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AI-derived epicardial fat measurements improve
cardiovascular risk prediction from myocardial perfusion
imaging
Robert J. H. Miller1,2,7, Aakash Shanbhag1,3,7, Aditya Killekar1, Mark Lemley 1, Bryan Bednarski 1, Serge D. Van Kriekinge 1,
Paul B. Kavanagh1, Attila Feher4, Edward J. Miller4, Andrew J. Einstein5, Terrence D. Ruddy 6, Joanna X. Liang1, Valerie Builoff1,
Daniel S. Berman 1, Damini Dey1 and Piotr J. Slomka 1✉

Epicardial adipose tissue (EAT) volume and attenuation are associated with cardiovascular risk, but manual annotation is time-
consuming. We evaluated whether automated deep learning-based EAT measurements from ungated computed tomography (CT)
are associated with death or myocardial infarction (MI). We included 8781 patients from 4 sites without known coronary artery
disease who underwent hybrid myocardial perfusion imaging. Of those, 500 patients from one site were used for model training
and validation, with the remaining patients held out for testing (n= 3511 internal testing, n= 4770 external testing). We modified
an existing deep learning model to first identify the cardiac silhouette, then automatically segment EAT based on attenuation
thresholds. Deep learning EAT measurements were obtained in <2 s compared to 15min for expert annotations. There was
excellent agreement between EAT attenuation (Spearman correlation 0.90 internal, 0.82 external) and volume (Spearman
correlation 0.90 internal, 0.91 external) by deep learning and expert segmentation in all 3 sites (Spearman correlation 0.90–0.98).
During median follow-up of 2.7 years (IQR 1.6–4.9), 565 patients experienced death or MI. Elevated EAT volume and attenuation
were independently associated with an increased risk of death or MI after adjustment for relevant confounders. Deep learning can
automatically measure EAT volume and attenuation from low-dose, ungated CT with excellent correlation with expert annotations,
but in a fraction of the time. EAT measurements offer additional prognostic insights within the context of hybrid perfusion imaging.
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INTRODUCTION
Epicardial adipose tissue (EAT) is a potentially valuable marker of
cardiovascular risk, which can be evaluated from chest computed
tomography (CT). EAT is involved in bidirectional signaling with
coronary arteries and myocardium, influencing both inflammation
and fibrosis1–3. Both the volume and attenuation of EAT are
associated with risk of cardiovascular events4–6. However, manual
annotation of EAT is time consuming—taking approximately
15min per case—and therefore has never been integrated into
routine clinical practice. Deep learning can automatically measure
EAT from chest CT in less than 2 s, with good agreement with
manual annotation7. Additionally, these automated measure-
ments have also been associated with cardiovascular events8,9.
However, this approach has not been applied to the low-dose,
ungated CT scans which are always acquired for hybrid myocardial
perfusion imaging (MPI). Hybrid MPI refers to nuclear cardiology
studies assessing cardiac perfusion, where the low-dose CT scans
(acquired without synchronization with the cardiac cycle, also
called ungated) are utilized to correct for soft-tissue attenuation
artifacts.
MPI is increasingly acquired on hybrid camera systems10,

allowing physicians to integrate functional and anatomic informa-
tion when estimating cardiovascular risk. Coronary artery calcium
(CAC) allows physicians to evaluate the extent of coronary

atherosclerosis11–14, while perfusion abnormalities15 and ventri-
cular function16,17 allow physicians to evaluate the functional
significance of coronary artery disease (CAD). However, these
measurements do not evaluate systemic inflammation or meta-
bolic abnormalities which are reflected in EAT1–3,18–20.
Accordingly, we evaluated whether deep learning could be

utilized to efficiently and automatically measure EAT on low-dose,
ungated CT and whether these measurements are associated with
risk of myocardial infarction (MI) or death.

