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Automatic speech-based assessment to
discriminate Parkinson’s disease from
essential tremor with a cross-language
approach
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Parkinson’s disease (PD) and essential tremor (ET) are prevalent movement disorders that mainly
affect elderly people, presenting diagnostic challenges due to shared clinical features. While both
disorders exhibit distinct speechpatterns—hypokinetic dysarthria in PDandhyperkinetic dysarthria in
ET—the efficacy of speech assessment for differentiation remains unexplored. Developing
technology for automatic discrimination could enable early diagnosis and continuous monitoring.
However, the lack of data for investigating speech behavior in these patients has inhibited the
development of a framework for diagnostic support. In addition, phonetic variability across languages
poses practical challenges in establishing a universal speech assessment system. Therefore, it is
necessary to develop models robust to the phonetic variability present in different languages
worldwide. We propose a method based on Gaussian mixture models to assess domain adaptation
from models trained in German and Spanish to classify PD and ET patients in Czech. We modeled
three different speech dimensions: articulation, phonation, and prosody and evaluated the models’
performance in both bi-class and tri-class classification scenarios (with the addition of healthy
controls). Our results show that a fusion of the three speech dimensions achieved optimal results in
binary classification, with accuracies up to 81.4 and 86.2% for monologue and /pa-ta-ka/ tasks,
respectively. In tri-class scenarios, incorporating healthy speech signals resulted in accuracies of 63.3
and 71.6% for monologue and /pa-ta-ka/ tasks, respectively. Our findings suggest that automated
speech analysis, combinedwithmachine learning is robust, accurate, and can be adapted to different
languages to distinguish between PD and ET patients.

Essential tremor (ET) is a syndrome characterized by an isolated bilateral
upper-limb action tremor with a duration of at least 3 years, with or
without signs in other body parts, such as head, larynx (voice tremor), or
lower limbs1. In contrast, Parkinson’s disease (PD) is caused by the pro-
gressive loss of dopaminergic neurons in the substantia nigra of the
midbrain and is characterized by rigidity, bradykinesia, and postural
instability, among other symptoms2. Both PD and ET share tremor as a
common clinical feature. However, PD is characterized by resting tremor,
which occurs when muscles are relaxed, while action tremor during

voluntary muscle contraction is an early sign of ET. The onset of ET may
also be accompanied by the presence of resting tremor. Both disorders can
also exhibit non-motor symptoms such as cognitive impairments, sleep
disturbances, depression, and anxiety. Therefore, the differential diag-
nosis of these disorders is challenging for clinicians due to their over-
lapping symptoms3,4. Misdiagnoses occur mainly in the early stages of the
disease when clinical signs are subtle. Previous studies have noted that
one-third of patients diagnosed with ET had been previously mis-
diagnosed with PD5,6.

1GITA Lab, Faculty of Engineering, University of Antioquia, Medellín, Colombia. 2Department of Circuit Theory, Czech Technical University in Prague,
Prague, Czech Republic. 3Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. 4These authors jointly supervised
this work: Jan Rusz, Juan Rafael Orozco-Arroyave. e-mail: rusz.mz@gmail.com; rafael.orozco@udea.edu.co

npj Digital Medicine |            (2024) 7:37 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01027-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01027-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01027-6&domain=pdf
http://orcid.org/0000-0003-0174-1452
http://orcid.org/0000-0003-0174-1452
http://orcid.org/0000-0003-0174-1452
http://orcid.org/0000-0003-0174-1452
http://orcid.org/0000-0003-0174-1452
http://orcid.org/0000-0002-1036-3054
http://orcid.org/0000-0002-1036-3054
http://orcid.org/0000-0002-1036-3054
http://orcid.org/0000-0002-1036-3054
http://orcid.org/0000-0002-1036-3054
mailto:rusz.mz@gmail.com
mailto:rafael.orozco@udea.edu.co


Movement disorders such as PD and ET typically co-occur with two
types of distinct dysarthria that reflect the underlying pathophysiology:
hypokinetic and hyperkinetic. It should be noted, however, that these dis-
orders can sometimes exhibit mixed features7. Hypokinetic dysarthria is
typically present in PD, and its characteristics include monoloudness,
monotonicity, imprecise pronunciation of consonants and vowels, and lack
of fluency, among other symptoms8. In contrast, ET is typically associated
with hyperkinetic dysarthria, which generally arises from involuntary
movements associated with tremor. In such cases, the most relevant speech
deficits include phonatory and prosodic disturbances that are primarily
caused by tremor9. However, evidence of speech dysfunction in both dis-
orders is mainly based on single language assessment. Scenarios where
different languages are adapted to perform clinical assessments are
underexplored.

Previous studies have focused on differentiating betweenPDandET in
patients through the use of different sources of information, including
video-taped neurological examinations10, hand tremor signals11, gait
signals12, electromyogram signals13, handwriting signals14, and medical
images15. Although previous studies have shown that it is possible to dif-
ferentiate the hypokinetic dysarthria inPD from thehyperkinetic dysarthria
of disorders such as Huntington’s disease4,7,16,17, the speech-based differ-
entiation between PD and ET has never been investigated. The potential of
speech-based differentiation between PDandET should first be determined
in patients with a definitive clinical diagnosis, with the future goal of eval-
uating speech analysis as a diagnostic instrument in early-stage
differentiation.

However, there is a distinct lack of databases that can be used to
develop frameworks for the differentiation of neurodegenerative diseases
based on speech assessment and machine learning. These limitations are
even more pronounced due to the different standardizations used for voice
recordings, which include the type of microphone used as well as acoustic
conditions7. In particular, phonetic variability across different languages
imposes considerable practical challenges for developing a unified speech
assessment framework18. This has motivated the scientific community to
explore the possibility of adapting information from different languages to
assess certain pathologies19, which has raised questions about informational
deficits in language-dependent speech dimensions and features20. Indeed,
some studies have shown that differences in language did not impact the
clinical assessment of disease phenotypes18,21. Therefore, the development of
cross-languages and/or cross-pathology models could be the way to find
robust models, with high performance and sufficient generalization for
voice-based pathology classification and monitoring. In this context, the
differentiation between PD and ET can provide a unique theoretical model
for the testing of such a framework, which could potentially be clinically
applied to the early diagnosis of diseaseswith similar clinicalmanifestations.

