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We aim to comprehensively identify typical life-spanning trajectories and critical events that impact
patients’ hospital utilization and mortality. We use a unique dataset containing 44 million records of
almost all inpatient stays from2003 to 2014 in Austria to investigate disease trajectories.Wedevelop a
new,multilayer disease network approach toquantitatively analyzehowcooccurrencesof twoormore
diagnoses form and evolve over the life course of patients. Nodes represent diagnoses in age groups
of ten years; each age group makes up a layer of the comorbidity multilayer network. Inter-layer links
encode a significant correlation between diagnoses (p < 0.001, relative risk > 1.5), while intra-layers
links encode correlations between diagnoses across different age groups. We use an unsupervised
clustering algorithm for detecting typical disease trajectories as overlapping clusters in the multilayer
comorbidity network. We identify critical events in a patient’s career as points where initially
overlapping trajectories start to diverge towards different states. We identified 1260 distinct disease
trajectories (618 for females, 642 formales) that onaveragecontain 9 (IQR2–6) different diagnoses that
cover over up to 70 years (mean 23 years). We found 70 pairs of diverging trajectories that share some
diagnoses at younger ages but develop intomarkedly different groups of diagnoses at older ages. The
disease trajectory framework can help us to identify critical events as specific combinations of risk
factors that put patients at high risk for different diagnoses decades later. Our findings enable a data-
driven integration of personalized life-course perspectives into clinical decision-making.

Multimorbidity, the occurrence of two or more diseases in one patient, is a
frequent phenomenon 1,2. Today’s reality of a 100-year lifespan brings a
shifting multimorbidity burden and increased healthcare and long-term
care costs 3,4. It was estimated that more than 50 million people in Europe
show more than one chronic condition 5. In 6, authors estimated that
16–57% of adults in developed countries are diagnosedwithmore than one
chronic disease and predicted a dramatic rise of multimorbidity rates in the
next years. TheWHOWorld Report on Ageing andHealth emphasizes the
importance of research to better understand the dynamics and con-
sequences of aging 7. Studies on multimorbidity patterns may contribute to
successful aging by the prevention of disease progression by identifying
critical events that lead to a rapid deterioration of health 8,9.

As diseases tend to co-occur and interact with each other (in away that
canworsen the course of both), they cannot be studied separately from each
other 10. The analysis of multimorbidity has recently been catalyzed by the
massive collection of patient health information on diagnoses, medication,
and results of laboratory tests in electronic health records (EHR), and other
clinical registries. Comorbidity networks have been established as tools to
analyze multimorbidity in such datasets 11,12. Age and sex-specific analyses
can further be conducted to address age- and sex-dependent associations
between diagnoses 13,14. These works confirm that patients mainly develop
diseases in close network proximity to disorders they already suffer.

The concept of disease trajectories has been proposed to formally
describe the progression of multimorbidity over time. Disease trajectories
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are frequently occurring patterns or sequences of diagnoses at particular
times and are typically extracted from the medical history of millions of
patients. Thus, apart from the pairwise disease associations, uncovering
complex disease patterns and assessing their temporal directionality is
crucial for estimating disease progression, developing prediction
models 15,16, analyzing trajectories 17,18 and their temporal patterns using
clustering algorithms 19,20. Many studies used data on in-hospital stays to
construct such trajectories. A summary of applications of machine learning
tools to understand the structure and formation of multimorbidity in the
population was given in 21. Topological data analysis, offering a robust
methodology to understand the high-dimensional structures, is also
employed in the examination of disease trajectories 22–25.However, studiesof
multimorbidity patterns over the full life span of patients, from cradle to
grave, remain scarce, as studies frequently take cross-sectional
approaches 2,26.

Longitudinal analysis of multimorbidity requires large population-
wide disease registries which span over multiple years, if not decades. Such
analyses are challenging as they require custom-mademethods and that are
often computationally challenging 17. Taken together, a life span perspective
on multimorbidities addressing the need for more comprehensive knowl-
edge on disease trajectories and their critical events is largely missing to
date 27.

Here, we propose a novel approach to dynamic comorbidity networks
from longitudinal population-wide healthcare data to comprehensively
identify disease trajectories in an entire population. A multilayer comor-
bidity network is constructed where nodes correspond to diagnoses, layers
to age groups, intralayer links to disease co-occurrences, and interlayer links
encode the directionality of disease pairs (which diagnosis tends to occur
first). We identify temporal disease trajectories as communities in this
multilayer network. In some cases, these tightly connected communities
share some nodes and be referred to as overlapping communities.

The central assumptionof our approach is that communities of nodes in
the comorbidity network represent patients’ disease trajectories. We identify
overlapping communities rather than exclusive clusters as the same diseases
(nodes) can naturally be part of different disease trajectories, i.e. sleep dis-
orders in patients with and without obesity and diabetes mellitus type 2. We
further try to identify critical events as points along trajectories, where two
initially identical trajectories start to diverge and will lead to different out-
comes in terms of disease burden (hospital utilization) and mortality.

