.4%)

74 were unable to be reached
56 were reached and declined further screening

10 did not have a smartphone
12 reported cognitive issues affecting medication management

13 did not want to use study pill bottles
8 did not want adherence intervention 

18 did not meet other criteria (stopped diabetes medication, lack 
of working English knowledge, enrolled in another diabetes trial)

60 
randomized 

(84.5%)

71 consented 
(27.1%)

293 potentially eligible patients identified from the electronic 
health record system sent to providers for approval

11 withdrew before 
randomization

Reinforcement learning (N=29) Control (N=31)

29 included in 
intention-to-treat 

analysis

31 included in 
intention-to-treat 

analysis

1 withdrew 2 withdrew
1 deceased

Fig. 1 | CONSORT diagram. This diagram shows a visual representation of the flow of patients through the trial.

https://doi.org/10.1038/s41746-024-01028-5 Article

npj Digital Medicine |            (2024) 7:39 3



received either a neutral tone or positively framed message (e.g., high-
lighting positive consequences of adherence). This change was also seen
quantitatively with the increasing proportion of variance in daily
adherence explained by the behavioral factors in the text messages (i.e.,
the adjusted R2). By the end of the trial, the adjusted R2 was consistently
over 0.40, meaning that much of the difference in adherence on a given
day could be explained by the five algorithm factors. Additional features,
for example, the interaction between positive framing and observed
feedback as well as higher HbA1c and patient activation provided the
greatest weight to the model prediction, suggesting that the algorithm
incorporated learned information. Together, these findings suggest that
the reinforcement learning algorithm not only changed its strategy over
time but also improved its performance in predicting what types of
messages would improve individuals’ adherence.

Table 1 | Baseline characteristics of trial patients

Reinforcement
learning (n = 29)

Control (n = 31) Absolute stan-
dardized
differences

Age, mean (SD) 60.3 (11.4) 56.7 (12.9) 0.02

Female sex, n (%) 12 (41.4%) 14 (45.2%) 0.08

Race/ethnicity, n (%)

White 17 (58.6%) 18 (58.1%) 0.01

Black or African
American

6 (20.7%) 8 (25.8%) 0.12

Other (Hispanic/
Latino,
Asian, Other)

6 (20.7%) 7 (22.6%) 0.05

Education level, n (%)

High school
graduate
or below

7 (24.1%) 5 (16.1%) 0.20

Some college/
college graduate

22 (51.7%) 19 (61.3%) 0.19

Post-graduate 7 (24.1%) 7 (22.6%) 0.04

Married or part-
nered, n (%)

13 (44.8%) 17 (54.8%) 0.20

Baseline HbA1c,
mean (SD)

8.99 (1.39) 9.10 (1.47) 0.06

<9, n (%) 17 (58.6%) 17 (54.8%) 0.08

≥9, n (%) 12 (41.4%) 14 (45.2%) 0.08

Diabetes medication use (self-reported), n (%)

<4 years 10 (34.5%) 13 (41.9%) 0.15

≥4 years 19 (65.5%) 18 (58.1%) 0.15

3 or more unique
physicians, n (%)

19 (65.5%) 16 (51.6%) 0.29

Number of medications, n (%)

1 20 (69.0%) 25 (80.6%) 0.27

≥2 9 (31.0%) 6 (19.4%) 0.27

Non-adherence (number of self-reported doses missed in prior 30 days), %

≤1 17 (58.6%) 17 (54.8%) 0.08

>1 12 (41.4%) 14 (45.2%) 0.08

Automaticitya with
medication-tak-
ing, n (%)

5 (17.2%) 10 (32.3%) 0.36

Full patient health
activationb

16 (55.2%) 15 (48.4%) 0.13

This table shows the baseline characteristics of the 60 randomized patients to the trial.
SD Standard deviation, HbA1 glycated hemoglobin A1c.
aHighest possible score based on the automaticity subscale of the self-report behavioral auto-
maticity index.
bFull patient activation based on the consumer health activation index.
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The intervention was also particularly effective in patients withHbA1c
between 7.5 and9.0%.The reason for this can be explained in twoways;first,
patients further fromguideline targetsmayneed treatment intensification in
addition to better adherence to their existingmedications2,3. Second, a prior
trial also suggested that individuals have varying preferences for how to
escalate diabetes care at different levels of HbA1c values; those with HbA1c
between 7.5 and 9.0%weremore interested in adherence support than other
interventions16. While less pronounced and not statistically significant,

patients reporting worse adherence at baseline also tended to respondmore
to the intervention. This may also have been due to the fact that individuals
who report missing multiple doses in the last 30 days most likely have
substantial non-adherence42 and are an ideal target population for an
adherence intervention.

