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Large language models (LLMs) have been shown to have significant potential in few-shot learning
across various fields, even with minimal training data. However, their ability to generalize to unseen
tasks in more complex fields, such as biology and medicine has yet to be fully evaluated. LLMs can
offer a promising alternative approach for biological inference, particularly in cases where structured
data and sample size are limited, by extracting prior knowledge from text corpora. Here we report our
proposed few-shot learning approach, which uses LLMs to predict the synergy of drug pairs in rare
tissues that lack structured data and features. Our experiments, which involved seven rare tissues
from different cancer types, demonstrate that the LLM-based prediction model achieves significant
accuracy with very few or zero samples. Our proposed model, the CancerGPT (with ~ 124M
parameters), is comparable to the larger fine-tuned GPT-3 model (with ~ 175B parameters). Our
research contributes to tackling drug pair synergy prediction in rare tissues with limited data, and also
advancing the use of LLMs for biological and medical inference tasks.

Foundation models have become the latest generation of artificial intelli-
gence (AI)1. Instead of designing AImodels that solve specific tasks one at a
time, such foundationmodels or “generalist”models canbe applied tomany
downstream tasks without specific training. For example, large pre-trained
language models (LLMs), such as GPT-32 and GPT-43, have been a game
changer in foundation AImodel4. An LLM can apply its skills to unfamiliar
tasks for which it has never been trained, known as few-shot learning or
zero-shot learning. This is due in part to multitask learning, which enables
LLM to unintentionally gain knowledge from implicit tasks in its training
corpus5. Although LLMs have shown proficiency in few-shot learning in
various fields2, including natural language processing, robotics, and com-
puter vision2,6,7, their generalizability to unseen tasks inmore complexfields,
such as biology, has yet to be fully tested. In order to infer unseen biological
reactions, knowledge of participating entities (e.g., genes, cells) and
underlying biological mechanisms (e.g., pathways, genetic background,
cellular environment) is required.While structured databases encode only a
small portion of this knowledge, the vast majority is stored in free-text
literature, which can be used to train LLMs. Thus, we envision that when
there are limited structured data and limited sample sizes, LLMs can serve as

an innovative approach for biological prediction tasks, by extracting prior
knowledge from unstructured literature. One of such few-shot biological
prediction tasks with a pressing need is a drug pair synergy prediction in
understudied cancer types.

Drug combination therapy has become a widely accepted strategy for
treating complex diseases such as cancer, infectious diseases, and neurolo-
gical disorders8. In many cases, combination therapy can provide better
treatment outcomes than single-drug therapy. Predicting drug pair synergy
has become an important area of research in drug discovery and develop-
ment.Drug pair synergy refers to the enhancement of the therapeutic effects
of two (or more) drugs when used together compared to when each drug is
used alone. The prediction of drug pair synergy can be challenging due to a
largenumberof possible combinations and the complexity of theunderlying
biological mechanisms9. Several computational methods have been devel-
oped to predict drug pair synergy, particularly using machine learning.
Machine learning models can be trained on large datasets of existing drug
pair’s experiment results to identify patterns and predict the likelihood of
synergy for a new drug pair. Early studies in this area have relied on rela-
tional information or contextual information to extrapolate the synergy
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score regarding a specific cell line to cell lines in other tissues10–14, ignoring
the biological and cellular differences in these tissues. Another line of studies
has sought to overcome the discrepancy between tissues by utilizing diverse
and high-dimensional features, including genomic (e.g., gene expression of
cell lines) or chemical profiles (e.g., drug structure)13,15–18. However, most of
the available data comes from common cancer types in certain tissues, such
as breast and lung cancer; very limited experiment data are available on
certain tissues, such as bone and soft tissue (Fig. 1). Obtaining cell lines from
these tissues can be physically difficult and expensive, which limits the
number of training data available for drug pair synergy prediction. This can
make it challenging to train machine learning models that rely on large
datasets. ref. 18 used transfer learning to extend the predictionmodel trained
in common tissues to some of the rare tissues with relatively rich data and
cellular features. However, it cannot be utilized for rare tissues with extre-
mely limited data and cellular information.

In this work, we aim to overcome the above challenge by LLMs. We
hypothesize that cancer types with limited structured data and features still
have rich information in scientific literature.Manually extracting predictive
informationon suchbiological entities from literature is a complex task.Our
innovative approach is to leverage prior knowledge in scientific literature
encoded in LLMs.We build a few-shot drug pair synergy prediction model
that leverages representation from LLM as a prior knowledge and predict
the outcome. Our experimental results demonstrate that our LLM-based
few-shot prediction model achieved significant accuracy even in zero-shot
setting (i.e., no training data) and outperformed strong tabular prediction
models in most cases. This remarkable few-shot prediction performance in
one of the most challenging biological prediction tasks has a critical and
timely implication to a broad community of biomedicine because it shows a
strong promise in the “generalist” biomedical artificial intelligence1.