Figure 1 illustrates the suggested methodology of this large-scale dis-
ease trajectory study. We analyzed data from an electronic health registry
covering almost all of 8.9 million Austrians with more than 44 million in-
hospital stays over 17 years, from1997-2014.To ensure the comparability of
the health status of our study population, we restricted the analysis to
patientswhowere “healthy" at the beginningof the observedperiodbetween
2003 and 2014. Therefore, in thefirst step of the analysis, we identified as the
studypopulationall patientswith at least onehospital staybetween1997and
2002 with a diagnosis from the range A00-N99 (in total 1081 diagnoses).
Moreover, in the early 2000s, Austria transitioned from the previous ICD
coding system to ICD-10 2001. It was crucial to avoid combining various
classification systems as it would have compromised the reliability of the
analysis, Fig. 1 (blue box).

In a next stepwe then constructed amultilayer comorbidity network to
explore how different disease conditions co-occur and develop over time.
We separated our data into 10-year age groups. For every age group we
introduced a layer in the multilayer comorbidity network. In this network,
two types of link can be found, links that connect nodes in the same layer
(intralayer links) and links that connect nodes from different layers
(interlayer links). All identified significant correlations of diagnoses in the
same age group are defined as intralayer links, while interlayer links
represent the correlation between diagnoses in different age groups, Fig. 1
(green box). Nodes without any intralayer links were removed, Fig. 1
(red box).

We used an algorithm based on the local optimization of a fitness
function presented in 28 to identify overlapping communities in the

multilayer network, Fig. 1 (orange box). One of the primary criteria for
selecting this community detection algorithmwas its ability to operate in an
unsupervised manner, without the need to prestate the number of expected
communities. Additionally, computational costs were an issue, given the
size and density of our input network. Some community detection algo-
rithms increase their complexity with the number of links in the network 29,
rendering them highly unpractical for our rather dense networks. Algo-
rithms like Bigclam, Demon, and COPRA work by spreading a signal
through the network, which can be computationally expensive for networks
with a large number of links. Note that in our framework the detected
communities typically encompassmore thanone age layer.Weanalyzed the
age structure of the detected overlapping communities and the number of
chapters of diagnoses inside the communities. More concretely, we con-
ceptualize disease trajectories as groups of diagnoses that occur at different
age groups (layers in the network) and that are more closely connected to
other diagnoses in the same community compared to diagnoses outside of
the community.

As disease trajectories can overlap, this enables us to comprehensively
study relationships between disease trajectories across more than one age
group. We defined pairs of trajectories as converging if they do not overlap
(no shared diagnoses) in younger age groups while they have a nonzero
overlap in older age groups. Additionally, diverging pairs of trajectories
overlap at the beginning, in younger age groups, but have different pathways
in older age groups.

From this we can identify critical events in patient careers. Critical
events are defined as combinations of diagnoses in a specific age group,
mainly chronic conditions, that signal that the disease trajectories are about
todiverge towards paths that lead todifferent levels ofmortality or lengthsof
hospital stays in the following age groups. Critical events can be thought of
as bifurcation points of disease trajectories that can lead to trajectories
associated with strongly varying outcomes. These events can support the
identification of patients at risk for more severe multimorbidity trajectories
and associated adverse outcomes in the next decade and thereby provide
leverage points for targeted preventive actions.

Results
Multilayer comorbidity network
Weconstructed themultilayer comorbidity network based on hospital data,
basic characteristics of the database are shown in Figure S1. We used all
3-digits ICD10 codes from the range A00-N99 and one more newly
introduced code for patients without any diagnosis, in total 1082 codes.
Nodes in the constructednetwork are ICD10 codes appearing inoneof eight
different age groups, i.e. E66-0-9, E66-10-19, etc. Hence, we used 8,648
nodes to construct a multilayer comorbidity network with eight layers (one
for each ten years age group, 0–9, 10–19,... 70–79 years old).We filtered the
network by removing nodes without any intralayer links. This reduced the
network from 8,648 nodes to 4,923 nodes for males and 4,764 nodes for
females. The average degree in the filteredmale network is 11.6 SD 39.7, for
the female network the average degree is 15.8 SD46. The numberof hospital
stays, Fig. 2a, and nodesN Fig. 2b increases with age, reaches a peak at ages
60 to 69, and decreases for older ages.We see similar age trends in Fig. 2c the
total number of links and Fig. 2d the average degree for intralayer as well as
in- or outbound interlayer links for males and females. Network properties
are presented in Table 1. A comprehensive analysis of the network prop-
erties for each respective layer of the multilayer network is depicted in
Supplementary, Figures 2 and 4.

Trajectories
The unsupervised community detection algorithm discovered 642 distinct
disease trajectories in the male and 618 in the female network. The
remaining are listed in Supplementary Tables 5–6, and shown in Fig. 3. To
evaluate the robustness of these findings and due to stochastic elements in
the community detection algorithm, we performed the analysis three times
with different randomseeds (given the algorithm’s computational intensity)
and observed identical results in each realization. These trajectories contain
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on average 9 (IQR 2–6) different diagnoses that range over up to 7 age
groups (mean: 2.3 age groups), meaning that these trajectories range on
average over 20–30 years and in some cases over up to 70 years of life.
Besides trivial examples like a trajectory with the only diagnosis being K51
(ulcerative colitis) in each age group in males, we also foundmore complex
trajectories spanning 70 years. For instance, for female patients, there is a
trajectory that starts with personality disorder (F61) at the age of 20–29y.
Over the following decades there is an accumulation of mental disorders
including depression (F33), post-traumatic stress disorder (F43) and eating
disorders (F50) in 50–59y, followed by anxiety disorders (F40) and a few
more non-chronic diagnoses in 60–69y.