Supporting the potential benefits of personalization and for generating
future hypotheses, we explored characteristics of patients who responded
differently to different message types. The most notable was that women
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Fig. 2 | Change in reinforcement learning algorithm adjusted R2 over the course
of the trial. The adjusted R2 from trial calendar day 31 to 279 (March 13,
2021–December 19, 2021) is plotted from each day’s model. We calculated adjusted

R2 from the proportion of variance in daily adherence that is explained by the five
intervention factors in the reinforcement learning model. We selected those win-
dows as they each had a minimum of 5 patient observations that day.

Fig. 3 | Most influential feature interactions in the
reinforcement learning algorithm. This figure
shows the model weights from the feature impor-
tance score from the reinforcement learning algo-
rithm, which indicates which features were more or
less importance to the model. The weights above
were the 20 most influential features, ranked from
highest to lowest. Abbreviations: HbA1c, glycated
hemoglobin A1c; SGLT2, sodium-glucose cotran-
sporter-2.

0 0.0005 0.001 0.0015 0.002

Female sex*Employment status

HbA1c≥10%*SGLT2 inhibitor use

HbA1c≥10%*Age 65-74

History*White race/ethnicity

HbA1c≥10%*Insulin use

HbA1c≥10%*Marital status

No. of physicians*HbA1c≥10%

History*HbA1c≥10%

HbA1c 9-9.9%*No. of medications

HbA1c 9-9.9%*Sulfonylurea use

HbA1c 9-9.9%*Age 45-54

HbA1c 9-9.9%*White race/ethnicity

HbA1c 9-9.9%*Patient_activation

History*employment status

History*social

History*insulin use

HbA1c ≥10%*No. twice daily pillbottles

History

HbA1c ≥10%*Patient activation

Positive framing*History

Model weights
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responded better to receiving observed feedback about their medication-
taking than men but responded less well to positive framing, social mes-
saging, informational messaging rather than reminders, and messages that
were intended to provoke reflection. One explanation could be that some
women are already aware of how their own health can benefit loved ones
and may prefer more straightforward reminders and feedback about their

medication-taking performance24,43, although future work should explore
further within larger sample sizes.

In our exploratory analyses, there were clusters of patients who
responded to different types of messages. In specific, one group
responded best to observed feedback, and a second group responded best
to social reinforcement and observed feedback, while a third responded

Primary analysis:

Adherence to medication
Key subgroup analyses
Patient age

<65 years (n = 37)
.

Patient sex
Female (n = 26)
Male (n = 34)

Patient race/ethnicity
White (n = 34)
Non−White (n = 26)

Marital status
Marrier/partner (n = 30)
Other (n = 30)

Baseline HbA1c
<9% (n = 34)

Diabetes medication use
<4 years (n = 23)

1 (n = 45)

Baseline adherence
..
>1 dose missed (n = 26)

13.6% (1.7%, 27.1%)

12.9% (−9.6%, 35.3%)
7.0% (−7.3%, 21.2%)

−4.6% (−30.8%, 21.5%)
4.5% (−8.1%, 17.0%)

11.1% (−6.3%, 28.5%)
4.3% (−15.5%, 24.0%)

16.6% (0.4%, 32.9%)
33.6% (15.9%, 51.4%)

36.6% (25.1%, 48.2%)
−4.6% (−28.4%, 19.2%)

35.1% (−1.8%, 71.9%)
1.9% (−10.2%, 14.1%)

17.5% (1.4%, 33.7%)
13.1% (−25.9%, 52.1%)

10.1 (−4.6%, 24.9%)
33.0% (13.1%, 52.8%)

0.507

0.353

0.214

0.001

0.876

0.812

0.356

−30 −20 −10 0 10 20 30 40 50 60 70

≥65 years (n = 23)

.≥..9% (n = 26)

.≥ 2 (n = 15)

≤.1 doses missed (n = 34)

.≥..4 years (n = 37)
Number of medications

Adjusted absolute difference, 95%CI Interaction p-values Absolute difference

Favors reinforcement learningFavors control

0.702

Fig. 4 | Trial primary outcome and subgroup analyses. We used generalized
estimating equations with an identity link and normally-distributed errors to eval-
uate the effect of the intervention on adherence to medication measured by pill
bottles compared with control. The points on the figure are the point estimates and
the error bars are the 95% confidence intervals from the relevant sample sizes. These

models were adjusted for baseline characteristics and the block randomized design.
The primary outcome is shown at the top. The results of exploratory subgroup
analyses by key demographic and clinical characteristics also shown; these were
performed by repeating the same models within each subgroup, using interaction
p-values to assess between subgroups.