Results
Results overview
We developed CancerGPT, a few-shot drug pair synergy prediction model
for rare tissues. Leveraging LLMs-based tabular data predictionmodel19, we
converted the prediction task into a natural language task, derived

embedding from prior knowledge encoded in LLM’s pre-trained weight
matrices, and built classification model for synergy prediction (Fig. 2). We
presented our strategy to adapt the LLM to our task with only a few shots of
training data in each rare tissue using k-shot fine-tuning strategy (Fig. 6).

We evaluated the accuracy of our proposed CancerGPTmodel, other
LLM-based models (GPT-2, GPT-3, SciFive20), and general data-driven
prediction models (XGBoost, Collaborative Filtering, TabTransformer)
(Methods, Fig. 3, 4, Supplementary Figs. 1, and 2, Supplementary Table 2-5)
by the area under the precision-recall curve (AUPRC) and the area under
the receiver operating curve (AUROC) under the different settings. We
considered different few-shot learning scenarios, where the model is pro-
vided with a limited number k of training data to learn from (k = 0 to 128).
By varying the number of shots, we can examine themodel’s ability to adapt
and generalize with minimal training data. Next, we compared the perfor-
mance of CancerGPT and other LLM-based models across different tissues
and model settings. We then investigated whether the LLM’s reasoning for
its prediction is valid by checking its argument with scientific literature.

Accuracy
CancerGPT showed the highest accuracy in tissues such as the liver, soft
tissue, and urinary tract. CancerGPT’s accuracy increases as the number of
training shots increases (Figs. 3, 4), indicating that the information gained
from a few shots of data complements the prior knowledge encoded in LLM
and the information in external data. In contrast, the two data-driven
models, Collaborative filtering and TabTransformer, showed higher accu-
racy in some tissues, including endometrium, stomach, andbone, indicating
that the patterns learned from external data (common tissues) can be
extrapolated to these tissues. The discrepancy in accuracy between Can-
cerGPT (which utilizes prior knowledge and external data) and the data-
driven model can be attributed to the similarity of the external data’s dis-
tribution to the data of interest. Certain rare tissue cancer cell lines show
unique characteristics in comparison to common tissues. These tissues have
specific cellular characteristics that are unique to their tissue of origin, which
may not be accurately predicted through training with common tissue. For
example, hepatic cell lines, which originate from liver tissue, have unique

Fig. 1 | Few-shot prediction in biomedicine. a Different from a task-specific
approach, a large pre-trained languagemodel can perform new tasks for which it has
not been explicitly trained. b Drug pair synergy prediction in rare tissues is an

important example of the numerous few-shot prediction tasks in biomedicine. c A
large pre-trained language model can be an innovative approach for few-shot pre-
diction in biomedicine, thanks to the prior knowledge encoded in its weight.
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Fig. 2 | Study workflow. We converted the tabular input (a) to natural text and
created a task-specific prompt (b). The prompt was designed for the LLM to give a
binary answer (i.e., “Positive”, “Not positive”), and the LLM’s embedding from the
last token was used for the final prediction (c, d). We evaluated and compared the

prediction models with a different number of shots and tissues (e). We investigated
the LLM’s reasoning based on factual evidence. LLM Large Language Model.

Fig. 3 | AUPRC of k-shot learning on seven tissue sets.We used 20% data as a test
set in each rare tissue, while ensuring the binary labels were equally represented.
AUPRC Area Under the Precision Recall Curve. Legend Orange: XGBoost, Gray:

Collaborative Filtering, Yellow: TabTransformer, Light Blue: CancerGPT, Green:
GPT-2, Dark Blue: SciFive, Red: GPT-3.
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drug response characteristics due to high expression of drug-metabolizing
enzymes such as cytochromeP450s21.When thedata fromcommon tissue is
distributed differently to each rare tissue (i.e., external data is out-of-dis-
tribution), CancerGPT outperforms the general data-driven prediction
model trained with out-of-distribution data, thanks to general prior
knowledge already encoded in the LLM parameters. On the other hand,
TabTransformer and Collaborative filtering, trained with external data,
achieved the best accuracy in tissues such as endometrium, stomach, and
bone.We further investigated the genomic characteristics of these tissues to
ascertain any commonalities with common tissues. Supplementary Figure 3
showed the lower dimensional projection of gene expression of cancer cell
lines grouped by tissue types22. In this figure, gene expression of tumorous
cells from the endometrium (uterus), stomach (gastric), and bone were
similar to that from other majority of tissues. Conversely, the gene
expression of tumorous cells from liver, soft tissue (including Ewing sar-
coma), and urinary tract formed unique clusters that were distinct from
other majority of tissues. When the data from common tissues are dis-
tributed similarly to each rare tissue (in-distribution), the data-driven pre-
dictionmodel outperforms the few-shot LLM-basedmodels. In all, the data-
driven model showed superior accuracy when in-distribution external data
was available, compared to all the LLM-based models, including Can-
cerGPT.However, in the absence of external data, or when the external data
is out-of-distribution, our customized LLM-based model achieved the best
accuracy.