Thedistributionof the size of the trajectories (number of diagnoses-age
tuples) is presented in Fig. 4a. Most trajectories contain between 3 and 5
diagnoses-age combinations; while a few trajectories contain more than a
hundred elements. We split trajectories into seven groups based on the

number of age groups in the trajectory and analyzed the number of different
disease chapters in one trajectory Fig. 4b. This shows that trajectories
typically span heterogeneous chapters of ICD codes, meaning that they
often span diagnoses affecting quite different organ systems. We calculated
the Jaccard index to inspect the pairwise similarity and dissimilarity of
trajectories; see the distribution of this index in Fig. 4c. Jaccard indices range
between zero and one, indicating varying degrees of similarity between two
trajectories. The most common relationship among pairs of trajectories is
nested, which explains the peak at one in the Jaccard index. Figure 4d shows
frequency statistics of different types of trajectory pairs. We show a grid of
scatterplots that comprehensively summarizes the relationships between
size, number of ICD codes, number of ICD chapters, and number of age
groups of trajectories in females and males in Supplementary Fig. 7 and
online at https://vis.csh.ac.at/comorbidity_network_graphics/matrix_
cluster/. As expected, there is a strong correlation between size, the

Fig. 1 | Workflow of the research presented in this
article.
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number of ICD chapters, and specific ICD codes across both genders.
Additionally, the size of the trajectories demonstrates a significant correla-
tion with the number of incoming and outgoing links.

To validate the interpretations of trajectories within the context of
established literature, we undertook a comprehensive literature survey uti-
lizing the PubMed database. We quantified the associated publications for
each disease pair within a given trajectory (spanning two or more ICD
chapters). For each pair from the trajectories, we search the PubMed articles
using the query ’(disease1)AND(disease2) and (correlationor association)’,
as detailed in Supplementary Tables 8–9. From this analysis, we observed
2.2% of trajectories(ten trajectories) in males and 3.6% (16 trajectories) in
females, wherein certain diseases lacked evident associations with other
diseases in the same trajectory as per the PubMed records. For example,
such trajectories consist of uncertain neoplasm of respiratory organs (D38)
in the 60s and 70s and lung cancer (C34) in the 70s in females, and kidney
cancer (C64) in 40s and 50s together with uncertain neoplasm of urinary
organs (D41) in 40s and 40s in males. However, these trajectories are
plausible, even though we could not find them in the literature, as they
contain similar or the same diseases marked with different ICD10 codes.

In Fig. 5 we show amore detailed view of some of the trajectories from
Fig. 3.We show two examplesof trajectories (gray areas) departing from (A)
hypertension (I10) at the age of 10–19y in females and (B) sleep disorders
(G47) at an age of 20–29y inmales. In both cases, different combinations of
other diagnoses appear in subsequent decades. The hypertension trajectory
diverged into chronic kidney diseases (2289 patients) or (1027 patients) a
combination of metabolic (obesity, disorders of lipoprotein metabolism)
and digestive disorders (liver diseases, cholelithiasis) with nicotine abuse.
The sleep disorder trajectory diverged either toward the metabolic

syndrome (including obesity and type 2 diabetes) in 115 patients or towards
a combination of movement disorders, hernia, obesity, and diseases of the
middle ear (316 patients).

In total, we identified 35 pairs of such diverging trajectories in females
and 35 inmales; see Fig. 4d). On average, diverging trajectories have 2.9 SD
0.8 age groups, 3.5 SD 1.8 different diagnoses chapters, and 8.1 SD 4.7
different diseases for females, and for males 3.0 SD 1 age groups, 3.5 SD 2.9
different diagnosis chapters, and 11 SD11different diseases.While there are
64 pairs of converging trajectories in females and 95 in males, converging
trajectories in females have: 2.8 SD 0.9 age groups, 4.2 SD 3.2 different
diagnoses chapters, and 26 SD 79 different diseases, in males: 3 SD 1 age
groups, 3.8 SD 3.5 different diagnoses chapters, and 22 SD 68 different
diseases. Some of the trajectories are persistent (16 pairs of trajectories in
females, 14 in males).

The most frequent relationship between trajectories was the complete
overlap of shorter and longer trajectories, which we defined as nested. We
found 314 pairs of nested trajectories among female trajectories and 266 in
male trajectories, Supplementary Tables 10–11.

We designed and implemented an online visualization tool that allows
a user to interactively explore the comorbidity network structure and the
underlying diagnose data, https://vis.csh.ac.at/netviewer/.