Fig. 5 | Relationship between patient character-
istics and responsiveness to individual behavioral
factors. This figure shows the results of these
exploratory analyses with the outcome being opti-
mal adherence (adherence=1) for the day after the
factor was selected and sent within the text message.
We used generalized estimating equations for each
behavioral factor with a log link and binary-
distributed errors, adjusted for patient baseline
characteristics but unadjusted for patient-level
clustering. Light red indicates a negative association
(Relative risk 0.50–0.99); Light blue indicates a
positive association (Relative risk 1.01–1.50); and
Dark blue indicates a strong positive association
(Relative risk ≥1.50). Abbreviations: CI Confidence
interval, HbA1c glycated hemoglobin A1c.
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Framing 

Negative 
Framing

History 
(Observed 
feedback)
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Baseline characteristic Relative Risk (95%CI)
Patient age 
<65 years vs. ≥65 years 

1.29 
(1.23-1.36)

0.97
(0.76-1.23)

1.03
(0.97-1.09)

1.27
(1.21-1.33)

1.24
(1.18-1.29)

1.25
(1.19-1.30)

Patient sex
Female vs. Male

0.90
(0.87-0.94)

0.97
(0.80-1.19)

1.04
(1.00-1.09)

0.90
(0.86-0.93)

0.90
(0.87-0.94)

0.90
(0.86-0.94)

Patient race/ethnicity
White vs. Non-White

1.22
(1.16-1.29)

0.98
(0.81-1.18)

1.10
(1.05-1.15)

1.18
(1.12-1.24)

1.14
(1.09-1.19)

1.15
(1.10-1.21)

Marital status
Married/partnered vs. other

0.88
(0.85-0.92)

1.05
(0.89-1.23)

1.02
(0.98-1.06)

0.88
(0.84-0.92)

0.88
(0.84-0.92)

0.89
(0.85-0.93)

Baseline HbA1c
<9% vs. ≥9%

2.05
(1.16-1.29)

1.60
(1.32-1.94)

1.14
(1.08-1.20)

2.06
(1.93-2.20)

2.06
(1.93-2.20)

2.07
(1.94-2.21)

Diabetes medication use
≥4 years vs. <4 years 

1.04
(0.99-1.09)

0.89
(0.70-1.14)

0.95
(0.90-1.01)

1.03
(0.98-1.09)

1.02
(0.97-1.08)

1.01
(0.96-1.06)

Number of medications
≥2 vs. 1

1.05
(0.98-1.12)

1.09
(0.97-1.37)

1.02
(0.97-1.08)

1.08
(1.01-1.15)

1.10
(1.04-1.17)

1.09
(1.02-1.16)

Baseline adherence
>1 vs. ≤1 doses missed

1.04
(1.00-1.08)

0.94
(0.79-1.12)

0.95
(0.91-0.98)

1.02
(0.98-1.06)

1.02
(0.98-1.06)

1.02
(0.98-1.05)
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equally to all types of messages. We also found higher adherence when
negatively-framed messages and messages that contained observed
feedback were provided two days in a row, perhaps reflecting the need to
reinforce these types of messages, but not others. The fact that the
algorithm de-prioritized negative framing on average over time but that
it was effective in combination with observed feedback is also worthy of
consideration. This could in part be explained by underlying hetero-
geneity of the patient population in their responsiveness, and in how the

information was sequenced, emphasizing the potential impact of per-
sonalization but should be explored further.

Future work could extend these findings in several ways. First,
researchers should test the added impact of using reinforcement learning
with non-personalized textmessages. Second, the impact of a reinforcement
learning intervention should be tested on long-term clinical outcomes and
in a larger and more diverse sample to confirm some of the exploratory
analyses about responsiveness to different behavioral factors. Finally, this

Fig. 6 | Average adherence across behavioral fac-
tors stratified by the sequence of text messages the
prior day and the same day the message was sent.
This figure shows the average daily adherence
measured by pill bottle over the course of the trial
among the 29 intervention arm participants. These
results are stratified by the text message sent in the
prior day and/or the same day contained that
intervention factor (e.g., positive framing). For
example, the dark blue bar for “positive framing”
indicates the level of adherence if the prior’s day text
message contained positive framing but that day’s
text message did not.