When comparing the accuracy of LLM-based prediction models,
CancerGPTemergedas themost accurate one.This superior performance is
attributable to its fine-tuning with external data, tailored specifically to the
task at hand. GPT-3 also proved to be a competitive model, showing a
potential to enhance its accuracy with an increasing number of shots. This
characteristic renders it an optimal choice for datasets that permit the
abundant additional training samples. Particularly, GPT-3 scored the
highest accuracy in pancreas tissue, in which only zero-shot tuning is pos-
sible due to the limited sample size (Supplementary Tables 2 and 3). Despite
SciFive’s specialized design for scientific literature and its substantial para-
meter size of 220M, it failed to consistently outperform GPT-2 across all
datasets. The SciFive’s lower accuracy despite the larger parameters and
adaptation to scientific literature might be due to its difference in base LLM
(T5 andGPT). The higher accuracy of CancerGPToverGPT-2 underscores

the value of task-specific adjustments. These modifications can augment
accuracy while preserving a model’s versatility. However, the advantages of
such fine-tuning may diminish with larger LLM models like GPT-3, par-
ticularly in scenarios demanding greater generalizability. Interestingly,
CancerGPT, despite its smaller parameter size of 124M, outperformed
GPT-3’s accuracy, which has a larger parameter size of 175B. This suggests
that further fine-tuning of GPT-3 may potentially yield even greater accu-
racy, provided that in-distribution data is readily available.

We also compared the accuracy when the models are fine-tuned with
different strategies. Full training, which updates both LLM parameters and
classification head during k-shot tuning, generally showed higher accuracy
over last layer training (Supplementary Figs. 1 and 2), which only updates
the classification head while freezing the LLM parameters. However, the
marginal increase in accuracy, despite the extensive tuning of themillions or
even billions of parameters was not significantly high. This suggests that the
last layer representation of LLM already encapsulates a substantial amount
of prior knowledge, effectively serving as a foundation fordownstreamtasks.
The observation that last layer training, which leaves the LLM’s backbone
untouched, delivers accuracy comparable to that of a fully trained model,
provides an important insight. An LLM pre-trained with an extensive col-
lectionof scientific literature canflexibly enhancebiomedical predictions via
transfer learning, which is similar to how a pre-trained model with
ImageNet23 can augment image analysis through transfer learning.

Fact check LLM’s reasoning
Weevaluatedwhether the LLMcanprovide the biological reasoning behind
its prediction. In this experiment, we used zero-shot GPT-3 because other
fine-tunedLLM-basedmodels (GPT-2, SciFive,CancerGPT) compromised
its language generative performance during the fine-tuning and were not
able to provide coherent responses. To do this, we randomly selected one
true positive prediction and examined whether its biological rationale was
based on factual evidence or mere hallucination. Our example was the drug
pair AZD4877 and AZD1208 at cell line T24 for urinary tract tissue. We
prompted the LLMs with “Could you provide details on why the drug1 and
drug2 are synergistic in the cell line for a given cancer type?” Details on
prompt generation are discussed in Supplementary Note 1. We evaluated
the generated answer by comparing it with existing scientific literature. We
found that the LLM provided mostly accurate arguments, except for two

Fig. 4 | AUROC of k-shot learning on seven tissue sets.We used 20% data as a test
set in each rare tissue, while ensuring the binary labels were equally represented.
AUROCAreaUnder the ReceiverOperatingCurve. LegendOrange: XGBoost, Gray:

Collaborative Filtering, Yellow: TabTransformer, Light Blue: CancerGPT, Green:
GPT-2, Dark Blue: SciFive, Red: GPT-3.
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cases (Table 1) in which no scientific literature exists. By combining these
individual scientific facts the LLM inferred the unseen synergistic effect.
Generally, drugs targeting non-overlapping proteins in similar pathways are
more likely to be synergistic24,25. In this case, both AZD4877 and AZD1208
target similar pathways that inhibit tumor cell divisionswithout overlapping
protein targets. The Loewe synergy score of this pair at T24 was 46.82,
meaning strong positive synergistic effect.