Outcomes of trajectories
For every trajectory,we calculated (in-hospital)mortality and thenumber of
days spent in the hospital for each age group, Fig. 6. In-hospitalmortality for
each trajectory is shown in the yellow outer circle. The analysis reveals
notable variations in mortality rates across trajectories, with younger age
groups generally exhibiting lower mortality. Moreover, it is evident that

4e+05

6e+05

8e+05

1e+06

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79
Age[years]

To
ta

l N
um

be
r 

of
 

 H
os

pi
ta

l s
ta

ys

Female Male

a

400

600

800

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79
Age Group

N
um

be
r 

of
 n

od
es

Female Male

b

0

3000

6000

9000

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79

N
um

be
r 

of
 li

nk
s

c

0

10

20

30

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79
Age Group

<
k>

d

Female

Male

Intralayer Inbound interlayer

Outbound interlayer

Fig. 2 | Summary statistics of themultilayer comorbidity network.Total number of hospital stays per age group,Network properties: number of nodes, number of all inter-
and intralayer links and, the average degrees < k > .

Table 1 | Network properties of the multilayer comorbidity network

Sex Degree Assortativity Average Path Length Betweenness Closeness Clustering Coefficient Density Modularity

Female 23.10 − 0.25 3.10 1117.43 0.00023 0.33 0.00024 0.75

Male 31.63 − 0.29 2.43 889.69 0.00014 0.32 0.00014 0.73
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certain trajectories undergo significant shifts in mortality as they progress
into older age groups. The green circle represents the average duration of
hospitalization for trajectories, while the blue circle denotes the number of
diagnoses, and the purple inner circle signifies the count of patients who
followed at least 50% of a given trajectory. Notably, the green circle high-
lights discernible differences in the numberof hospital days among different
trajectories. Some trajectories have a clearly higher number of hospital days
compared to other trajectories; these trajectories mainly consist of mental
and behavioral disorders (F chapter) and infectious and parasitic diseases (B
chapter) in males, while in females, besides these we see diseases of mus-
culoskeletal and connective tissue (M chapter) and diseases of the nervous
system (G chapter).

We also compared outcomes of diverging trajectories; some
examples are shown in Table 2 (extended tables in Supplementary,
Table 12–13). We calculated an average number of hospital diag-
noses, hospital days, and hospital stays for each age group in each
trajectory over all patients following these trajectories. We calculated
the ratio of each outcome of trajectories in each diverging pair to
check if these trajectories develop into different outcomes in terms of
disease burden and mortality. For example, both trajectories from the
pair starting with N81 in 50s are characterized with a similar average
number of hospital diagnoses in the 20s, while in the 30s patients of
the second trajectory have, on average, 24% more hospital diagnoses.
In the same example, we see that patients of the first trajectory, on
average have spent more days in hospital and have more hospital
stays in the 20s (ratio of average number of days spent in hospi-
tal = 1.547/hospital stays = 1.548), but in 30s patients of the second

trajectory, have spent more days in hospital and also more hospital
stays (ratio of average number of days spent in hospital = 0.331/
hospital stays = 0.551), Table 2.

Discussion and conclusion
In this work, we introduced a novel method to identify life-course disease
trajectories, in some cases spanning up to 70 years of life, in terms of
sequences and combinations of hospital diagnoses that form and change
over time. Our comprehensive analysis identified 642 disease trajectories in
males and 618 in females ranging over the entire diagnostic spectrum (41%
ofmales and42%of female trajectories containeddiagnoses frommore than
one ICD chapter). While the most common length of these trajectories was
two diagnoses for both sexes, on average they contained 5.3 SD 5.1 and 5.4
SD 5.5 diagnoses for males and females, respectively, emphasizing the
heterogeneous and widespread nature of multimorbidity in the general
population.

There is a substantial variation in the number of patients that follow a
trajectory. We count patients for each trajectory for each age group if they
have at least 50% of diagnoses from a trajectory. In general, shorter trajec-
tories tend to be followed by more patients (more than 10,000 patients per
trajectory per age group) than longer, more specific ones that typically
contain approximately a hundred patients. The number of patients in a
trajectory typically increases with age.

The trajectories foster the rapid identification of critical events. These
can take the form of bifurcation points where a trajectory “splits up” into
multiple diverging trajectories at a specific age group. More concretely, we
found 35 pairs of diverging trajectories for females and 35 pairs for males.

Fig. 3 | Visualization of disease trajectories.
aMultilayer comorbidity network of female
patients. Nodes represent diagnoses in age groups of
ten years; each age group makes up a layer of the
comorbidity multilayer network. The node color
indicates the diagnose chapter; the diagnosis pre-
valence of the node in the network scales node size,
Supplementary Fig. 3. All identified trajectories of
female b and male c patients. The members of the
trajectories are nodes of a multilayer comorbidity
network (diagnose + 10 years age group). The
Y-axis approximates the age groups of nodes; the
node color indicates the diagnose chapter, and each
gray area around nodes is one trajectory. More
detailed visualization of these plots can be found in
the interactive web application: a https://vis.csh.ac.
at/netviewer/ and b, c https://vis.csh.ac.at/
comorbidity_network_graphics/.
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For example, in females diagnosedwith arterial hypertension (I10) between
10 and 19 years, two major trajectories were identified by the model. The
first trajectory lead to the additional diagnosis of chronic kidney disease
(N18) at an age of 20-29 years. This is clinically relevant as the number of
pediatric arterial hypertension is increasing worldwide 30 and it is well
known that aHTN is closely related to chronic kidney disease. There is a

growing number of overweight and obesity during childhood worldwide 31.
Obesity is closely related to the development of arterial hypertension, dia-
betes mellitus type 2 or dyslipidemia 32. The early onset of arterial hyper-
tension for example is a major risk factor for the development of further
diseases. In the present study we could show that some patients follow a
trajectory that is related to an increased risk of developing chronic kidney