This paper introduces a model where information from different
languages is adapted for the automatic classification of PD and ET using
speech signals. Here, we propose a classical approach using a Gaussian
mixture model-universal background model (GMM-UBM) and support
vector machines (SVM) for the domain adaptation of both language and
pathology, considering different recording parameters such as micro-
phones, acoustic conditions, and protocols between the databases. On the
one hand, GMM-UBMallows performing knowledge transfer fromGMMs
per speech dimension (articulation, phonation, and prosody) with themain
advantage of being interpretable and enabling the relation of different
symptoms associated with the disease; furthermore, considering the data
scarcity scenario, this method is the best choice. The primary hypothesis is
that a UBM trained on data from utterances produced by speakers who
speak specific languages can be used to model speech impairments in PD
andETpatientswho speak a different language; in otherwords, data trained
todifferentiate betweenPDandhealthy speech inGermanor Spanish canbe
used to evaluate speech impairments inCzech. SVMallows the training and
evaluation of models with small amounts of data using linear functions in
high-dimensional feature space, resulting in the generation of robust and
generalized models that can be used to discriminate between patients and

controls. Specifically, we aimed to assess: (1) how effectively can models be
used to distinguish between PD and ET patients using speech signals, (2)
which dimensions of speech are most greatly affected between pathologies,
and (3) which language shows greater compatibility in the proposed
methodology.

Results
Two different experiments were performed in this study, with both
experiments using data from the Czech corpus: (A) PD patients vs. ET
patients; and (B) healthy control (HC) subjects vs. PD patients vs. ET
patients. The Czech speaker adaptation was based on the UBM models
created with recordings from Spanish and German datasets, and a combi-
nation of both. We then obtained GMM supervectors for each speech
dimension (i.e., articulation, phonation, and prosody) for eachUBMmodel.
Additionally, the fusion of the three speech dimensions and dimensionality
reduction of the fusion by using principal component analysis (PCA) were
considered. This last scheme was only performed on the fusion of the three
speechdimensions, and thenumber of componentswas determined by 90%
of the cumulative variance.

We initially considered creating different UBM models for control
subjects, patients, and a combination of the two groups. However, all clas-
sification models that used patients during UBM training yielded lower
performances. Consequently, we only reported UBM models generated
from samples of HC subjects. We hypothesize that the inclusion of patients
in the UBMs resulted in highly variable models; these models tended to be
unstable and were thus unsuitable for further analyses. Another possible
reason is that the number of subjects was not large enough to “cover” the
high variability observed when the patient data were aggregated due to the
wide variety of abnormal patterns that arose from dysarthric symptoms.

Due to the aforementioned reasons, we considered creating an addi-
tional three UBM models with larger numbers of Spanish and German
recordings using the CIEMPIESS (Spanish) and Verbmobil (German)
datasets; a UBMwas also trained from a combination of these two datasets.
These corpora were added to determine if the amount of data used to train
the UBMs affected the adaptation process of the target samples.

Bi-class classification: PD patients vs. ET patients
Table 1 shows the accuracy obtained from the classification of PD patients
vs. ET patients using each speech dimension, their fusion, and their
dimension reduction. The accuracy of the models ranged between 60–80%.
The best result was obtained from the /pa-ta-ka/ task using a supervector
built with a fusion of the three speech dimensions adapted from the UBM
trained using controls from the German databases. This approach yielded
an accuracy of 86.2% and a good balance between sensitivity (87.6%) and
specificity (84.8%). For the case of the monologue task, we obtained an
accuracy of 81.4%, with a sensitivity of 83.2% and a specificity of 79.6%.
When each speech dimensionwas analyzed separately, it was found that the
articulation dimension performed the best (accuracy of 72.3 ± 1.7%) when
using the monologue task, while prosody outperformed the other dimen-
sions when the /pa-ta-ka/ repetitions were assessed (accuracy
of 78.3 ± 0.4%).

Figure 1 shows the histograms and the probability density distributions
of the scores obtained when classifying the samples i.e., the distance to the
SVM hyperplane. The left side shows the result obtained from the mono-
logue taskusing a fusionof thedimensions (accuracy: 81.4%),while the right
side shows the best result obtained from a model trained on the /pa-ta-ka/
task (accuracy: 86.2%). Note that the errors are evenly distributed between
the two classes.

Tri-class classification: PD patients vs. ET patients vs. HC
subjects
This approach used the same experiments as in the previous classification
except that the models also attempted to classify speech from HC subjects,
i.e., this is a tri-class classification problem. A one-vs-rest SVMwas used to
perform the classification. As in previous experiments, all results were

https://doi.org/10.1038/s41746-024-01027-6 Article

npj Digital Medicine |            (2024) 7:37 2



assessed using the accuracy metric. Table 2 shows the results of these
experiments. It is possible toobserve that, as in theprevious experiments, the
best result for the monologue task was obtained from a fusion of the three
speech dimensions using the supervector adapted from the Verbmobil
(German) UBM (accuracy: 63.3%). For the /pa-ta-ka/ task, the best result
was obtained using a supervector of the prosody dimension (accuracy:
71.6%). Once again, the controlled /pa-ta-ka/ task exhibited better perfor-
mances than spontaneous speech. Furthermore, it was found that the fusion
of speech dimensions allowed for the differentiation between PD patients,

ET patients, and healthy speech with an average accuracy of 57.6 ± 1.7%
regardless of theUBM fromwhich the adaptationwas performed.While for
a diadochokinetic task, prosody is sufficient to discriminate between both
disorders as well as healthy speech with a superior performance
of 70.7 ± 1.8%.

Figure 2 shows the confusion matrices of the best results obtained
for the two speech tasks. The monologue task yields an accuracy of
76%with ET patients, while only 48% of the PD subjects were correctly
classified. Regarding the healthy controls, 66% of them were correctly

Fig. 1 | Histograms and the corresponding probability density distributions of
the scores obtained in the best classification scenarios between PD and ET
patients inCzech. a For themonologue task, the adaptationwas performed from the

UBM trained with Verbmobil (German). b For the /pa-ta-ka/ task from the UBM
trained with the German controls, both scenarios were obtained with the fusion of
the three speech dimensions.