Example of prediction results
As an example, we listed predicted synergistic drug pairs for stomach and
soft tissue using CancerGPT (Supplementary Table 6, 7) and for bone and
liver tissue using GPT-3 (Supplementary Table 8, 9).We randomly selected
two true positive, false positive, true negative, and false negative prediction
examples. We discovered that Loewe synergy scores of the true negative or
false negative prediction examples were close to the threshold used to
categorize the label (i.e., Loewe score > 5). This suggests that accuracy may
vary significantly by different thresholds for determining positive synergy.
Settingmore extreme thresholds (e.g., >10, >30), like previous models13,17,18,
may increase the prediction accuracy.

Discussion
Our study investigates the potential of LLMs as a widely applicable few-shot
predictionmodel in the field of biomedicine. Specifically, we propose a new
few-shot model for predicting drug pair synergy, which can be used in rare
tissues with few or no training samples available. We transformed tabular
data prediction into natural language tasks and fine-tuned LLMs (GPT-2,
GPT-3, SciFive) with very few samples in each tissue. Our extensive
experiments with seven rare cancer tissues, seven different models, and two
different finetuning strategies resulted in the following lessons learned:
• The data-driven models showed superior accuracy when in-

distribution external data was available. However, in the absence of
external data, or when the external data is out-of-distribution, our
customized LLM-based model, CancerGPT, achieved the best
accuracy.

• The higher accuracy of CancerGPT over GPT-2 underscores the value
of task-specific adjustments. These modifications can augment
accuracy while preserving a model’s versatility. However, the
advantages of such fine-tuning may diminish with larger LLMmodels
like GPT-3.

• CancerGPT, despite its smaller parameter size of 124M, outperformed
GPT-3’s accuracy, which has a larger parameter size of 175B, sug-
gesting that further fine-tuning of GPT-3 may potentially yield even
greater accuracy, provided that in-distribution data is readily available.

• Last layer training, which leaves the LLM’s backbone untouched,
delivered accuracy comparable to that of a fully trainedmodel.AnLLM
pre-trained with an extensive collection of scientific literature can

flexibly enhance biomedical predictions using transfer learning based
on last-layer training.

Theprediction of drug pair synergy in rare tissues serves as an excellent
benchmark task for evaluating LLMs in few-shot learningwithin the field of
biomedicine. This prediction requires incorporating multiple pieces of
information, such as the drugs and the cell line, as well as the sensitivity of
drugs to the cell lines, to infer the synergistic effects. While detailed infor-
mation on these entities can be found in scientific papers, the interaction
effect, or synergistic effect, is primarily available through biological
experiments. To effectively assess LLMs’ inference capabilities, one must
employ a prediction taskwhere the ground truth is not explicitly available in
text format but can be determined through alternative sources for model
evaluation. Typically, drug pair synergy scores are obtained through high-
throughput testing facilities involving robot arms26. Therefore, individual
records of the experiments are rarely recorded in academic literature,
decreasing the likelihood of their use as training data for LLMs and avoiding
data leakage. Additionally, few studies have been conducted on rare tissues
regarding their synergy prediction models, and their synergy prediction
outcomes are not explicitly stated in text format. A similar task for evalu-
ating LLMs in biomedicine is predicting the sensitivity of a single drug in a
cell line; however, since the sensitivity of individual drugs is extensively
researched and well-documented in publications, the LLM model may
merely recollect from the text rather than infer unseen tasks.

It should be noted that it was not possible to compare our LLM-based
models directlywith previous predictions of drugpair synergy. Themajority
of previousmodels necessitates high-dimensional features of drugs and cells
(e.g., genomic or chemical profiles), along with a substantial amount of
training data, even the one specifically designed for rare tissue18. This kind of
data is not easily accessible in rare tissues,making it challenging to carry out
a significant comparison. Our model is designed to address a common but
often overlooked situation where we have limited features and data. Thus,
we compared the LLM-based models with other tabular models that share
the same set of inputs.

The contribution of our study can be summarized as follows. In the
area of drug pair synergy prediction in rare tissues, our study is the first to
predict drug pair synergy on tissues with very limited data and features,
which other previous predictionmodels have neglected. This breakthrough
has significant implications for drug development in these cancer types. By
accurately predicting which drug pair will have a synergistic effect on these
tissues,where cell line features are expensive toobtain, biologists candirectly
focus on the most probable drug pairs and perform experiments in a cost-
effective manner.

Our study also delivers generalizable insights about LLMs in the
broader context of biomedicine. Our research essentially bridges two dis-
tinct methodologies: data-driven machine learning models, which rely on

Table 1 | Example of generated answer when the LLM was asked to provide its reasoning for its prediction

Excerpt of the generated answer Fact check and reference

“The combination of AZD-4877 and AZD1208 has been studied in T24 cells...to be
synergistic in reducing bladder cancer cell growth and metastasis”

False. No study conducted on this drug pair

“The combination was also found to target multiple pathways involved in the
growth and spread of bladder cancer cells.”