0

50

100

150

200

3 10 30 100 300
Size of trajectory

C
ou

nt
s

a

7−age groups

4−age groups 5−age groups 6−age groups

1−age group 2−age groups 3−age groups

2.5 5.0 7.5

0 5 10 15 2 4 6 2 4 6

2 4 6 0 5 10 15 0 5 10 15
0

25

50

75

0

1

2

3

4

0

50

100

150

0

2

4

6

0

25

50

75

100

0

10

20

30

0.0

0.5

1.0

1.5

2.0

Number of chapters in one trajectory

C
ou

nt
s

b

1e+01

1e+03

1e+05

0.0 0.3 0.6 0.9
Jaccard Index

C
ou

nt
s

c

0

100

200

300

Converge Diverge Nested Persistent

C
ou

nt
s

d

Female Male

Fig. 4 | Properties of trajectories.We show for males and females a the distribution
of the sizes of the trajectories, b the distributions of the number of different ICD
chapters per each group of trajectories, i.e. trajectories which span over one age

group - first blue plot, c the histogram of the pairwise Jaccard index and d frequency
statistics of different types of trajectory pairs.

https://doi.org/10.1038/s41746-024-01015-w Article

npj Digital Medicine |            (2024) 7:56 6



disease, which increases mortality rate still in earlier ages 33. Therefore we
can also refer to the following metabolic trajectory which is also a major
health problem. However, there is lack of information in the specific tra-
jectories which we show in the present study, pointing out that there are
cohorts which develop chronic kidney disease under arterial hypertension
and others who do not. Our results point out that there are some specific
trajectories which should get more attention especially from clinical side of
view - hence it should be identified whether the reason for the differences in
the development of comorbidities are a result of differences in compliance,
therapy or in health care. From a clinical point of view, a strict monitoring
for arterial hypertension should be established especially in children at high
risk, such as obese children or children with the metabolic syndrome.
Arterial hypertension does not only mean increased risk for chronic kidney
disease, but also other complications such as cardiovascular disease. The
second trajectory was characterized by patients with the metabolic syn-
drome; these patients were disproportionally diagnosed with obesity (E66),
lipid disorders (E78), steatosis hepatis (K76), cholelithiasis (K80) and
nicotine abuse (N17) in their further life. In general, we therefore have two
trajectories in females initially diagnosed with arterial hypertension, which
are in principal dangerous conditions - the “kidney-trajectory” and the
“metabolic trajectory”. We found that approximately 2289 patients follow
the “kidney-” and 1027 patients follow the metabolic trajectory. These
trajectories are mostly important as metabolic diseases belong to the most
common diseases worldwide and also chronic kidney disease is a disease
which is related to multi morbidity and increased mortality rate.

In a different example we found that sleeping disorders (G47) in
males diagnosed in the age groups between 20-39 years were also
followed by a metabolic trajectory which was defined by an over-
representation of later diagnoses of diabetes mellitus type 2 (E11),
obesity (E66), lipid disorders (E78) and hyperuricemia (E79). Among
the sleeping disorders related to organic causes coded by G47,
obstructive sleep apnea is a frequent comorbidity of obesity and other
disorders related to the metabolic syndrome. The trajectory identified
here suggests that a diagnosis of G47 typically precedes diagnosis of
these metabolic disorders, calling for more timely identification of
metabolic decompensation. The other trajectory, diverging from
sleeping disorders, is characterized by a higher chance of being
diagnosed with movement disorders (G25) or otitis media (H66),
obesity (E66) and abdominal hernia (K46). While the link to obesity,

a known risk for abdominal hernias, is shared between both trajec-
tories, the association with movement disorders suggest a more
neurologically impaired group of patients for whom organic sleeping
disorders may be an early marker for risk of developing neurode-
generative disorders such as Parkinson disease. Obstructive sleep
apnea was previously identified as common comorbidity and
potential causal risk factor due to reduced brain oxygenation 34.
While no conclusion on causality can be drawn, the trajetory iden-
tified here supports sleeping disorders as an early risk factor. We
found substantial differences in the average number of diagnoses and
hospital days between patients of different branches of these diver-
ging trajectories. While patients who followed these two trajectories
showed similar average numbers of diagnoses at age 20–29 (3.3
diagnoses in both cases), patients who followed a metabolic trajectory
had, on average, 3.9 diagnoses ten years later while patients who
followed the other trajectory had, on average, 5.1 diagnoses. The
number of sleeping disorders is on the rise and these results show
that patients with sleeping disorders have to be monitored for several
diseases in different trajectories. Our analysis also identified several
instances were diverging trajectories differed substantially in their
mortality, in some cases of up to 18 times.