Text message that day and the day before did not contain the factor (Today=0; Previous Day=0)
Text message that day did not contain the factor but the day before did (Today=0; Previous Day=1)
Text message that day contained the factor but the day before did not (Today=1; Previous Day=0)
Text message that day and the day before contained the factor (Today=1; Previous Day=1)
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Fig. 7 | Clusters of responsiveness to behavioral
factors included in text messages. Each color
represents one of the three different patient groups
identified from the exploratory k-means clustering
analysis for the average pill bottle adherence mea-
sured over 6 months (primary outcome). These
groups include: (1) Group 1 (Orange, n = 9) was the
most adherent in response to observed feedback
(“history”), (2) Group 2 (Yellow, n = 4) was themost
adherent in response to social reinforcement or
observed feedback, and (3) Group 3 (Blue, n = 16)
was equally adherent in response to all types of
messages. The error bars show the standard error for
the cluster based on the underlying sample size (i.e.,
a threshold of ≥25 observations was applied).
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work could be applied in other ways, for example to other disease states or
related guideline-recommended daily activities such as physical activity
or diet.

Several limitations shouldbe acknowledged. First, electronic pill bottles
could have influenced adherence, especially during the initial period of
observation; however, they have been shown to correlate strongly with
actual pill consumption44,45, and we minimized this observer bias by using
pill bottles in both arms. While we powered the study to detect a 10%
difference in adherence, the standard deviations were wider than antici-
pated, likely owing to the small sample size and overall heterogeneity in
medication-taking than previously observed46. The findings may also not
generalize to patients with pre-diabetes or gestational diabetes or those
without reliable access to a smartphone. The subgroup and responsiveness
analyses were also limited by small sample sizes and should be considered
exploratory. It is also currently technologically less feasible to passively
measure adherence to injectable agents in a scalable manner, and oral
diabetes medications are the cornerstone of first and second-line type 2
diabetes treatments. Finally, we also chose not to have a “generic” text
messagingarm, inpart to test thehighest possible efficacyof the intervention
sowe cannot assess the incremental benefit of personalizationversus generic
messaging with this design.

In conclusion, the reinforcement learning intervention led to
improvements in adherence to oral diabetes medication and was particu-
larly effective in patients with HbA1c between 7.5 and 9.0%. This trial
provides insight into how reinforcement learning could be adapted at scale
to improve other self-management interventions and provides promising
evidence for how it could be improved and tested in a wider population.

Methods
Study design
Trial design details have been previously published22. The protocol was
designed, written, and executed by the investigators (Fig. 1). Study enroll-
ment began in February 2021 and completed in July 2021. Follow-up of all
patients ended in January 2022; the final study database was available in
March 2022.

Study population and randomization
The trial was conducted at Brigham andWomen’s Hospital (BWH), a large
academic medical center in Massachusetts, USA. Potentially-eligible
patients were individuals 18–84 years of age diagnosed with type 2 dia-
betes and prescribed 1–3 daily oral diabetes medications, with their most
recent glycated hemoglobin A1c (HbA1c) level ≥7.5% (i.e., above guideline
targets)47. These criteria were assessed using BWH electronic health record
(EHR) data. To be included, patients also had to have a smartphone with
ability to receive text messages, have working knowledge of English, not be

enrolled in another diabetes trial at BWH, not use a pillbox or switch to
using electronic pill bottles for their diabetesmedications for the study, and
be independently responsible for taking medications. Smartphone con-
nectivity was essential to measure daily adherence, but they have been
widely adopted, even among patients from socioeconomically dis-
advantaged backgrounds48,49. Patients using insulin or other diabetes
injectables in addition to their oral medication were allowed to be included
to enhance generalizability.

As previously described22, potentially eligible patients with a recent or
upcoming diabetes clinic visit were identified from the EHR on a biweekly
basis. Once identified, the patients’ endocrinologists were contacted for
permission to include their patient(s) in the study. Patients approved for
enrollment were sent a letter on their endocrinologist’s behalf inviting them
to participate and were then contacted by telephone. Patients who agreed
provided their written informed consent captured through REDCap elec-
tronic data capture tools50,51, completed a baseline survey containing mea-
sures including demographics, self-reported adherence42, health
activation52, and automaticity53 of medication-taking, and were mailed a
separate Pillsy® electronic pill bottle for each of their eligible diabetes
medications (i.e., each patient received between 1–3 pill bottles). Electronic
pill bottles have been widely used in prior research and have shown high
concordance with other measurement methods44,54. The data from the pill
bottles were transmitted through the patients’ smartphones via an app that
otherwise had no features enabled for the app or pill bottles (i.e., any latent
adherence reminders through the pill bottle were turned off). Afigure of the
infrastructure has been previously published22.