Table 1 | Bi-class classification: PD patients vs. ET patients with each speech dimension and their fusion

UBM Monologue Pataka

Articulation Phonation Prosody Fusion PCA Articulation Phonation Prosody Fusion PCA

M Acc. (%) M Acc. (%) M Acc. (%) Acc. (%) Acc. (%) M Acc. (%) M Acc. (%) M Acc. (%) Acc. (%) Acc. (%)

German 4 70.8 ± 1.6 32 68.2 ± 2.2 8 58.0 ± 2.5 77.2 ± 3.2 47.6 ± 4.0 2 69.0 ± 2.3 64 70.4 ± 2.0 2 79.0 ± 0.3 86.2 ± 1.2 80.6 ± 1.0

Spanish 4 73.8 ± 1.3 16 69.8 ± 1.9 2 60.2 ± 3.8 75.4 ± 1.9 53.6 ± 1.5 2 71.4 ± 2.7 8 65.6 ± 2.4 2 78.2 ± 0.4 84.6 ± 0.5 75.4 ± 1.7

German-Spanish 4 71.6 ± 2.4 32 67.4 ± 3.4 4 54.0 ± 2.2 74.8 ± 1.2 46.2 ± 1.9 2 70.8 ± 2.5 16 65.0 ± 3.2 2 77.8 ± 0.4 82.2 ± 1.2 79.4 ± 2.0

CIEMPIESS (Spanish) 2 69.4 ± 1.4 64 66.6 ± 1.4 2 60.6 ± 2.7 77.4 ± 1.4 55.6 ± 1.6 – – – – – – – –

Verbmobil (German) 4 73.6 ± 2.7 64 71.0 ± 1.6 8 62.2 ± 4.0 81.4 ± 1.7 73.8 ± 5.7 – – – – – – – –

CIEMPIESS-Verbmobil 4 74.4 ± 1.0 32 75.8 ± 1.9 8 59.6 ± 2.1 81.2 ± 1.2 41.2 ± 3.2 – – – – – – – –

Average – 72.3 ± 1.7 – 69.8 ± 2.1 – 59.2 ± 2.9 77.9 ± 1.8 48.0 ± 3.0 – 70.4 ± 2.5 – 67.0 ± 2.5 – 78.3 ± 0.4 84.3 ± 0.9 78.5 ± 1.6

Acc accuracy,M number of Gaussian components. mean ± standard deviation.

Table 2 | Tri-class classification: PD patients vs. ET patients vs. healthy speech with each speech dimension and their fusion

UBM Monologue Pataka

Articulation Phonation Prosody Fusion PCA Articulation Phonation Prosody Fusion PCA

M Acc. (%) M Acc. (%) M Acc. (%) Acc. (%) Acc. (%) M Acc. (%) M Acc. (%) M Acc. (%) Acc. (%) Acc. (%)

German 4 57.5 ± 3.0 2 56.7 ± 1.9 4 50.4 ± 2.2 58.4 ± 1.8 29.5 ± 2.3 2 49.7 ± 1.1 32 55.9 ± 1.5 2 69.7 ± 2.0 68.0 ± 1.5 64.1 ± 2.2

Spanish 2 52.4 ± 2.6 8 56.9 ± 2.3 2 45.7 ± 1.1 57.2 ± 2.0 32.1 ± 1.4 4 50.5 ± 1.7 8 53.7 ± 1.6 2 70.8 ± 0.8 67.9 ± 2.6 68.1 ± 2.4

German-Spanish 4 54.3 ± 3.3 2 52.5 ± 1.5 4 50.5 ± 1.1 57.6 ± 0.7 30.1 ± 2.5 4 50.3 ± 2.8 2 56.8 ± 1.3 2 71.6 ± 2.5 68.3 ± 1.9 67.2 ± 2.0

CIEMPIESS (Spanish) 2 58.8 ± 1.9 32 53.9 ± 2.0 4 50.2 ± 1.3 54.0 ± 2.0 27.7 ± 3.7 – – – – – – – –

Verbmobil (German) 4 59.1 ± 1.5 64 55.5 ± 2.2 8 49.1 ± 1.7 63.3 ± 2.1 27.9 ± 2.9 – – – – – – – –

CIEMPIESS-Verbmobil 2 54.1 ± 2.0 16 56.0 ± 2.7 4 50.4 ± 1.7 55.2 ± 1.3 30.3 ± 2.4 – – – – – – – –

Average – 53.0 ± 2.4 – 55.3 ± 2.1 – 49.4 ± 1.5 57.6 ± 1.7 29.6 ± 2.5 – 50.2 ± 1.9 – 55.5 ± 1.5 – 70.7 ± 1.8 68.1 ± 2.0 66.5 ± 2.2

Acc accuracy, M number of Gaussian components. mean ± standard deviation.
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classified. It should be noted that 34% of the PD subjects were mis-
classified as healthy controls. In the confusion matrix corresponding
to the /pa-ta-ka/ task, a total of 48 of the 50 ET patients were correctly
classified (accuracy: 96%), while 64% of healthy subjects were cor-
rectly classified (most of the incorrectly classified healthy subjects
were classified as PD patients), and finally, 50% of the patients with PD
were correctly classified. This result shows that prosody (which was
the most discriminative speech dimension for this experiment)
models the characteristic tremor of ET patients and allows for their
discrimination against PD patients and healthy controls. In addition,
to determine if there was any correlation between PD patients clas-
sified as HC subjects and their severity level (e.g., were patients at an
early stage of the disease more commonly misclassified as HC sub-
jects?), we performed a Mann–Whitney U-test on the UPDRS-III
scores of PD patients classified as HC subjects and correctly classified
patients. We obtained a p value of 0.374 for PD patients who were
correctly predicted by the monologue task (n = 24; UPDRS-III
mean = 19.8, SD = 10.1) compared to those were had been mis-
classified (n = 17; UPDRS-III mean = 16.7, SD = 7.3). For the /pa-ta-
ka/ task, we report a p value of 0.203 between the correctly classified
PD patients (n = 25; UPDRS-III mean = 21.7, SD = 9.6) compared to
the misclassified PD patients (n = 22; UPDRS mean = 17.7, SD = 9.4).