In terms of mortality we identify trajectories that develop into a
combination of diagnoses with high mortality in older age groups. For
instance, a trajectory consisting of chronic bronchitis andCOPDat an ageof
40–49y, bronchiectasis and intraoperative and postprocedural complica-
tions at 50–59y and finally in sequelae of tuberculosis, inflammatory
polyneuropathy, conjunctivitis, bronchitis, bronchiectasis, eosinophilia and
again intraoperative and postprocedural complications in 60–69y in males
had eight times higher mortality in the age group 60–69y compared to its’
mortality ten years earlier (mortality increased from 0.089 in 40–49y to
0.013 before jumping to 0.11 in 60–69y). Trajectories with the highest
mortality usually contain cancer diagnoses, but cardiovascular or respira-
tory diseases also feature in the trajectories with high mortality.

Strengths and limitations
Strengths of this study include its comprehensive population-wide in-hos-
pital database, containing information on about 9million individuals. Non-
systematic errors, such as randomlymissing diagnoses, have little impact on
our research because of the volume of the data set. However, this study has

Fig. 5 | Two examples of diverging trajectories.
a departing from hypertension (I10) at the age of
10–19y in females diverges to the “kidney-trajec-
tory" and the “metabolic trajectory" b departing
from sleep disorders (G47) at the age of 20–29y in
males diverges to metabolic trajectory with diabetes
mellitus type 2 (E11), obesity (E66), lipid disorders
(E78) and hyperuricemia (E79) and path with
movement disorders or otitis media (G25), obesity
(E66) and abdominal hernia (K46).
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some limitations caused by data quality and limitations in data availability,
in particular, the lack of information on outpatient visits, medication and
lifestyle.Consequently,we cannot evaluate the outcomesof outpatient visits,
blood tests, examinations, or imaging because primary care diagnoses are
not recorded in this dataset; only hospital diagnoses coded with ICD10
codes were available for analysis. It further remains to be seen whether
similar trajectories can be identified in populations of other countries than
Austria or by means of different community detection algorithms.

Another drawback is that the database was designed for billing
purposes, so diagnoses that did not result in financial compensation
were frequently not reported. Therefore, we have to point out that
some diseases, such as alcohol-related disorders or nicotine depen-
dence, are often not recorded correctly in our data. Further, socio-
economic indicators for individual patients were also not available in
the dataset, leaving it yet to be explored how socio-economic status
impacts on these trajectories. An additional constraint associated

Fig. 6 | Outcomes of trajectories that span more
than one age group. a Females bMales, the outer
yellow circle shows mortality of each trajectory in
each age group, the green circle presents an esti-
mation of the average number of hospital days of
patients of the trajectory, while the blue circle pre-
sents an estimation of the average number of diag-
noses, the inner purple circle shows a number of
patients who are following each trajectory in each
age group. Each trajectory is represented by a single
line within each circle, which is further divided
based on the age groups the trajectory encompasses.
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with the dataset is the exclusive availability of in-hospital mortality
data. On a methodological level, it is also important to bear in mind
that a constructed multilayer comorbidity network has two types of
links (with normalized links weights); but these types are not dis-
tinguishable by the used community detection algorithms.

In summary, we presented a novel and statistically grounded way of
studying disease progression over time based on a population-wide and
decade-spanning data set of hospital diagnoses. We proposed an age mul-
tilayer comorbidity network as a base for our modeling approach. We
showed that this kind of network is a promising approach for better
understanding disease trajectories and their dynamics as patients age.While
some of the identified trajectories in this study have been described in
previously published studies, many novel disease trajectories and their
decades-long time dynamics have been revealed.

Abetter understandingofdiseases, their correlations and the sequences
in they occur has the potential to improve the prevention of focal diseases.
Early detection and identification of a patient’s projected disease trajectory
might enable prompt and timely treatments next to targeted preventive
action. Consequently, that will help transition health systems from single-
disease models to more effective life-spanning and individualized multi-
morbidity models35,36. Our potential future research may focus on con-
structing trajectories derived from hypergraph-based comorbidity
networks37–39.

Data and methods
Data
The analyzed dataset spans 17 years of nationwide in-hospital data from all
hospitals in Austria. Each hospital stay is recorded with primary and sec-
ondary diagnoses, age in the resolution of 5 years, sex, admission and release
date, release type (i.e., release, transfer, death...), Supplementary Fig. 1. This
dataset covers the period from 1997 until 2014 and the vast majority of
Austria’s population with 8.9 unique patients. Diagnoses are codedwith the
three-digit International Classification of Diseases, 10th Revision (ICD-10)
codes.We restricted our analysis to 1081 codes fromA00 toN99, excluding
codes describing health encounters that can not be directly related to dis-
eases (i.e., O00-O9A—Pregnancy, childbirth, and the puerperium, S00-T88
- Injury, poisoning andcertainother consequences of external causes...). The

data always reports a primary diagnosis as the main reason for hospitali-
zation, along with a variable number of secondary diagnoses.