True. AZD1208 is a PIM1 inhibitor. PIM1 is overexpressed in bladder cancer initiation
and progression (42). AZD4877 is a drug designed to target bladder cancer (43).

“...Specifically, AZD-4877was found to inhibit the activation of proteins involved in
the promotion of tumor growth...”

True. AZD4877 is a drug designed to target bladder cancer (43).

“...AZD1208 was found to inhibit proteins associated with the inhibition of tumor
growth.”

True. AZD1208 inhibits the cell growth by suppressing p70S6K, 4EBP1 phosphor-
ylation, and messenger RNA translation (in acute myeloid leukemia) (44).

“This combination was also effective at reducing the production of inflammatory
mediators such as cytokines,which are known tocontribute to tumor progression.”

False. AZD1208 is a pan-PIM kinase inhibitor, and PIM kinases are downstream
effectors of cytokine (45). However, AZD4877 has no evidence in reducing inflamma-
tory mediators.

“...these twodrugshavebeen shown to reduce levels of apoptosis inhibitors,which
can also play a role in tumor progression.”

True. AZD1208 induce cell apoptosis (46). AZD4877 is a inhibitor of Eg5, which pro-
motes cell apoptosis (47).

Italic denotes the generated text from LLM. LLM Large Language Model.
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inductive reasoning; and knowledge-driven inference models, which use
deductive reasoning. In many cases, especially when dealing with rare dis-
eases like certain types of cancer, the data required to build data-driven
models is scarce. This scarcity renders these models virtually ineffective.
Conversely, knowledge-driven models pose their own challenges. Without
extensive domain expertise, navigating the vast and intricate premises to
predict biomedical outcomes is not only challenging, but also unscalable.
Our approach combines the strengths of both models. We “automate”
deductive reasoning using a LLM, which then forms the foundation for a
few-shot prediction model. This combination of inductive (few-shot fine-
tuning) and deductive (knowledge encapsulated in LLM) reasoning is a
novel concept, made possible through our LLM-based prediction model.

Furthermore, this LLM-based few-shot prediction approach can be
applied to a wide range of diseases beyond cancer, which are limited by the
scarcity of available data. For instance, this approach can be used in infec-
tious diseases, in which the prompt identification of new treatments and
diagnostic tools is crucial. LLMs are able to help researchers quickly identify
potential drug targets and biomarkers for these diseases, resulting in faster
and more effective treatment development.

The present study, while aiming to showcase the potential of LLMs as a
few-shot prediction model in the field of biomedicine, is not without its

limitations. To fully establish the generalizability of LLMs as a “generalist”
artificial intelligence, a wider range of biological prediction tasks must be
undertaken for validation. Additionally, it is crucial to investigate how the
information gleaned from LLMs complements the existing genomic or
chemical features that are traditionally the primary source of predictive
information. In future research, we plan to investigate this aspect and
develop anensemblemethod that effectivelyutilizes both existing structured
features and new prior knowledge encoded in LLMs.

Furthermore, while we observed that GPT-3’s reasoningwas similar to
our own when fact-checking its argument with scientific literature in one
example, it is important to note that the accuracy of its arguments cannot
always be verified andmay be susceptible to hallucination. It is also reported
that LLMs can also contain biases that humans have27. Therefore, further
research is necessary to ensure that the LLM’s reasoning is grounded in
factual evidence. Despite these limitations, our study provides valuable
insights into the potential of LLM to be a few-shot prediction model in
biomedicine and lays the groundwork for future research in this area.

In conclusion, our study has effectively demonstrated the potential of
LLMs in few-shot learning tasks within the complex field of biomedicine.
Our study revealed that while data-driven models excel with sufficient in-
distributiondata, CancerGPT is superior in scenarios lacking suchdata. The

Fig. 5 | Model architecture.We built an LLM-based prediction model by adding a
classification head to the LLM and fine-tuned it for the classification task. To obtain
representation from LLM, we used GPT-2, GPT-3, and SciFive. We further tailored
GPT-2 by fine-tuning it with a large amount of external data, in order to adjust GPT-
2 in the context of drug pair synergy prediction (CancerGPT). We finetuned all

models with k shots of data in each of the rare tissues (k-shot fine-tuning strategy).
We compared accuracy of two different fine-tuning strategies: fine-tuning the entire
model’s parameters versus freezing the LLM’s parameters and only fine-tuning the
classifier’s parameters. LLM Large Language Model.
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effectiveness of task-specific fine-tuning was highlighted by the superior
performance of CancerGPT over GPT-2, demonstrating that such adjust-
ments can significantly enhance accuracy without compromising the
model’s flexibility. Our findings not only are pivotal for the prediction of
drug pair synergy in rare tissues but also signify broader applicability for
LLMs in biological inference tasks.