Therefore, we can conclude that there is no significant difference in the
severity level of PD patients correctly classified and misclassified in
both tasks.

Figure 3 shows the distribution of speakers in each group based on the
best results from Table 2. This representation was created by concatenating
the three supervectors of articulation, phonation, and prosody for the
monologue task as well as the prosody supervector for the /pa-ta-ka/ task.
The original space was reduced to two dimensions by applying linear dis-
criminant analysis (LDA). Three clusters can be observed in the figure
corresponding to themonologue task (Fig. 3a) (one for each class); however,
it is clear that some samples overlap with each other, consistent with our
results and the presented confusion matrix. In contrast, the accurate dis-
crimination of ET patients is clearly observed for the /pa-ta-ka/ task (Fig.
3b), although there is a distinct overlap between healthy subjects and PD
patients. These results are consistent with the trends shown in Fig. 2.

Finally, to evaluatewhether each representation contained information
on the age of participants and/or the severity level of the patients, we
computed the Spearman correlation between each component, the age of
the patients, and their severity level (UPDRS-III andTETRAS scores for PD
and ET, respectively). The results showed that, in most scenarios, there was
no correlation (ρ = 0), while some scenarios exhibited very weak correla-
tions (0<∣ρ∣≤ 0:2) between the LDA components and the age or motor

Fig. 2 | Confusion matrices of the best results
obtained in the classification of ET patients (ET)
vs. PDpatients (PD) vs. healthy speech (HC). a For
the monologue task, the adaptation was performed
from the UBM trained with Verbmobil (German)
and using the fusion of the three speech dimensions.
b For the /pa-ta-ka/ task, the adaptation was per-
formed from the UBM trained with the German and
Spanish controls and using the prosody dimension.

Fig. 3 | Visualization of the groups distribution after applying LDA using two components. a Results based on monologue task. b Results based on /pa-ta-ka/ task.
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severity of the patients. No significant differences were observed in any of
the methods (p value >0.05). It is important to note that the PD/ET/HC
groups were well-balanced in terms of the age of the subjects; therefore, age
should not be a confounding factor in the analysis.

Discussion
We found that the models achieved PD and ET classification accuracies of
up to 86% in a controlled task (i.e., /pa-ta-ka/) and 81% in a spontaneous
speech task (i.e., monologue). Both tasks were modeled using the three
speech dimensions: articulation, phonation, and prosody. The results sug-
gest that the threedimensions are complementary,with each contributing to
the highly accurate classification results. We believe that this finding is
promising and couldpotentially beused to support thedifferential diagnosis
between PD and ET. When each dimension was analyzed separately using
the monologue task, it was found that articulation had the strongest con-
tribution todiscrimination accuracy.Thisfinding ismost likely explainedby
the fact that PD patients with hypokinetic dysarthria are characterized by
rigidity of the muscles involved in the speech production process and that
this phenomenon is most accurately modeled by the transition between
voiced and unvoiced segments (articulation)22. In contrast, when each
dimension was analyzed separately using the /pa-ta-ka/ task, we found that
prosody had the strongest contribution to discrimination accuracy. We
believe that such behavior is associated with hyperkinetic dysarthria in ET
patients due to the presenceof uncontrolledmovements in a controlled task.
This deficit is likely to manifest as an excessive pitch, increased loudness
variations, and decreased temporal regularity, which is best modeled by
prosodywith high-level features, such as the ones based on the fundamental
frequency (F0) contour, energy, and duration, compared to articulatory
features. However, future research is necessary to further extend and vali-
date the methodological approaches on how to differentiate between dif-
fering diseases and dysarthria types.

When healthy speakers were included in the classification, we found
that a fusion of articulation, phonation, and prosody supervectors also
yielded the best performance for themonologue task,with an accuracy of up
to 63% for the tri-class classification problem. However, in the case of the
/pa-ta-ka/ task, only the prosody dimension achieved the best performance
with accuracies of up to 71%. Once again, the prosody dimension had a
fundamental role in discriminating between both pathologies and healthy
speech, supporting the aforementioned results. When each dimension was
analyzed separately using themonologue task, we observed that, on average,
the phonation was the most discriminating because it requires accurate
control of the vocal cords. We believe that this is the reason why it played
such an important role in the tri-class classification problem. In addition, it
is important tomention thatmost errorswere due to themisclassification of
PD patients as HC subjects. This is likely because of the greater overlap
between characteristic speech changes associated with hypokinetic dysar-
thria and healthy aging compared to changes associated with hyperkinetic
dysarthria. For instance, decreased voice quality, which is typical for PD
patients23, is not uncommon in aging patients24. Conversely, pitch fluctua-
tions are very specific to hyperkinetic dysarthria7, and to the best of our
knowledge have never been documented in healthy aging speech.

Another relevant point to discuss is that two different tasks were
evaluated in this study: the first one corresponds to a diadochokinetic
exercise (i.e., /pa-ta-ka/ task) in which the articulatory muscles in charge of
producing speech are required to be placed in specific positions at a very
specific point in time; in otherwords, this is a controlled and functional task.
The second one was a spontaneous speech task, in this case a monologue.
This task can be captured unobtrusively and does not require the patient to
perform specific movements using their articulators. The difference in the
performance of these two tasks when attempting to distinguish between the
two types of dysarthria is only 5%,which is still an excellent result, especially
considering that evaluation through natural, connected speech may repre-
sent a very natural digital biomarker for the early diagnosis of diseases with
similar clinical manifestations based on data acquired with minimal time
cost or burden to the patient and investigator. Furthermore, considering

that it is a language-dependent task, the robustness of the proposed meth-
odology was shown with slightly lower results compared to the language-
independent task (/pa-ta-ka/). In addition, the better performance of the
diadochokinetic task in differentiating between PD and ET patients com-
pared to the monologue task can likely be explained by the fact that ET
patients often have issues affecting their cerebellum25. It is well known that
cerebellar ataxia causes problems with the sequential planning needed for
oral diadochokinetic tasks26.