After receiving the pill bottles, patients were randomized in a 1:1 ratio
to intervention or control using block randomization based on baseline level
of self-reported adherence (i.e., ≤1 dose or >1 doses missed in the last
30 days42) and (2) baseline HbA1c of <9.0% or ≥9.0%2. Patients were asked
touse these devices insteadof regular pill bottles or pillboxes for their eligible
oral diabetes medications. After randomization, patients were followed for
6 months for outcomes. At the end of follow-up, patients were contacted to
complete a follow-up survey and ensure complete synchronization of their
pill bottles. Both arms received a $50 gift card for participation.

Intervention
The interventionwas a reinforcement learning textmessaging program that
personalized daily text messages based on the electronic pill bottle data.
Messages were selected by the Microsoft Personalizer® algorithm22,24, a
reinforcement learning system which aimed to achieve the highest possible
sumof “rewards”over time, andwhich adapted over timebymonitoring the
success of each message to nudge patients to adhere to their medications.

The messages were based on behavioral science principles of how
content influences patient behavior55–57. Based on qualitative interviews58,

Table 3 | Relationship between baseline characteristics and membership in clusters of responsiveness to behavioral factors

Referent: Group 3
Baseline Characteristic

Odds Ratio
(95% CI) for Group 1

Odds Ratio (95% CI) for Group 2

Age: ≥65 years vs. <65 years 0.80 (0.16–4.12) 0.33 (0.03–3.92)

Sex: Female vs. Male 1.33 (0.25–7.01) 1.67 (0.18–15.13)

Race/ethnicity: White vs. Non-White 0.23 (0.04–1.30) 1.36 (0.11–16.58)

Partner status: Married/partnered vs. other 7.70 (1.15–51.15)a 0.73 (0.06–8.92)

Diabetes control: baseline HbA1c < 9% vs. ≥9% 0.19 (0.03–1.14) Too small to compute

Diabetes medication use: ≥4 years vs. <4 years 4.80 (0.48–48.46) 0.20 (0.02–2.39)

Number of medications: 1 vs. ≥2 2.10 (0.32–13.61) 1.80 (0.15–21.48)

Self-reported baseline adherence: >1 dose missed vs. ≤1 dose missed 0.64 (0.12–3.53) 1.29 (0.14–11.54)

Among 29 intervention arm patients, we used exploratory multinomial logistic regression comparing baseline patient characteristics of those in Group 1 (responding best to observed feedback [history],
n = 9,Orange in Fig. 6) andGroup2 (respondingbest to social reinforcement or observed feedback,n = 4, Yellow in Fig. 6) usingGroup 3as the referent group (responding equally to each factor, n = 16, Blue
in Fig. 6).
ap < 0.05.
CI Confidence Interval.
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we selected 5 behavioral factors for the messages: (1) framing (classified as
neutral, positive [invokingpositiveoutcomes ofmedicationuse], ornegative
[invoking consequences of medication non-use]), (2) observed feedback
(“History”, i.e., including the number of days in the prior week the patient
was adherent), (3) social reinforcement (“Social”), (4) whether content was
reminder or informational (“Content”), and (5) whether the text included a
reflective question (“Reflective”)7,8,24,59–61. We designed ≥2 text messages for
each unique set of factors (i.e., 47 unique sets across 128 text messages);
examples of the factors sets contributing to the reinforcement learning
model have been published22.

Every day, adherence from the prior day was measured by the elec-
tronic pill bottles, with values ranging from 0 to 1 based on the fraction of
daily doses taken across their diabetes medications, averaging if they are
taking multiple medications22. These served as the “reward” events used to
provide feedback to Microsoft Personalizer®. The algorithm learned to
predict which factors should have been included in the message on a given
day to maximize the rewards that the algorithm received (i.e., adherence).