Methods
Problem formulation
Our objective is to predict whether a drug pair in a certain cell line has a
synergistic effect, particularly focusing on rare tissues with limited training
samples. Given an input

x ¼ fd1; d2; c; t; ri1; ri2g ð1Þ

of drug pair (d1, d2), cell line c, tissue t, and the sensitivity of the two drugs
using relative inhibition (ri1, ri2), the prediction model is

y ≈ f ðxÞ ð2Þ

where y is the binary synergy class (1 if synergy > 5; 0 otherwise). Prior
research14,17 has employed three different scenarios for predicting drug pair
synergy (random split, stratified by cell lines, stratified by drug combina-
tions). Our task is to predict synergy when the data are stratified by tissue,
which is a subset of cell lines.

Distributions learned in one tissue may not generalizable well to other
tissues with different cellular environments22. This biological difference
poses a challenge in predicting drug pair’s synergy in tissues with a limited
number of samples. The limited sample size of data makes it even more
difficult to incorporate typical cell line features, such as gene expression
level, which has large dimensionality (e.g., ~ 20,000 genes). Due to this data
challenge, the drug pair synergy predictionmodel is then reduced to build a
predictionmodelwith limited samples (few-shot or zero-shot learning)with
only limited tabular input feature types. Specific input features were
described in Methods.

Prompt selection
To use a LLM for tabular data, the tabular input and prediction taskmust be
transformed into natural text. For each instance of tabular data (Fig. 2), we
converted the structured features into text. A prior study19 investigated
different strategies to “serialize” the structured instance to natural language
input, such as List Template (a list of column names and feature values),
Text Template (a textual enumeration of all features and values), andTable-
To-Text (table to text generation via LLM). Among them, we used the Text
Template strategywhichproved to bemost effective. For example, given the

feature string (e.g., “drug1”, “drug 2”, “cell line”, “tissue”, “sensitivity1”,
“sensitivity2”) and its value (e.g., “lonidamine”, “717906-29-1”, “A-673”,
“bone”, “0.568”, “28.871”), we converted the instance as “The first drug is
AZD1775.The seconddrug isAZACITIDINE.The cell line is SF-295.Tissue is
bone. The first drug’s sensitivity using relative inhibition is 0.568. The second
drug’s sensitivity using relative inhibition is 28.871.” Other alternative ways
to convert the tabular instance into the natural text are discussed in previous
papers28,29.

We created a prompt that specifies our tasks and guides the LLM to
generate a label of interest. We experimented with multiple prompts. One
example of the prompts we created was “Determine cancer drug combina-
tion synergy for the following drugs. Allowed synergies: Positive, Not positive.
{Tabular Input}. Synergy:”. As our task is a binary classification, we created
the prompt to only generate binary answers (“Positive”, “Not positive”).
Comparing these multiple prompts (Supplementary Note 1), the final
promptwe used in thisworkwas “Decide in a singleword if the synergyof the
drug combination in the cell line is positive or not. {Tabular Input}. Synergy:”.

LLM-based prediction model
We built an LLM-based predictionmodel by adding a classification head to
theLLMandfine-tuned it for the classification task (Fig. 5).Thiswasdone to
enhance the model’s performance in the classification task. The hidden
representation of the final token in the LLM output was utilized, as it
encapsulates the information of all preceding tokens. This strategy not only
allowed for a fair comparison with other baseline models, such as Tab-
Transformer, but also created an opportunity to fine-tune the model spe-
cifically for binary classification.

We also considered another modeling approach, which was to allow
the LLM to directly generate text for the binary response (“positive”, “not
positive”). However, regardless of the LLM’s ability to encapsulate relevant
knowledgewithin their embedding, some LLMs (e.g., GPT-2, SciFive) could
not ensure the response strictly adhered to one of the binary labels. This
made the inclusion of the classification head an essential choice. The pri-
mary objective of our study was to assess the LLM’s biomedical knowledge
and its adaptability to a specific task of interest, rather than comparing
language generation capabilities.

To obtain representation from LLM, we used GPT-2, GPT-3, and
SciFive (Fig. 6). GPT-2 is a Transformer-based large languagemodel, which
was pre-trained on a very large corpus of English data without human
supervision. It achieved state-of-the-art results on several language mod-
eling datasets in a zero-shot setting when it was released, and it is the
predecessor of GPT-3 and GPT-4. GPT-25 has several versions with dif-
ferent sizesof parameters,GPT-2,GPT-Medium,GPT-Large, andGPT-XL.
We used GPT-2 with the smallest number of parameters (regular GPT-2,
124 million) in this work to make the model trainable on our server.