It is also important to highlight the use of different datasets to create the
UBMs. The two experiments described in this study exhibited their best
performances when using UBMs derived from the Verbmobil (German)
database. This may be because Czech (Slavic language) and German
(Germanic language) are more closely related than Czech and Spanish
(Romance language)27. Additionally, it is also interesting to note that the
results did not improve when the Verbmobil (German) and CIEMPIESS
(Spanish) corpora were combined to create a larger UBM; this suggests that
the absolute volume of data is less important than collecting data of the
appropriate language. In the case of the /pa-ta-ka/ task, we believe that
linguistic similaritymaynothave asmuchof an impact since it is a language-
independent task; consequently, thismay explain why the best results in the
tri-class classification problemwere obtained from the UBMmodel trained
on a combination of German and Spanish datasets, as this would result in a
more generalizable model. However, further research is required before
stronger conclusions can be made.

In addition to the differences in languages, the UBMs were trained
using datasets with different recording procedures, resulting in differences
in acoustic conditions andmicrophone types; however, the adaptationof the
UBMs to the Czech GMMs was shown to be robust to these variables,
allowingus to conclude that amethodologybasedonGMM-UBMscould be
feasible even in corpora recordedunder different conditions, something that
has already been demonstrated mainly in speaker verification28. Never-
theless, it is important to stress that the Czech data were recorded using a
professional head-mounted microphone in an environment with low
ambient noise following international guidelines7, i.e., generally in better
conditions than the training data. Therefore, we cannot exclude that the
same robust results will be obtained when data for the evaluation would be
in worse conditions (e.g., low-quality microphones, noisy environment,
unbalanced distances, and different microphone positions) than training
data. Therefore, future work could also consider evaluating different con-
ditions in the target data, i.e., Czech speakers in our approach.

Finally, this work has some limitations. Although the UBM models
trained with patients were not satisfactory, in this work, it was not possible
to evaluate the scenario where a base model was trained with both
pathologies because a corpus of ET speakers in other languages was not
available, and taking part in it to create another UBM would considerably
reduce the data to be evaluated, besides generating an imbalance between
the Czech databases. However, with respect to UBM models trained with
PD patients, we consider that these models can satisfactorily generalize ET
because the PD patients used for training in Spanish and German
languages29,30 were in moderate to advanced stages with potential occur-
rence of dyskinesias (i.e., introducinghyperkinetic speechbehavior),which
generates a feasible universe for an adaptation of the GMMs. Therefore, in
futurework,we consider it necessary to includemore patient data tomodel
in theUBMthe large variability introducedbypatients due to their patterns
resulting from dysarthric symptoms.We also acknowledge that we did not
perform specific testing for cognitive involvement or education, as the
primary aim was the investigation of motor speech deviations. While the
effect of cognitive impairment on motor speech, especially in ET patients,
remains unknown, a recent study showed that cognitive impairment
associated with PDmay account for the worse performance of patients in
tasks requiring temporal coordination, such as prolonged voicing, pause
intervals, and decreased rate31. Since timing abnormalities in ET, such as
low speech rates, are caused by the disease itself9, we believe that the
potential occurrence of cognitive impairment in ET would have little
impact on timing features.
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Another limitation is that the duration of symptoms for ET
patients is considerably longer than that of PD patients. This is pri-
marily because some ET patients self-reported the occurrence of first
motor symptoms already in childhood. Nevertheless, on average, per-
ceptual speech impairment is comparable between PD and ET groups.
Our approach was able to discriminate between ET and PD patients
regardless of the duration of symptoms in the patients. Indeed, Spear-
man’s correlation test performed on the scores of ET patients and the
duration of their symptoms did not reveal any significant correlations,
suggesting that the duration of self-reported symptoms does not play a
major role in the ability of speech assessment tools to distinguish
between PD and ET patients. Indeed, speech production does not
necessarily reflect disease duration or deteriorate at the same rate as
other motor skills like gait or hand movement. Within our PD cohort,
we did not find differing motor severities between those who had been
correctly and incorrectly classified as PD. This is consistent with a
previous multicentric study on PD showing that speech impairment
severity was a non-overlapping marker of disease severity compared to
other gross motor symptoms21. Finally, although our ET and PD groups
were well-balanced with respect to age and gender, the majority of used
acoustic features were treated by DC-level removal, amplitude nor-
malization, and Z-score normalization. Future research may benefit
from normalizing F0 from Hz to a semitone scale to avoid potential
physical differences among speakers32.

In conclusion, we created GMM Supervectors with features extracted
from three speech dimensions: articulation, phonation, and prosody, to
distinguish between PD, ET, and healthy speech. The results showed that a
fusion of the speech dimensions yielded the best results when applied to the
bi-class classification problem, with an accuracy of 81.4 and 86.2% for the
monologue and /pa-ta-ka/ tasks, respectively. In the tri-class classification
problem (i.e., when healthy speakers were added as an additional class), the
best resultwas obtainedusing a prosody-onlymodel based on the /pa-ta-ka/
task (accuracy: 71.6%). The best result obtained from the monologue tasks
was obtained froma combination of the three speech dimensions (accuracy:
63.3%). These results suggest that prosody and articulation are the two best-
performing biomarkers for the differential diagnosis between PD and ET
patients. Articulation features model the rigidity of the muscles involved in
speech production, particularly during the transition between voiced and
unvoiced sounds, while prosody models change in intonation, timing, and
loudness. Future research is required to validate and extend our approach,
especially for earlier stages of the disease, the use of deep learning archi-
tectures, and transfer learning strategies between languages and different
types of dysarthria.

Methods
The methodology proposed in this work consists of six main stages: data-
bases considered in thiswork (Fig. 4a). Extractionof articulation, phonation,
and prosody features from each group of speakers (Fig. 4b). Training of the
UBM (Fig. 4c). Adaptation of each speaker from the Czech corpora is
performed using the Maximum a posteriori (MAP) method to derive a
specificGMMper subject (Fig. 4d). Supervectors are createdusing themean
vectors and covariance matrices of the adapted GMM per subject (Fig. 4e).
Training and evaluation of the Czech subjects is performed using a SVM
classifier and following a cross-validation strategy. Bi-class and tri-class
classification scenarios are considered (Fig. 4f). The details of each stage of
the methodology are presented below.