RESULTS
Population characteristics
Overview of the study design is shown in Fig. 1. The population
was split with 500 patients from one site used for model training
and validation and 8281 patients for testing (n= 3511 internal
testing, n= 4770 external testing). The model architecture is
shown in Fig. 2. Population characteristics for the training and
internal testing patients are shown in Supplementary Table 1.
Patients in the training population were older (median age 66.5 vs
63.0, p < 0.001) and more likely to be male (61.6% vs 50.2%,
p < 0.001). The population characteristics for the internal and
external testing populations are shown in Table 1.
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In the combined internal and external testing populations,
patients with BMI ≥ 30 kg/m2 were more likely to have high EAT
volume (37.0% vs 15.7%, p < 0.001). However, almost a third of
patients with high EAT volume (29.4%) had a BMI < 30 kg/m2.
Example of EAT segmentation in a patient with a high EAT volume
(209mL), but low BMI (21.5 kg/m2) is shown in Fig. 3.

Comparison of manual and DL-based EAT measurements
Manual EAT measurements took a mean time of 15 min. DL EAT
measurements took a mean time <2 s. The per-pixel EAT

attenuation values for one patient are shown in Supplementary
Fig. 1. A subset of patients from the testing population underwent
both manual and DL-based EAT measurements in each site
(internal n= 256, external n= 382). Figure 4 shows the correlation
between median EAT attenuation measurements for internal
(Spearman correlation 0.90) and external testing (Spearman
correlation 0.82). Similarly, the correlation for EAT volume was
excellent in internal (Spearman correlation 0.90) and external
testing (Spearman correlation 0.91). Bland-Altman plots (Supple-
mentary Fig. 1) demonstrate that the agreement between DL and
an expert reader was comparable to the agreement between two

Fig. 1 Overview of study design. The deep learning model for epicardial adipose tissue (EAT) segmentation was trained and then tested in
internal and external testing populations. Outcomes included agreement with expert reader segmentation and associations with death or
myocardial infarction (MI).

Fig. 2 Overview of deep learning model architecture. A convolutional long short-term memory (LSTM) model is used to generate a cardiac
silhouette mask. Attenuation thresholds are then applied to the mask to automatically segment epicardial adipose tissue (EAT).

R.J.H. Miller et al.

2

npj Digital Medicine (2024)    24 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



expert readers. Two case examples of EAT annotation by DL are
shown in Fig. 5.

Association with outcomes
During a median follow-up of 2.7 years (IQR 1.6–4.9), 565 patients
experienced death or MI (first event MI in 147 patients and death
in 418 patients). Population characteristics for patients who
experienced death or MI compared to patients who did not are
shown in Supplementary Table 2. Patients who experienced death

or MI had higher EAT volume (median 108.6 vs 103.2, p= 0.011).
Additionally, they were more likely to have median EAT
attenuation >-64 HU (31.2% vs 25.4%, p= 0.003).
The optimal cut-off for EAT volume was 144 mL. Kaplan–Meier

curves stratified by EAT volume and perfusion findings are shown
in Fig. 6. Compared to patients with normal EAT volume and
normal perfusion, patients with abnormal EAT volume and normal
perfusion were at increased risk of death or MI (unadjusted hazard
ratio [HR] 1.40, 95% CI 1.11–1.77, p= 0.005). Patients with
abnormal perfusion and abnormal EAT volume were at the
highest risk (unadjusted HR 2.12, 95% CI 1.65 – 2.72, p < 0.001),
followed by patients with abnormal perfusion and normal EAT
volume (unadjusted HR 1.52, 95% CI 1.24–1.86, p < 0.001). Among
patients with abnormal perfusion, abnormal EAT volume was
associated with increased risk (unadjusted hazard ratio [HR] 1.40,
95% CI 1.08–1.82, p= 0.011).
The optimal cut-off for median EAT attenuation was -64 HU.