Fig. 6 | Training strategy of baseline and proposed LLM-basedmodels.General data-drivenmodels and CancerGPTwere first trained with samples from common tissues
(cancer type) then k-shotfine-tunedwith each tissue of interest. GPT-2, GPT-3 and SciFive are pre-trainedmodels, andwe fine-tuned themwith k shots of data in each tissue.
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GPT-32 is a Transformer-based autoregressive language model with
175 billion parameters, and it achieved state-of-the-art performance on
many zero-shot and few-shot tasks upon its release. GPT-3.5, including
ChatGPT30, a famous fine-tuned model from GPT-3.5, is an improved
version of GPT-3. However, the GPT-3 model and its parameters are not
publicly available. Although the weight of the GPT-3 model is undisclosed,
OpenAIoffers anAPI31 tofine-tune themodel and evaluate its performance.
We utilized this API to build drug pair synergy prediction models through
k-shot fine-tuning. There are four models provided by OpenAI for fine-
tuning, Davinci, Curie, Babbage, andAda, of which Ada is the fastestmodel
and has comparable performancewith largermodels for classification tasks.
For that reason, we use GPT-3 Ada as our classification model. After
uploading the train data, the API adjusted the learning rate, which is 0.05,
0.1, or 0.2 multiplied by the original learning rate based on the size of the
data, and fine-tuned the model for four epochs. A model of the last epoch
was provided for further evaluation.

In contrast to general-purpose LLM (i.e., GPT-2 andGPT-3), SciFive20

is an LLM specialized in the biomedical field. Based on T5model, which is a
text-to-text language model trained on the unfiltered CommonCrawl
dataset, SciFive re-trains the T5 model on various combinations of the
CommonCrawl dataset, a corpus of PubMed abstracts, and a corpus of
PubMedCentral (PMC) full-text articles.Weused the SciFive PubmedBase
model with 220M parameters.

CancerGPT
We further tailored GPT-2 by fine-tuning it with a large amount of external
data (common cancer data), in order to adjust GPT-2 in the context of drug
pair synergy prediction. We named this model CancerGPT (Fig. 5). The
data from common tissues (DataAvailability)) are external data that do not
necessarily align with the context of the rare tissue being studied. However,
this data could potentially serve as a useful data source to “warm up” the
LLM, thereby enhancing its ability to predict drug pair synergy. The
intuition behind this “warming up” strategy is analogous to collaborative
filtering32 that learn relational information and extrapolate it to the new
combinationof input.Certaindrugpairs exhibit synergy similarly regardless
of the cellular context, and therefore, the relational information between
drug pairs in common tissues can be used to predict synergy innew cell lines
in different tissues17. Subsequently,we utilizedCancerGPTas one of thepre-
trained LLMs and fine-tuned to k shots of data in each rare tissue (as
discussed in the following section).

General data-driven models
The LLM-based prediction are knowledge-driven models as they utilize
prior knowledge encoded in pre-trained weight. We compared them with
general data-driven prediction model. We specifically used XGBoost33,
TabTransformer34, and collaborative filtering18. XGBoost has been widely
used in large-scale drug synergy data35,36. All the variables (drugs, cell lines,
and sensitivities) were used as input to predict the drug pair synergy.
TabTransformer is a self-attention-based supervised learning model for
tabular data. TabTransformer applies a sequence of multi-head attention-
based Transformer layers on parametric embedding to transform them into
contextual embedding, in which highly correlated features will be close to
eachother in the embedding space.Considering thehighly correlatednature
of drugs in our data, TabTransformer can be a very strong baseline in this
work. We first converted the drugs and cell lines in the tabular data into
indicators using one-hot coding.Wefirst trained an embedding layer on the
drugs and cell lines and passed them through stacked multi-headed atten-
tion layers, which we then combined with the continuous variables (sensi-
tivities). This combination then passes through feed-forward layers, which
have one layer of classification head. Collaborative filtering was used to
extrapolate the relational information to the new combination of drugs and
cell line. Drug combinations will react to a cell line similarly if these two
drugs have responded similarly to other cell line18. Note that, tissue infor-
mation was not used in training because the models will be tested in one

specific rare tissue that is not used in training. No further contextual
information can be inferred through the unseen tissue indicator.

k-shot fine-tuning strategy
The LLM-based models had different training and fine-tuning strategies
(Fig. 6). Samples of common tissues were split into 80% train data and 20%
validation data for CancerGPT. The models were trained using train data
and evaluated by validation data to determine the models with specific
hyperparameters to be used for further fine-tuning on rare tissues. For the
GPT-2 and GPT-3 based prediction models, we directly used pre-trained
parameters from GPT-25 using Huggingface’s Transformers library37 and
GPT-3 Ada from OpenAI2 respectively.

All thesemodelswere thenfine-tunedwith k shots of data in eachof the
rare tissues. For bone, urinary tract, stomach, soft tissue, and liver, we
performed experiments with k from [0, 2, 4, 8, 16, 32, 64, 128]. For endo-
metrium and pancreas, because of the limited number of data, we imple-
mented experiments with k from [0, 2, 4, 8, 16, 32] from the endometrium,
and only zero shot (k = 0) for the pancreas.