Data
The data considered in this study is divided into two main parts. The first
part, called participants and speech recordings, provides information about
the individuals who evaluated the proposed methodology. All participants
in this evaluation spoke the same language (Czech). The second part per-
tains to the databases used to train the methodology, detailing the corpora
utilized for training the UBMmodels. It should be noted that two different
languages (Spanish and German) were used in the training process.

Participants and speech recordings. The participants were composed
of several different groups of speakers, including 50 patients with ET (20
females), and 50 patients with PD (20 females), all of whomwere Czech
native speakers. The diagnosis of ET was established by previously
published clinical research criteria33, while the PD diagnoses followed
clinical diagnostic criteria outlined by the Movement Disorders
Society34. Speech recordings were performed in a quiet room using a
head-mounted condensermicrophone (Beyerdynamic Opus 55) placed
~5 cm from the corner of the subject’s mouth. The recording procedure
was performed according to dysarthria guidelines7. All speech signals
were downsampled to 16 kHz. Symptom durations were estimated
based on the self-reported occurrence of the first motor symptoms. All
PD patients were in ON-state during the recording session, i.e., under
the effect of dopaminergic medication. Each patient was evaluated by a
neurological expert according to the third section of the Unified Par-
kinson’s Disease Rating Scale (UPDRS-III)35, which ranges between 0-
108, our PD cohort had an average score of 20.1. The ET patients were
evaluated by a neurological expert according to the Tremor research
group Essential Tremor Rating Assessment Scale (TETRAS)36, which
ranges between 0–64; the average score of the ET patients was 34.6. To
identify any potential biases between the age of the patients and the

Fig. 4 | General methodology. aDatabases considered. b Feature extraction. cUBM training. d Speaker adaptation. eGeneration of supervectors. fTraining and evaluation.
GMM supervectors were created with information extracted from features of articulation (Art.), phonation (Phon.), and prosody (Pros.). Fus early fusion of all supervectors.
PCA principal component analysis computed from the early fusion supervector. MAP maximum a posterior.
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severity of the disorder (measured using UPDRS-III and TETRAS for
PD and ET, respectively), we obtained a Pearson’s correlation coeffi-
cient for each pathology. The results showed that there was no strong
correlation between either group (PD patients: r = 0.233, p value = 0.10;
ET patients: r = 0.036, p value = 0.81). Table 3 summarizes the subject’s
demographic information.

In addition, data from 50 HC subjects (20 females) with ages
61.6 ± 11.2, ranging from 40 to 79 were included. None of the HC partici-
pants had a history of neurological or communication disorders. Each
subject had at least eight years of elementary education. No participant
exhibited severe intellectual impairments thatwould interferewith the study
protocol.

Concerning the tasks considered in this study, we include two: the
rapid repetition of the syllables /pa-ta-ka/ and a monologue. For the
/pa-ta-ka/ task, the participants were instructed to perform rapid /pa/-/
ta/-/ka/ syllable repetition at least seven times in a single breath. For the
monologue task, participants were instructed to speak spontaneously
for approximately 90 seconds about a freely chosen topic, which could
be anything from hobbies, work, holidays, their hometowns, or a
description of the current day. The participants were recommended to
speak for ~90 s; no time limit was imposed. These two tasks were chosen
for the following reasons: the /pa-ta-ka/ task is representative of func-
tional vocal tasks that are essential for motor speech disorder
assessment7,9; specifically, it tests the specific movements required to
produce stop consonants with differing placement of articulators, while

the monologue task represents the natural, unobstructed spontaneous
speech production without any specific requirements. The average
duration of /pa-ta-ka/ task was 7.8 ± 3.4 s for PD patients, 7.4 ± 2.4 s for
ET patients, and 7.7 ± 4.2 s for theHC subjects. The average duration for
the monologue task was 144 ± 56 s for PD patients, 117 ± 20 s for ET
patients, and 150 ± 51 s for the HC subjects.

Databases considered to train themethodology. We used a variety of
language databases to train the models according to the proposed
methodology. Two corpora were related to the target phenomenon, in
this case, the Parkinson’s database. Table 4 summarizes the clinical and
demographic information of the participants.We also included two other
spontaneous speech corpora which are typically used for training speech
recognition systems. We included them to improve the training of our
system and also considering that several works have performed experi-
ments with these databases and showed that they could be useful to create
models of pathological speech37,38. More details on each database are
given below.

PD-Spanish: PC-GITA contains the recordings of 50 PD patients and
50 HC subjects, all of whom were native speakers of Colombian Spanish29.
The patients in the PC-GITA database were evaluated by an expert neu-
rologist and labeled according to the third section of the Movement Dis-
orders Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-
III)39,with anaverageof 36.6points.All patientswere inON-stateduring the
recording session.

PD-German: This corpus consists of 88 PD patients and 88 HC sub-
jects, all of whom were German native speakers30. Similar to PC-GITA, the
patients were in ON-state during the recording session and were evaluated
according to the UPDRS-III scale. German patients had an average of 22.7
on the UPDRS-III score. The same tasks described in the previous section
were also considered in the German and PC-GITA databases.

CIEMPIESS: This corpus consists of 17 h of FM podcasts in Mexican
Spanish40. The data comprises 16,717 audio files produced by a total of 96
male and 45 female speakers. The samples were recorded at a sampling
frequency of 16 kHz with 16-bit resolution.

Verbmobil: This corpus consists of speech recordings of 586 German
native speakers (278 female) for a total of 29 hof speech. The data comprises
11,714 audio files recorded at a sampling frequency of 16 kHz with 16-bit
resolution. Each recording was collected in a controlled acoustic environ-
ment using a close-talk microphone41.

Ethical approval and informed consent. All participants provided
written informed consent prior to their inclusion. For the collection of the
corpus from Czech speakers, the study received approval from the ethics
committee of the General University Hospital in Prague, Czech Republic.
The databases used to train themethodology were approved by the ethical
research committee of the University of Antioquia, Colombia (PD-
Spanish) and by the ethics committee of the Ruhr University of Bochum,
Germany (PD-German). All procedures were performed following the
ethical principles laid down by the Declaration of Helsinki.