In this study, we assigned equal importance to both primary and
secondary diagnoses19,40. To ensure that our study population’s health state
was comparable at the beginning of the observation period and not in the
middle of connected hospitalization episodes, we introduced a wash-out
period and limited the analysis to patients who had no hospital visits
between 1997 and 2002. Consequently, excluding these patients also
ensured that analyzed data has only one ICD coding system, as in the early
2000s, Austria updated its ICD coding system to ICD-10 200119,40,41.

Ethics
We made secondary use of a research database containing medical
claims records, which is securely managed by the Federal Ministry of
Health. It is important to note that measures have been implemented
to guarantee the anonymity of individuals within this database. It is a
consolidated research database accessible only to authorized partners
who adhere to stringent data protection policies. Our use of this data
is conducted in collaboration with data provider and follows estab-
lished agreements.

The data in this database do not include any personal identifiers, such
as names, postal codes, or dates of birth. Additionally, all members of our
research team have committed to maintaining confidentiality and com-
plying with relevant data protection regulations through a signed
agreement.

Multilayer comorbidity network
Formally, we construct the multilayer comorbidity network given by the
tensorMα;β

i;j where i and j refer to nodes (diagnoses) on layers (age groups) α
andβ, respectively.We refer to entries inMwithα = β as intralayer links and
with α ≠ β as interlayer links. The analysis was performed separately for
male and female patients.

Intralayer links
Intralayer links give the correlation between diagnoses within the same age
group. The analyzed dataset was stratified by six time windows of two years
each, from 2003 to 2014. A contingency table is created for each pair of

Table 2 | Outcomes of trajectories, four examples of diverging pairs of trajectories

Same diagnoses of trajectories,
before they diverge

Exclusive diagnoses of the
first trajectory

Exclusive diagnoses of the
second trajectory

Age
group

Ratio of average number (first vs. second trajectory)
of number of

hospital
diagnoses

days spent in
hospital

hospital stays

Females

I25-40-49 I21-40-49 I20-50-59 I42-50-59 I44-50-59 40–49 0.806 0.92 0.953

I42-40-49 I21-50-59 I24-50-59 I50-50-59 I51-50-59 50–59 0.685 0.522 0.713

I50-40-49 I42-60-69 I44-60-69

I44-70-79

N81-50-59 N80-50-59 N84-50-59 N81-60-69 N99-60-69 50–59 1.052 0.862 1.013

N85-50-59 N88-50-59 60–69 1.258 1.255 1.377

N95-50-59 N80-60-69

Males

G47-20-29 E11-20-29 E66-20-29 G25-30-39 E66-40-49 20–29 1.021 1.547 1.548

G47-30-39 E78-20-29 E79-20-29 G25-40-49 G47-40-49 30–39 0.76 0.331 0.551

G25-50-59 H66-50-59

K46-50-59

G47-20-29 E11-20-29 E66-20-29 G25-30-39 G25-40-49 20–29 1.021 1.547 1.548

G47-30-39 E78-20-29 E79-20-29 G47-40-49 30–39 0.76 0.331 0.551

Columns same diagnoses of trajectories show initial overlap of trajectories, and exclusive diagnoses of the first and the second trajectory show towhich states trajectories diverge. The ratio of the average
number (first vs. second trajectory) of number of hospital diagnoses/ days spent in hospital/ hospital stays for each age group is presented for each age group.
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diagnoses in each stratum(for each sex andagegroup, the intralayer analysis
includes six strata, each covering two calendar years). We used all con-
tingency tables with more than four patients in each subgroup to compute
relative risks (RR) and the p-value for rejecting the null hypothesis that the
co-occurrence of two analysed diagnoses is statistically independent 41. A
weighted average of the estimates of the risk ratios and odds ratios across the
stratified data were calculated by using the Cochran-Mantel-Haenszel
method 42.

Subsequently, all correlations with RR higher than 1.5 and p-value
smaller than 0.05 were extracted and presented as intralayer links 14. These
links are bidirectional, and we use a normalized RR as the link weight. The
normalization of RR was done such that the sum of all total weights of all
intralayer links with the same target was one.

Interlayer links
To estimate directionality or time order in pairs of diagnoses, we split the
observation period in two time frames T1 = [2003, 2008] and
T2 = [2009, 2014]. This choice of splitting the data ensures equally long
observation periods for diagnoses in T1 and T2. We investigate if a patient
diagnosed with i in T1 elevates the risk of being diagnosed with j in T2 and
compute the interlayer link weight as

Mα≠β
i;j ¼ PðjβT2jiαT1Þ

PðjβT2Þ
: ð1Þ

Overlapping community detection in multilayer network
We deleted all nodes without at least one inbound and one outbound link.
Further, we normalized all linkweights to range from0 to 1 by dividing each
link’s weight by the sum of all links of the same type of a target node

Mαβ
ij ¼

Mαβ
ij

P
jM

αβ
ij

: ð2Þ

The algorithm for detecting the overlapping and hierarchical
community structure in complex networks proposed in 28 was applied.
This unsupervised clustering algorithm does not have a predefined
number of communities. The detection procedure is initiated starting
with a random node, which represents one community by itself.