Kaplan–Meier curves stratified by EAT volume and attenuation for
both testing populations are shown in Supplementary Fig. 2.
Compared to patients with low EAT volume and attenuation,
those with elevated EAT attenuation alone (unadjusted HR 1.38,
95% CI 1.13–1.70, p= 0.002) and elevated EAT volume alone
(unadjusted HR 1.55, 95% CI 1.26–1.89, p < 0.001) experienced
higher event rates. Patients with elevated EAT volume and
attenuation were at the highest risk (unadjusted HR 2.85, 95% CI
1.71–4.73, p < 0.001).
Kaplan-Meier survival curves for patients stratified by EAT

volume are shown in Supplementary Fig. 3. Patients with EAT
volume >144mL were more likely to experience death or MI in the
internal and external testing populations (log rank p-value < 0.05
for both). Kaplan–Meier survival curves for patients stratified by
EAT attenuation are shown in Supplementary Fig. 4.

Multivariable models
The multivariable analyses are summarized in Fig. 7. After
accounting for age, sex, BMI, medical history, perfusion, LVEF,
and CAC, high EAT volume was associated with an increased risk
of death or MI in the internal testing population (adjusted HR 1.40,
95% CI 1.01–1.94, p= 0.044) and external testing population
(adjusted HR 1.54, 95% CI 1.18–2.00, p < 0.001). Similarly, high EAT
attenuation was an independent predictor of death or MI in the
internal (adjusted HR 1.61, 95% CI 1.19–2.16, p= 0.002) and
external testing populations (adjusted HR 1.37, 95% CI 1.06–1.77,
p= 0.018). In external testing, there was no significant difference
in risk by sex for EAT volume (interaction p-value= 0.907) or EAT
attenuation (interaction p-value 0.668).

Table 1. Patient characteristics for internal and external testing
populations.

Internal testing
(n= 3511)

External testing
(n= 4770)

p-value

Age, median (IQR) 63 (55, 72) 65 (57, 73) <0.001

Male, n (%) 1764 (50.2%) 2402 (50.4%) 0.92

Body mass index,
median (IQR)

29.5 (25.5, 34.2) 30.5 (26.2, 35.2) <0.001

Hypertension, n (%) 2099 (59.8%) 2766 (58.0%) 0.100

Diabetes Mellitus,
n (%)

829 (23.6%) 1314 (27.5%) <0.001

Dyslipidemia, n (%) 1698 (48.4%) 1698 (43.9%) <0.001

Family History, n (%) 536 (15.3%) 1512 (31.7%) <0.001

Smoking, n (%) 696 (19.8%) 546 (11.4%) <0.001

Stress TPD, median
(IQR)

2.0 (0.6, 4.3) 4.2 (1.6, 8.7) <0.001

Stress LVEF, median
(IQR)

65.8 (57.9, 73.0) 64.8 (56.3 – 73.2) 0.004

DL CAC score,
median (IQR)

29 (0, 382) 11 (0, 192) <0.001

EAT volume, median
(IQR)

100.9 (70.8, 145.5) 105.4 (71.7, 148.3) 0.038

High EAT volume,
n (%)

901 (25.7%) 1291 (27.1%) 0.151

Median EAT
attenuation, median
(IQR)

−69 (−74, -65) −67 (−71, −64) <0.001

High median EAT
attenuation, n (%)

800 (22.8%) 1335 (28.0%) <0.001

CAC coronary artery calcium, DL deep learning, EAT epicardial adipose
tissue, IQR interquartile range, LVEF left ventricular ejection fraction, MI
myocardial infarction, TPD total perfusion deficit.

Fig. 3 Example of EAT segmentation. The deep learning model segments epicardial adipose tissue (EAT) for each slice, shown in purple (a).
The combined three-dimensional volume is used to quantify EAT volume (b). The patient was a 70-year-old woman with body mass index of
21.5 kg/m2, but EAT volume was elevated at 209mL. The patient died 425 days after the scan.

R.J.H. Miller et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2024)    24 



Adjusted associations between EAT attenuation and volume,
modeled as non-linear continuous variables, are shown in Fig. 8.
Both populations were included since no specific threshold for
EAT volume or attenuation were applied. Higher EAT volume was
associated with increased risk, but there was a plateau above
150mL. Higher EAT attenuation was also associated with
increased risk; however, the increase was exponential for values
above −60 HU.