With the limited number of shots, a careful balance of binary labels in
the train and test set was critical. We partitioned the data into 80% for
training and 20% for testing in each rare tissue, while ensuring the binary
labels were equally represented in both sets. We randomly selected k shots
from the training for fine-tuning, while maintaining consistency with pre-
viously selected shots and adding new ones. Specifically, we maintained the
previously selected k shots in the training set and incremented additional k
shots to create 2 × k shots. The binary label distribution in each k shot set
followed that of the original data, with at least one positive and one negative
sample included in each set. For evaluation stability, the test data was
consistent across different shots for each tissue.

To investigate whether the LLMs inherently possesses the capability to
predict the label only with minimal tuning, we compared accuracy of two
different fine-tuning strategies: fine-tuning the entire model (LLM’s para-
meter and classifier) versus freezing the LLM’s parameter and fine-tuning
only on the classifier. Note that for zero shot tuning, wemeasured accuracy
by allowing theLLMtodirectly generatea binary answerwithout appending
a classification head becausewe are unable to optimize the parameters in the
classification head.

Hyperparameter setting
The LLM’s last layer hidden representation size was 768 (same as GPT-2),
and we used left padding to ensure that the last token was from the prompt
sentence. The cross-entropy loss was used to optimize themodel during the
fine-tuning process. All the LLM models used the tabular input that was
converted to natural text and shared the same prompt.

The predicted output was a binary label indicating the presence of a
synergistic effect, with a Loewe score greater than 5 indicating a positive
result. We used AUROC and AUPRC to evaluate the accuracy of classifi-
cation.Regression taskswerenotpossible inourLLM-basedmodels because
our model can only generate text-based answers (“positive” or “not posi-
tive”), with poor precision in accurately quantifying the synergy value.

XGBoost was used with a boosting learning rate of 0.3. The number of
gradient boost trees was set to 1000 with a maximum tree depth of 20 for
base learners. TabTransformerwas usedwith a learning rate of 0.0001 and a
weight decay of 0.01. The model was trained for 50 epochs on common
tissues. During the training, themodel with the best validation performance
was selected for further fine-tuned on rare tissues. For each k shot in each
tissue, the model was fine-tuned using the same learning rate and weight
decay for 1 epoch and tested with AUPRC and AUROC.

CancerGPT was first fine-tuned with pre-trained regular GPT-2 for 4
epochs on common tissues. The learning rate was set to be 5e-5 and weight
decay was set to be 0.01. Then the model was fine-tuned for k shots in rare
tissues. The same hyperparameters are used in training. The model was
finally tested with AUPRC and AUROC. Note that, due to an imbalance in
positive and non-positive labels, we reported both AUPRC and AUROC.
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GPT-2 and GPT-3 are directly fine-tuned on rare tissues with pre-
trained parameters from regular GPT-2 andGPT-3 Ada. For each k shot in
each tissue, GPT-2 is fine-tuned for 4 epochs using a learning rate of 5e-5
and a weight decay of 0.01. The hyperparameters of GPT-3 are adjusted by
OpenAI API based on the data size. The model was also fine-tuned for 4
epochs. GPT-2, GPT-3 and SciFive fine-tuned models were finally tested
with AUPRC and AUROC. Details in the hyperparameter setting are dis-
cussed in Supplementary Note 2.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
We utilized a publicly accessible extensive database of drug synergy from
DrugComb Portal9, which is an open-access data portal where the results of
drug combination screening studies for a large variety of cancer cell lines are
accumulated, standardized, and harmonized. The database contains both
drug sensitivity rows anddrugpair synergy rows.Afterfiltering the available
drug pair synergy rows, the data contains 4226 unique drugs, 288 cell lines,
with a total of 718,002 drug pair synergy rows. We employed the Loewe
synergy score, which ranges from -100 (antagonistic effect) to 75 (strong
synergistic effect), for drug combination synergy38. The Loewe synergy score
quantifies the excess over the expected response if the twodrugs are the same
compound39,40. In this paper, we focused on cell lines from rare tissues. We
defined the rare tissues as the ones with less than 4000 samples, which
include the pancreas (n = 39), endometrium (n = 68), liver (n = 213), soft
tissue (n= 352), stomach (n= 1190), urinary tract (n= 2458), and bone (n=
3985). We tested our models with each of the rare tissues. The remaining
tissues, namely hematopoietic and lymphoid, lung, skin, ovary, kidney,
colon, brain, breast, and prostate were regarded as common tissues.

Code availability
All models used in this paper were developed using open-sourced libraries
such as PyTorch41, HuggingFace37 and publically available APIs from
OpenAI31. Method-specific code will be provided upon request.
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