Table 3 | Demographic information of the speakers in the corpora considered to evaluate the proposed approach

Clinical characteristics PD patients (n = 50; 30 men) ET patients (n = 50; 30 men) HC subjects (n = 50; 30 men) p value

Age (years) 63.4 (9.5; 41–82) 64.8 (12.5; 31–82) 61.6 (11.2; 40–79) 0.21a;0.17b

Symptom duration (years) 6.7 (4.7; 0.7–24) 32.7 (17.2; 9–69) n/a

UPDRS-III/TETRAS 20.1 (10.9; 4–54) 34.6 (15.8; 6–74) n/a

UPDRS-III speech item 0.8 (0.6; 0–2) 0.7 (0.9; 0–3) 0.1 (0.3; 0–1) <0.001a;0.08b

Values are listed in the format mean (standard deviation; range).
PD Parkinson’s disease, ET essential tremor, HC healthy control, UPDRS-III unified Parkinson’s disease rating scale—Third section, TETRAS tremor research group essential tremor rating assessment
scale, n/a not applicable.
aKruskal–Wallis test: PD patients vs. ET patients vs. HC subjects.
b Mann–Whitney U-test: PD patients vs. ET patients.

Table 4 | Demographic information of the speakers in the
corpora considered in the UBM training

Clinical characteristics PD patients HC subjects p value

Spanish n = 50; 25 men n = 50; 25 men

Age (years) 61.0 (9.4; 33–81) 60.9 (9.4; 31–86) 0.49a

Symptom duration (years) 10.6 (9.2; 1–43) n/a

MDS-UPDRS-III 36.5 (16.5; 6–75) n/a

MDS-UPDRS-III
speech item

1.3 (0.8; 0–3) 0.2 (0.4; 0–1) <0.001a

German n = 88; 47 men n = 88; 44 men

Age (years) 66.5 (8.9; 42–84) 63.2
(13.9; 26–85)

0.15a

Symptom duration (years) 7.1 (5.9; 1–30) n/a

UPDRS-III 22.7 (10.9; 5–55) n/a

UPDRS-III speech item 1.3 (0.6; 0–3) 0.1 (0.3; 0–1) <0.001a

Values are listed in the format mean (standard deviation; range).
PDParkinson’s disease,HC healthy control,MDS-UPDRS-IIImovement disorders society—unified
Parkinson’s disease rating scale—Third section,UPDRS-III unifiedParkinson’s disease rating scale
—Third section, n/a not applicable.
aMann–Whitney U-test: PD patients vs. HC subjects.

https://doi.org/10.1038/s41746-024-01027-6 Article

npj Digital Medicine |            (2024) 7:37 7



Feature extraction
Articulation, phonation, and prosody features were extracted to model
different speech deficits in subjects suffering from motor speech disorders
such as those associated with PD or ET. For this stage, a DC offset removal
and amplitude normalization were performed on each recording; this
improved the robustness of the processing and ensured that the signals were
at a suitable scale for characterization. 78 features (7 phonatory, 58 articu-
latory, and 13 prosodic) were extracted using the DisVoice toolkit42, the
definition of each feature is summarized in Table 5. Details of each speech
dimension are presented below.

Articulation. This speech dimension evaluates the ability of a speaker to
control the movement of their articulators such that they are in the correct
position at the correct time, and held for the appropriate duration and energy
while producing speech. This study used the transition from unvoiced to
voiced segments (onset) to assess the difficulties that speakers suffering from
dysarthria had with starting the vibration of the vocal folds22,43. We did not
include the transition from voiced to unvoiced segments (offset) because
previous work has shown that onset transitions exhibit better or equal per-
formances compared to offset transitions or a combination of both44. Onset
transitions were segmented according to the presence of the F0, which was
estimated usingPraat45. Once the borders are detected, 40ms of the signal are
taken to the left and to the right of each border, forming segmentswith 80ms
length22,43,46. A total of 58 features were extracted from the transition seg-
ments, including the energy content in 22 critical bands distributed according
to the Bark scale, and 12 Mel frequency cepstral coefficients together with
their first and second derivatives. The features were computed at the frame-
level in eachonset segment uponwindowswith 40ms length and a time-shift
of 20ms. Additional information and the source code can be found in42,47.

Phonation. This speech dimensionmodels the ability of a speaker to use air
in their lungs tomake their vocal folds vibrate, allowing for the production of
voiced sounds. In this paper, we focused mainly on the production of voiced
sounds to model the ability of subjects to control their vocal fold vibration.
The phonation feature set was composed of seven measures computed
exclusively over voiced segments of the speech signal: (1,2) the first and
second F0 derivatives; (3) shimmer, which measures amplitude perturbation
within three consecutive cycles of the vocal folds’ vibration; (4) jitter, which
measures frequency perturbation in three cycles of the vocal folds’ vibration;
(5,6) the amplitude and pitch perturbation quotients, namelyAPQ andPPQ,
respectively, whichmodel the long-termamplitude and temporal variation in
the vibration cycles of the vocal folds; and (7) the log energy per frame as an
indirectmeasure of loudness. Additional information about the computation
of phonation features is presented in47,48.

Prosody. This dimensionmeasures the ability of a speaker to produce and
control changes in intonation, timing, and loudness. A total of 13 prosody
features were extracted from each voiced segment, including the duration
of the segment, the coefficients of a fifth-order polynomial thatmodels the
F0 contour, and the coefficients of a 5th-order Lagrange polynomial that
models the energy contour. Additional information about this approach
to model prosodic information can be found in49.