DISCUSSION
We evaluated a DL model which measures EAT attenuation and
volume from low-dose, ungated CT. We showed that the DL
model had an excellent correlation with expert segmentation,
demonstrating similar agreement as was seen between two
experts, but in a fraction of the time. We went on to demonstrate
that patients with higher EAT volume or higher EAT attenuation
were more likely to experience death or MI during follow-up.
Importantly, we also demonstrated that the increase in risk was
independent of other imaging findings including perfusion, LVEF
and CAC in large internal and external testing populations.
EAT has primarily been quantified from ECG-gated cardiac CT.

The gating minimizes cardiac motion, simplifying the task of
segmenting EAT. EAT thickness (measured by echocardiography)
varies through the cardiac cycle21, with some authors suggesting

that measurements should be averaged across three points in the
cardiac cycle22. Grodecki et al. demonstrated that DL could
quantify EAT from ungated chest CT images in patients with
COVID-19 infection23. Similar to our results, they found that both
higher EAT volume and attenuation were associated with
increased risk. In the present work, we demonstrate that EAT
can be automatically segmented by DL from ungated CT for
hybrid MPI, which are acquired with lower radiation doses and
subsequently lower image quality compared to standard ungated
chest CT. The DL EAT measurements had an excellent correlation
with expert EAT annotations for both volume and median
attenuation. However, the DL annotations were automatically
generated within a few seconds compared to approximately
15minutes for expert annotations. This rapid and accurate
quantification can facilitate routine evaluation within a typical
clinical workflow. We also expand on existing studies by
demonstrating that EAT volume and attenuation carry prognostic
significance in patients undergoing MPI. Importantly, this allowed
us to evaluate the independent association of EAT with death or
MI after accounting for age, sex, and medical history as well as
imaging parameters including myocardial perfusion, ventricular
function, and CAC.
The independent prognostic utility of EAT attenuation was

expected based on the hypothesized relationships between EAT
and CAD. EAT interacts with the heart through local paracrine

Fig. 4 Correlation between experts and deep learning. Epicardial adipose tissue (EAT) attenuation and volume measurements are shown for
deep learning and expert interpreters.
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effects and inflammatory signaling3. Higher EAT attenuation
values may be a marker of coronary inflammation24. In fact,
peri-coronary adipose tissue (which is a component of EAT)
attenuation is positively correlated with sodium fluoride uptake25,
which is a measure of microcalcification that reflects athero-
sclerotic plaque activity26. Additionally, while CAD may lead to
inflammatory changes within EAT, EAT inflammation also accel-
erates atherosclerosis in adjacent coronary arteries27. Therefore,
measurement of EAT attenuation allows physicians to capture
relevant information regarding cardiac inflammatory state which
previously could not be evaluated with MPI.
We also anticipated that higher EAT volume would be

associated with increased cardiovascular risk. Prior studies have
shown that visceral fat is superior to BMI and waist circumference
for predicting cardiovascular risk28. EAT volume is correlated with
BMI and waist circumference;28 however, EAT volume is a direct
measure of visceral adipose tissue. In fact, in an analysis of the

multi-ethnic study of atherosclerosis, EAT volume, but not BMI,
was predictive of future coronary atherosclerosis28. In our study,
while patients with elevated BMI were more likely to have high
EAT volume, we found that almost one-third of patients with
elevated EAT volume had a BMI < 30 kg/m2. Lastly, it is worth
noting that a small study have suggested that dapagliflozin may
decrease EAT volume29, suggesting a possible therapeutic
intervention for patients with elevated EAT volume. Therefore,
the measurement of EAT volume potentially provides physicians
with prognostic and therapeutic information to consider
following MPI.
Our study has a few important limitations in addition to its