The algorithm used several attributes to predict which factors to select.
These included patient baseline characteristics (e.g., age, sex, race/ethnicity,
number of medications, concomitant insulin use, self-reported patient
activation, education level, employment status, marital status, and ther-
apeutic class), the number of days since each factor had last been sent, and
whether the medication had already been taken before the algorithm was
run for that day. The algorithm was trained to predict whether or not to
include each aspect separately using a “contextual bandit” framework62–64.
The specific message to be sent was randomly selected from messages
matching the required aspects.

The text messages were sent on a daily basis to patients using a third-
party SMS platform, including an introductory text and simple reminder
text to synchronize their pill bottles if they had not been connected
for ≥7 days.

Patients in the control arm received the same introductory and simple
reminder text to synchronize their pill bottles if they hadnot been connected
for ≥7 days but otherwise received no intervention.

Study outcomes
The trial’s primary outcome was medication adherence assessed in the
6 months after randomization using the average daily adherence for each
patient (which already averaged acrossmultiplemedications)22.While other
secondary outcomes weremeasured, we focus on the primary outcome and
related analyses in this manuscript.

Statistical analysis
The overall trial was powered to detect a 10% difference in average adher-
ence over the 6-month follow-up, assuming a SD = 12.5%.We reported key
sociodemographic and clinical pre-randomization variables separately for
interventionandcontrol using absolute standardizeddifferences (imbalance
as a difference >0.1)65. Intention-to-treat principles were used for all ran-
domized patients, with a two-sided hypothesis tested at α = 0.05. We used
SAS 9.4 (Cary, NC) for analyses.

The process and performance of the reinforcement learning algorithm
were descriptively examined. The average proportion of patients who
received each behavioral factorwas estimated and plotted over time for each
individual patient. To explore the extent to which adherence was explained
by algorithm predictions each day, the adjusted R2 based on the algorithm
predictions was estimated for each day over the trial. Specifically, we cal-
culated the proportion of variance in daily adherence that was explained by
just the five intervention factors. We also explored the most influential
features selected by the model when predicting which messages to send for
the entire follow-up period; higher scores indicates more influence to
the model.

For the primary outcome, we evaluated the effect of the reinforce-
ment learning intervention on adherence using generalized estimating
equations with an identity link function and normally distributed errors.
These models were adjusted for the block-randomized design, and given

imbalances in some important covariates, also controlled for differences in
measured baseline characteristics. Some of these imbalances included:
more patients in the intervention arm with no more than a high school
education (24.1% vs. 16.1%), fewer intervention patients who were mar-
ried/or partnered (44.8% vs. 54.8%), and more intervention patients
taking multiple diabetes medications (31.0% vs. 19.4%). Each of these
characteristics have been shown previously to influence adherence66,67.
Exploratory subgroup analyses were performed according to key demo-
graphic/clinical subgroups including age, sex, race/ethnicity, marital sta-
tus, baseline HbA1c, number of years using oral diabetes medications,
baseline self-reported adherence, and number of pill bottle medications.
There was no missing data for the primary outcome. Several other sen-
sitivity analyses were also conducted, including omitting the first 14 days
for observer effects44 and censoring patients in both arms when the pill
bottles were not connected for ≥30 days.

Additional exploratory and descriptive analyses of adherence in
response to the intervention factors were also conducted for future
hypothesis generation. First, the associations between key baseline char-
acteristics and optimal adherence (i.e., adherence value = 1 for the sub-
sequent day) by behavioral factor for intervention patients were explored.
To do so, we used generalized estimating equations for each behavioral
factor (e.g., positive framing) with a log link and binary-distributed errors
with optimal adherence, including all patient baseline characteristics but
unadjusted for patient-level clustering due to sample size. Then, we
described adherence to different behavioral factors based on the sequence of
delivered text messages. Finally, patients were clustered by their average
response to different textmessage factors using k-means clustering analysis,
using a threshold of ≥25 responses; smaller numbers were replaced by
average variable values. Using these clusters, we explored the bivariate
association between key baseline patient demographic/clinical character-
istics and membership in each group using multinomial logistic regression
(Referent: Group 3). Together, these findings may provide a more accurate
starting point for future programs.

Data availability
De-identified data necessary to reproduce results reported here are posted
on the Harvard Dataverse, an open access repository for research data, at
https://dataverse.harvard.edu/. Some additional data, specifically dates such
as for example dates of medication use, will be available upon reasonable
request and execution of appropriate data use agreements, because dates are
Protected Health Information under 45 CFR §164.154(b).

Code availability
Code necessary to reproduce results reported here are available in the
Harvard Dataverse at https://dataverse.harvard.edu/.
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