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Diagnostic performance of artificial intelligence-assisted PET
imaging for Parkinson’s disease: a systematic review and meta-
analysis
Jing Wang 1,2, Le Xue 3, Jiehui Jiang 4, Fengtao Liu 5,6, Ping Wu 2, Jiaying Lu 2, Huiwei Zhang 2, Weiqi Bao2, Qian Xu2,
Zizhao Ju2, Li Chen7, Fangyang Jiao2, Huamei Lin 2, Jingjie Ge 2✉, Chuantao Zuo 1,2,6✉ and Mei Tian 1,2✉

Artificial intelligence (AI)-assisted PET imaging is emerging as a promising tool for the diagnosis of Parkinson’s disease (PD). We aim
to systematically review the diagnostic accuracy of AI-assisted PET in detecting PD. The Ovid MEDLINE, Ovid Embase, Web of
Science, and IEEE Xplore databases were systematically searched for related studies that developed an AI algorithm in PET imaging
for diagnostic performance from PD and were published by August 17, 2023. Binary diagnostic accuracy data were extracted for
meta-analysis to derive outcomes of interest: area under the curve (AUC). 23 eligible studies provided sufficient data to construct
contingency tables that allowed the calculation of diagnostic accuracy. Specifically, 11 studies were identified that distinguished PD
from normal control, with a pooled AUC of 0.96 (95% CI: 0.94–0.97) for presynaptic dopamine (DA) and 0.90 (95% CI: 0.87–0.93) for
glucose metabolism (18F-FDG). 13 studies were identified that distinguished PD from the atypical parkinsonism (AP), with a pooled
AUC of 0.93 (95% CI: 0.91− 0.95) for presynaptic DA, 0.79 (95% CI: 0.75–0.82) for postsynaptic DA, and 0.97 (95% CI: 0.96–0.99) for
18F-FDG. Acceptable diagnostic performance of PD with AI algorithms-assisted PET imaging was highlighted across the subgroups.
More rigorous reporting standards that take into account the unique challenges of AI research could improve future studies.
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INTRODUCTION
Parkinson’s disease (PD) is the most common neurodegenerative
disorder associated with involuntary or uncontrollable move-
ments1. In addition to these motor symptoms, patients with
progressive disease may also experience other complications such
as cognitive impairment, mental and behavioral disorders, sleep
disorders, memory problems, and sensory disturbances2. Accurate
diagnosis in the early clinical or prodromal stages, however,
remains a challenge due to symptom overlap with conditions like
atypical parkinsonism (AP)3. An estimated 20-30% of patients
initially diagnosed with PD are, post-pathological examinations,
reclassified as having either multiple system atrophy (MSA) or
progressive supranuclear palsy (PSP)4. This misdiagnosis affects
clinical care and research trials by leading to incorrect prognoses,
heterogeneous therapeutic responses in PD and AP5. Hence, it is
essential to establish precise diagnoses early, considering the
symptom similarity but differing treatment requirements across
these conditions6.
In addition to diagnosing PD on the basis of the above general

symptoms examined by clinicians, imaging techniques, particu-
larly PET molecular imaging, which are used as critical imaging
biomarkers for diagnosis and disease progression by clinicians and
researchers in the PD progression, reveal a wide range of
neurobiological abnormalities and have shown to be helpful in
the differential diagnosis of parkinsonism to facilitate decision
making for diagnosis and treatment3,7. The 18Flourine-
fluorodeoxyglucose (18F-FDG) PET scan offers comprehensive
insights into brain glucose metabolism, assisting in differentiating

PD from other neurodegenerative conditions through distinctive
glucose metabolism patterns8. Further, dopaminergic imaging
evaluates the condition of dopamine (DA) neurons, providing
tangible evidence of the dopaminergic system’s dysfunction, a key
feature of PD9. Reading these imaging results accurately demands
considerable expertise, often relying on veteran radiologists in PET
imaging. Yet, the challenges posed by inadequate nuclear
medicine facilities in resource-limited regions make it difficult for
physicians to make an immediate and correct diagnosis based on
medical imaging10.
The potential of artificial intelligence (AI) in PET imaging to