retrospective nature. We only utilized ungated CT scans and
therefore EAT values may differ from those obtained from gated
chest CT. However, this is representative of the CT scans typically
used for attenuation correction. We used set thresholds for EAT
segmentation. It is possible that the thresholds should vary
according to acquisition protocol. Different thresholds would
influence both EAT volume and median attenuation values. As a
result, optimal cutoffs for EAT volume and attenuation may vary
by protocol and may vary by sex. However, in our study the
thresholds for abnormal cutoffs were established within the
internal testing site, then applied to the external site which has a
different acquisition protocol, suggesting that the thresholds are
still generalizable. The model was trained in a random selection of
patients with and without known CAD. However, patients with
known CAD were excluded from the internal and external testing
populations (since this can influence the association between MPI
findings and outcomes). Future studies should evaluate the
prognostic of EAT measurements in these patients. Additionally,
cardiovascular mortality was not available in the registry, but
existing methods for identifying cardiovascular mortality have
limited accuracy30. However, we would expect even stronger
associations if we were able to ascertain cardiovascular mortality
since EAT is pathophysiologically related to cardiovascular out-
comes. Similarly, we do not have information regarding inflam-
matory markers or use of anti-inflammatory medications, so we
are not able to evaluate these potential pathophysiologic links.
Lastly, we do not have information regarding race or ethnicity in
our cohort.
Our study demonstrates that deep learning can automatically

measure EAT volume and attenuation from low-dose, ungated CT
with excellent correlation with expert annotations, but in a
fraction of the time. EAT measurements provide independent
prognostic information regarding inflammation and metabolism
which complement the functional and anatomic information
available through hybrid perfusion imaging.

METHODS
Study population
The overall study design is outlined in the central illustration. This
study included 8781 patients from four sites who underwent
clinically indicated SPECT MPI with CTAC between 2014 and 2021.
Of those, 500 patients from one center (Yale University) were
utilized for model training and validation. The remaining cohort
(n= 8281) comprised consecutive patients without known CAD
(defined as previous MI or coronary revascularization)28 who were
held out for model testing (n= 3511 internal testing, n= 4770
external testing). Patients with known CAD were excluded since
this can alter the association between MPI findings and clinical
outcomes31. The study protocol complied with the Declaration of
Helsinki and was approved by the institutional review boards at
each participating institution. The overall study was approved by
the institutional review board at Cedars-Sinai Medical Center. Sites
either obtained written informed consent or waiver of consent for
the use of the de-identified data. To the extent allowed by data

Fig. 6 Kaplan–Meier curves stratified by epicardial adipose tissue
(EAT) volume and perfusion. Analysis of the combined internal and
external testing population.

Fig. 5 Case examples. a 51-year-old man with a body mass index
(BMI) of 34, coronary artery calcium 1012, and normal perfusion.
Epicardial adipose tissue (EAT) volume (red overlay) was 179mL and
median attenuation −62 (both high risk). He experienced a
myocardial infarction 207 days after the scan. b 52-year-old woman
with BMI 28, CAC 1203, and abnormal perfusion. Her EAT volume
(red overlay) was 39mL and median attenuation was -66 (both low
risk). She was managed medically and did not experience death or
myocardial infarction during 2.9 years of follow-up.
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sharing agreements and institutional review board protocols, the
data and code from this manuscript will be shared upon written
request.

Clinical data
Demographic information included: age, gender, body mass index
(BMI), family history of coronary artery disease (CAD), smoking
status, history of previous myocardial infarction (MI), previous
revascularization, hypertension, diabetes, and dyslipidemia.

Outcomes
The primary clinical outcome was death or MI. MI was defined as
hospital admission for recent onset or worsening chest pain with
elevated cardiac enzyme levels and ischemic ECG changes32,33,
with all events adjudicated by experienced physicians at each site.

Myocardial perfusion image analysis
Stress perfusion images were analyzed by Quantitative Perfusion
SPECT (QPS) software (Cedars-Sinai Medical Center, Los Angeles,

CA) without knowledge of clinical data as previously described to
quantify total perfusion deficit (TPD)34. Abnormal myocardial
perfusion was defined as stress TPD ≥ 5%. Left ventricular ejection
fraction (LVEF), was calculated from post-stress gated imaging,
with values < 50% considered abnormal.