A community’s fitness is defined as f G ¼ kGin
ðkGinþkGout Þ

a,where kGin are the
total internal degrees of the nodes in the communityG and kGout are the total
external degrees of the nodes in the community G.

As long as the fG improves, neighboring nodes are added, or nodes that
already are community members get removed in a step-wise manner.

The resolutionparameter a enables us to uncover different hierarchical
levels of a system, thenatural choice isa = 1. Fitness is calculated at each step.
Once thefitness cannot be increased anymoreby anode removal or addition
step, that community is “completed" and “closed." The community detec-
tion process ends when all nodes have been assigned to at least one com-
munity. To parallelize and optimize this computationally costly process, we
identify the community of every node and delete duplicates among the
discovered communities.

Identified communities usually consist of diseases in different age
groups that tend to co-occur more frequently among themselves than dis-
eases that are not part of the community. Hence, these communities
represent typical disease trajectories; we denote a trajectory X as a set of
diagnosis-age tuples, X = {(i1, α1), (i2, α2), (i3, α3). . . }, where i is an ICD10
code ranging from [A00,N99] and α is the age group from [1, 8].

We measure the similarity of trajectories by the Jaccard coefficient
between two trajectories consisting of tupleswith diagnoses i and age groups
α, (i, α). That is, two trajectories have a non-zero overlap if they share
diagnoses within the same age groups.

Identifying converging and diverging trajectories
We performed a comprehensive classification with respect to all pairwise
relations between every pair of trajectories. Provided that two trajectories
share at least one diagnosis, they can be related in one of four different ways,
namely (i) diverging, (ii) converging, (iii) nested, or (iv) persistent, Fig. 7.

Diverging trajectories have some overlapping elements at younger
ages, but they develop intomarkedly different sets of diagnoses at older ages.

More formally, trajectories X = {(i11, α11), (i12, α12), (i13, α13). . . } and
Y = {(i21, α21), (i22, α22), (i23, α23). . . } are diverging if it holds that

fði1i; α1iÞ 2 Xjα1i ¼ αXminÞg \ fði2i; α2iÞ 2 Yjα2i ¼ αXminÞg
� �

∪
fði1i; α1iÞ 2 Xjα1i ¼ αYminÞg \ fði2i; α2iÞ 2 Yjα2i ¼ αYminÞg

� �
≠; and

fði1i; α1iÞ 2 Xjα1i>αXminÞg≠ fði2i; α2iÞ 2 Y jα2i>αXminÞg and
fði1i; α1iÞ 2 Xjα1i>αYminÞg≠ fði2i; α2iÞ 2 Y jα2i>αYminÞg;

ð3Þ

where αXmin ¼ min
ði;αÞ2X

α ; αYmin ¼ min
ði;αÞ2Y

α.

Converging trajectories overlap at older ages but are clearly different at
younger ages. Trajectories X and Y are converging if it holds that

fði1i; α1iÞ 2 Xjα1i ¼ αXmaxÞg \ fði2i; α2iÞ 2 Yjα2i ¼ αXmaxÞg
� �

∪
fði1i; α1iÞ 2 Xjα1i ¼ αYmaxÞg \ fði2i; α2iÞ 2 Yjα2i ¼ αYmaxÞg

� �
≠; and

fði1i; α1iÞ 2 Xjα1i<αXmaxÞg≠ fði2i; α2iÞ 2 Y jα2i<αXmaxÞg and
fði1i; α1iÞ 2 Xjα1i<αYmax

�g≠ fði2i; α2iÞ 2 Y jα2i<αYmax

�g;
ð4Þ

where αXmax ¼ max
ði;αÞ2X

α ; αYmax ¼ max
ði;αÞ2Y

α.

Two trajectories are nested if one of them is a subset of another one,
X⊂ YorY⊂X. Persistent trajectoriesX andY can overlap in the highest age
group of X and lowest age group of Y, or vice versa.

Identifying critical events
We define critical events by one or a combination of diagnoses and age
groups where two trajectories begin to diverge and where one of the
diverging trajectories has patients with a considerably higher number of
diagnoses, higher mortality or more extended hospital stays in the sub-
sequent age group(s) compared to the other diverging trajectory. Mortality
of a trajectory for a certainagegroup is calculatedasM =∑imi*∏j≠i(1−mj),
wherem is the in-hospitalmortality of a diagnosis (definedas the percentage
of patients diagnosed with the diagnose in a specific age group who die in-
hospital) which is a member of a trajectory. The length of hospital stay of a
trajectory in a certain age group is defined as the average number of days
spent in hospital for patients who are diagnosed with at least half of all
diagnoses from a trajectory.

Data availability
The raw and processed patient data are not available due to privacy laws.
The dataset is safeguarded by the Austrian Federal Ministry of Health and
made accessible to research institutions under strict data protection reg-
ulations. To gain access to this data, researchers have to find individual
arrangements with the Austrian Federal Ministry of Health.

Diverging Converging Nested Persistent

Fig. 7 | Visual representation of pairwise relations between pair of trajectories.
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