Gaussian mixture models—universal background models
Thedynamics of the extracted features givenby thevariability in the extracted
segments (transitions and voiced segments) for each audio sample were
modeledusingaGMM-UBMframework.GMMsareprobabilitymodels that
represent a population of a linear combination of Gaussian probability dis-
tributions. For a D-dimensional feature vector x, where D= 58 for the
articulation feature set, D = 7 for the phonation feature set, and D = 13 for
theprosody feature set, themixturedensityused for the likelihood function in
M Gaussians is defined as pðxjλÞ ¼ PM

i¼1 wipiðxÞ, where pi(x) corresponds
to a Gaussian density weighted by wi such that it satisfies the constraintPM

i¼1 wi ¼ 1. In addition, each pi distribution is composed of amean vector
μi
� �

D× 1 and a covariance matrix Σi

� �
D×D. The set of parameters for

the density model is denoted as λ ¼ wi; μi;Σi

� �
, where i = 1, …, M. The

parameter set λ of the maximum likelihood function can be estimated
using the expectation maximization (EM) algorithm50, which iteratively re-
defines the parameters and increases the likelihood of the estimated
model for the observed feature vectors; that is, for iterations k and k+ 1,
p(X∣λ(k+1)) > p(X∣λ(k)), where X is a matrix with the group of features x
extracted from each participant for the different speech dimensions (articu-
lation, phonation, and prosody)51.

Maximum a posteriori adaptation
The parameters that model each target speaker were derived from an
adaptation process denoted as maximum a posteriori (MAP)52. Unlike
the use of the GMM and the EM algorithm, the MAP adaptation aims
to derive parameter updates fromUBMs trained using the Spanish and
German databases. This approach is considered to be relatively robust,
resulting in the generation of well-trained models that provide a closer
coupling between each model and the UBMmodel. The process for the
MAP adaptation is divided into twomain steps: (1) the probability that
a feature vector belongs to each Gaussian of the UBM is estimated; (2)
new values for each parameter were estimated by taking into account
the probability obtained in the previous step as well as the estimated
parameters obtained from previous iterations of the adaptation
process51.

Table 5 | Overview of applied speech features

Feature Unit Dimension Description

Bark band energies - Articulation Twenty-two Bark band energies in onset transitions

MFCCs - Articulation Twelve Mel frequency cepstral coefficients in onset transitions

Δ - ΔΔ MFCCs - Articulation First and second derivative of the MFCCs in onset transitions

Δ- ΔΔF0 Hz Phonation First and second derivative of the fundamental frequency

Jitter % Phonation Average absolute difference between consecutive periods, divided by the average period.

Shimmer % Phonation Average absolute difference between the amplitudes of consecutive periods, divided by the average amplitude.

APQ % Phonation Eleven-point amplitude perturbation quotient, the average absolute difference between the amplitude of a period and the
average of the amplitudes of it and its ten closest neighbors, divided by the average amplitude.

PPQ % Phonation Five-point period perturbation quotient, the average absolute difference between a period and the average of it and its four
closest neighbors, divided by the average period.

Energy dB Phonation Energy of voiced segment

Voiced segment s Prosody Duration of the voiced segment

Model F0 contour - Prosody Coefficients of 5-degree Lagrange polynomial to model F0 contour

Model energy contour - Prosody Coefficients of 5-degree Lagrange polynomial to model energy contour
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Given a UBM and amatrix X ¼ x1; . . . ; xT
� �

that contains T feature
vectors, we first determine the probability of a feature vector to belong to the
ith Gaussian as shown in Equation (1).

PrðijxtÞ ¼
wipiðxtÞPM
j¼1 wjpjðxtÞ

ð1Þ

Then, we use Pr(i∣xt) and xt to calculate the statistics denoted by ni,
Ei(x), and Ei(x

2) that allow finding the parameters λ.

ni ¼
XT

t¼1

PrðijxtÞ ð2Þ

EiðxÞ ¼
1
ni

XT

t¼1

PrðijxtÞxt ð3Þ

Eiðx2Þ ¼
1
ni

XT

t¼1

PrðijxtÞdiagðxtxTt Þ ð4Þ

Finally, from the calculated statistics the parameters w0
i, μ

0
i, and Σ

0
i are

updated for the ith Gaussian mixture using the following equations:

w0
i ¼ αini=T þ ð1� αiÞwi

� �
γ ð5Þ

μ0i ¼ αiEiðxÞ þ ð1� αiÞμi ð6Þ

Σ02
i ¼ αiEiðx2Þ þ ð1� αiÞðΣ2

i þ μ2i Þ � μ02i ð7Þ
Whereγ is a scale factor that guarantees

PM
i¼1 w

0
i ¼ 1.Also,αi is known

as the adaptive coefficient that controls the balance between old and new
parameters, and it is computed asαi ¼ ni

ni þ r, where r is a relevance factor that
has been defined in the literature as a standard term equivalent to 1651.

Supervectors
A GMM supervector can be considered as a representation in smaller-
dimensional vectors after adaptation from the UBM. This new repre-
sentation summarizes the dynamic information contained in each temporal
feature (segments) in a more compact format, generating a comprehensive
static representation for each recording; this has the advantage of providing
statistical information of the phenomenon; i.e., a mean vector and a cov-
ariance matrix. For this work, GMM supervectors were created by stacking
the means μ0i and the diagonal of the covariance matrix Σ0

i derived from the
mixture components. In this case, both statistics have the same dimension
and are determined by the product of the number of Gaussian components
M and the number of features in each speech dimension.

Parameters optimization and classification
Weused an SVMclassifier with aGaussian kernel with each hyperparameter
optimized using a grid-search such that C∈ {0.001, 0.005, 0.01,⋯, 100, 500,
1000} and γk∈ {0.0001, 0.001, ⋯, 1000}. Note that the optimal hyper-
parameters were obtained during the training process as the mode over the
repetitions. Each experiment was trained and evaluated following a stratified
k-fold cross-validation strategy with ten folds. This process was repeated ten
times for a better generalization of the results. We also performed an adap-
tation for different numbers of Gaussian componentsM∈ {2, 4, 8, 16, 32, 64,
128}. Results only show the number of Gaussians that yielded the highest
accuracy. Accuracy was used to evaluate the methodology. Sensitivity and
specificity are reported in the experiments with the best results to allow
further analyses regards false positives and false negatives.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Individual participant data that underlie the findings of this study are
available upon reasonable request from the corresponding author. The data
are not publicly available due to their containing of information that could
compromise the privacy of study participants.

Code availability
Feature extraction was performed using the DisVoice toolkit, a Python
framework designed to compute features from speech files and can be
accessed via this link.
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