CTAC image acquisition and annotation
At Columbia University, CTAC scans were performed free breath-
ing without ECG gating, using a helical acquisition with pitch 0.94,
collimation 16 × 1.5 mm, scan length 14mm, tube voltage 120
kVp, and effective tube current 30 mAs. At Ottawa Heart Institute,
a slow-rotation CT was acquired at 120 kVp and effective tube
current 20 mA s. At University of Calgary, CTAC imaging was
acquired with end-expiratory breath hold with no ECG-gating, in
helical mode with a slice thickness of 5 mm, tube voltage of 120
kVp and effective tube current of 16 mAs. At Yale University, CTAC
images were acquired with end-expiratory breath hold with ECG-
gating, in helical mode with a slice thickness of 1 mm, tube
voltage of 120 kVp and effective tube current 16 mA s.

Fig. 7 Multivariable model results. Abnormal epicardial adipose tissue (EAT) volume and attenuation were independently associated with
death or myocardial infarction in the internal (a) and external testing populations (b). Variables with significant associations in bold. CAC
coronary artery calcium, CI confidence interval, DL deep learning, HU Hounsfield units.
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EAT was annotated for a subset of patients in both sites to allow
for a comparison with expert annotations, including 100 cases
which were annotated by two readers. Trained clinicians manually
adjusted contours to segment EAT using a dedicated software
package (QFAT; Cedars-Sinai Medical Center, Los Angeles). After
segmentation, median filtering with a radius of 3 voxels was
applied to limit image noise. Then thresholds were applied (−190
Hounsfield Units [HU] to −30 HU) to determine EAT volume and
median EAT attenuation. Annotations were not manually
performed for all cases due to the substantial amount of time
required to annotate each case.

Deep learning model
We utilized our previously validated DL model for CAC segmenta-
tion35,36. In brief, the system consists of two networks, the first of
which is trained for segmentation of the heart silhouette and the
second network was trained to segment CAC. CAC scores are
automatically obtained from the DL segmentations using estab-
lished methods37.
The CAC model was modified to allow simultaneous quantifica-

tion of EAT volume and attenuation. The heart silhouette is
utilized to identify all tissue adjacent to the heart, but inside the
pericardium. After segmentation, median filtering with a radius of
3 voxels was applied to limit image noise—the same process that
was applied to manually segmented images. Thresholds for
attenuation (−190 HU to −30 HU)23 are then applied to segment
EAT within the heart silhouette. Once the EAT segmentation is
completed, EAT volume and attenuation are calculated using a
dedicated software package (QFAT; Cedars-Sinai Medical Center,
Los Angeles). The distribution of EAT attenuation values is skewed
so we evaluated per-patient median attenuation. An example of

EAT segmentation for one patient is shown in Supplementary
Fig. 5.

Statistical analysis
Continuous variables were summarized as mean (standard devia-
tion [SD]) if normally distributed and compared using a Student’s
t-test. Continuous variables that were not normally distributed were
summarized as median (interquartile range [IQR]) and compared
using a Mann-Whitney U-test. Correlations between continuous
variables were assessed using Spearman’s rank correlation
coefficient. Since the optimal cutoff for EAT volume and attenua-
tion in CT attenuation correction imaging is unknown, we used the
Youden index to identify optimal cutoffs in the internal testing
population. Associations with death or MI were assessed with
univariable and multivariable Cox proportional hazards analyses.
The multivariable model included age, sex, medical history, stress
TPD and stress LVEF. We evaluated for sex-based differences by
evaluating interactions between sex and EAT volume and EAT
attenuation in the multivariable model. We also evaluated
associations between death or MI with EAT volume and attenuation
modeled as continuous variables. In this analysis, EAT volume and
attenuation were modeled as cubic splines with 3 knots.
All statistical tests were two-sided, and a p-value < 0.05 was

considered statistically significant. All analyses were performed
using Stata/IC version 13.1 (StataCorp, College Station, Texas, USA)
and R (version 4.1.2).
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