automate diagnosis is attracting considerable interest and is
becoming a research focus, as it could help solve the aforemen-
tioned problem of limited healthcare resources in areas with high
diagnostic demand for medical imaging11,12. Deep learning (DL)
utilizes multi-layered artificial neural networks for data analysis,
whereas machine learning (ML) employs algorithms that enable
computers to learn from data without being explicitly pro-
grammed. Conversely, transfer learning (TL) applies knowledge
acquired from one task to improve performance on a related task.
Integrating molecular medical images with AI algorithms, particu-
larly ML and DL, has demonstrated potential in identifying PD
patients13. DL algorithms utilize a variety of methods to achieve
predictions and classifications from large, complex datasets. This
has led to a number of groundbreaking innovative applications in
medical imaging, where DL strategies have the potential to far
outperform human experts. Researchers have attempted to
improve diagnostic accuracy in a variety of ways, including
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expanding sample size and optimizing algorithms. Wu et al.
demonstrated that a DL algorithm, when applied to 18F-FDG PET
images, achieved a diagnostic accuracy of 98.6%14. In addition, an
ML model was used to automatically discriminate between PD and
normal control (NC) images, with a high accuracy of 71.2%15.
Although the number of research studies on AI-assisted PET

imaging for the detection of PD has increased, a quantitative
synthesis that comprehensively summarizes the available evi-
dence is still lacking. Recent literature has also underscored the
importance of modifying and adapting current research meth-
odologies in line with the digital shift in healthcare16. This study
therefore systematically reviews and meta-analyzes the published
data on the diagnostic performance of AI algorithms-assisted PET
scans for the detection of PD to provide a clear overview of the
current situation, issues, and potential future directions of this tool
in the digital era.

RESULTS
Study selection and characteristics of eligible studies
A total of 270 records were found in the initial search, among
which 58 were duplicates. Following the screening of titles and
abstracts, 135 studies were excluded, leaving 77 articles for full-
text eligibility assessment. Of these, 47 were further excluded,
resulting in 30 studies that were included for the qualitative
synthesis. However, seven of these studies were later excluded
due to the insufficient information for constructing two-by-two
contingency tables. Consequently, twenty-three articles contained
sufficient data to meet the inclusion criteria for meta-analysis (Fig.
1)14,15,17–37.
The detailed characteristics of these included studies are shown

in Table 1 and Supplementary Table 1. All but one study used
prospective patient data (1/23), and the remaining study used
retrospective data (22/23). One study used images from public
databases. All studies recruited patients based on routine clinical
diagnosis. In terms of imaging techniques, five studies utilized
both PET and structural MRI to inform the AI model, while the
remaining eighteen relied exclusively on PET imaging. Four
studies used out-of-sample datasets to perform external valida-
tion. Twenty-one studies used a single imaging agent—twelve for
glucose metabolism and nine for the dopaminergic system and
two studies employed two types of imaging agents.
In addition, the distribution of studies concerning the classifica-

tion of PD in the present study is as follows: 11 studies on the
classification of PD from NC and 13 studies on the classification of
PD from AP (more details see Supplementary Table 2). Supple-
mentary Tables 3−4 provide a detailed enumeration of the various
categories using different PET imaging tracers. Tables 2 and 3
summaries the estimate of the pooled performance of AI-assisted
PET imaging for the diagnosis of PD. Forest plots can be found in
the Supplementary Figs. 1−18.

Pooled performance of AI algorithms for classifying PD
from NC
A total of 21 contingency tables from three studies on presynaptic
DA PET imaging, all utilizing the ML algorithm. The pooled
sensitivity (SE), specificity (SP), and area under the curve (AUC) for
this group were 91.47% (95% CI: 87.01–94.50), 88.23% (95% CI:
82.34–92.34), and 0.96 (95% CI: 0.94–0.97) respectively (Fig. 2a).
Eight studies involving 18F-FDG PET imaging provided sufficient

data for constructing contingency tables and determining
diagnostic performance metrics. For these studies, the pooled
SE, SP, and AUC were 83.66% (95% CI: 81.42–85.68), 83.81% (95%
CI: 80.69–86.51), and 0.90 (95% CI: 0.87–0.93) respectively (Fig. 2b).
When the contingency table with the highest performance was
selected, yielded a pooled SE of 91.98% (95%CI: 83.36–96.33), SP
of 84.02% (95%CI: 57.32–95.31), and AUC of 0.95 (95% CI:

0.93–0.97) (Table 2). For 18F-FDG PET imaging, two distinct
subgroup meta-analyses were performed as follows:
Regarding AI algorithms, 53 contingency tables from four

studies utilized the DL algorithm, while 63 tables from six studies
employed the ML algorithm. The hierarchical summary receiver
operating characteristic (SROC) curves for these algorithms are
depicted in Supplementary Fig. 19. The pooled SE for DL was
87.84% (95% CI: 85.37–89.94), and for ML was 79.44% (95% CI:
76.06–82.46); pooled SP was 84.69% (95% CI: 81.06–87.82) for DL
and 83.05% (95% CI: 77.45–87.49) for ML. The AUC was 0.93 (95%
CI: 0.90–0.95) for DL and 0.87 (95% CI: 0.83–0.89) for ML. The
diagnostic accuracy using various ML algorithms are further
detailed in Supplementary Table 5 and Supplementary Figs.
20−21.
With respect to sample sizes, 46 contingency tables were

derived from samples exceeding 100, while 70 tables involved
smaller samples. The hierarchical SROC curves for these sample
size subgroups are shown in Supplementary Fig. 22. The pooled SE
for samples larger than 100 was 87.18% (95% CI: 84.72–89.29), and
for samples smaller than 100 was 79.58% (95% CI: 75.97–82.78);
pooled SP was 88.91% (95% CI: 86.25–91.10) for larger samples
and 78.87% (95% CI: 72.85–83.36) for smaller samples. The AUC
was 0.94 (95% CI: 0.92–0.96) for the larger sample size group and
0.86 (95% CI: 0.82–0.88) for the smaller one.

Pooled performance of AI algorithms for classifying PD
from AP
A total of 13 contingency tables from presynaptic DA PET imaging
analyses were included. The pooled SE, SP, and AUC were 89.54%
(95% CI: 87.11–91.56), 89.07% (95% CI: 81.87–93.63), and 0.93 (95%
CI: 0.91–0.95), respectively (Fig. 3a). Selecting the contingency
table with the highest performance yielded a pooled SE of 91.75%
(95% CI: 82.94–96.22), SP of 91.06% (95% CI: 64.09–98.31), and
AUC of 0.95 (95% CI: 0.93–0.97). Among these, 10 out of 13
contingency tables utilized DL algorithms, with a pooled SE, SP,
and AUC of 90.78% (95% CI: 88.52–92.63), 91.19% (95% CI:
88.21–93.48), and 0.96 (95% CI: 0.94–0.97), respectively.
For postsynaptic DA PET imaging, 15 contingency tables were

included, all employing ML algorithms. The pooled results within
this group were a SE of 74.43% (95% CI: 68.84–79.33), SP of 71.26%
(95% CI: 66.62–75.49), and AUC of 0.79 (95% CI: 0.75–0.82). When
the contingency table with the highest performance was selected,
the pooled SE, SP and AUC were 84.05% (95% CI: 66.13–93.43),
71.62% (95% CI: 61.22–80.13), and 0.81 (95% CI: 0.77–0.84),
respectively.
Six studies on 18F-FDG PET imaging provided sufficient data for

computing contingency tables and testing performance metrics.
The pooled estimates for this group were 92.79% SE (95% CI:
90.66–94.47), 92.94% SP (95% CI: 90.14–94.99), and an AUC of 0.97
(95% CI: 0.96–0.99) (Fig. 3b). The contingency tables with highest
performance showed an SE of 91.63% (95% CI: 85.57–95.28), SP of
95.36% (95% CI: 84.64–98.71), and AUC of 0.97 (95% CI: 0.95–0.98).
Two separate subgroup meta-analyses for 18F-FDG PET imaging
are presented as follows.
Regarding AI algorithms, 19 contingency tables applied the DL

algorithm, while 26 applied the ML algorithm. Hierarchical SROC
curves for these algorithms are shown in Supplementary Fig. 23.
The pooled SE was 96.17% (95% CI: 94.73–97.22) for DL and
87.72% (95% CI: 84.52–90.34) for ML, with corresponding SP of
94.63% (95% CI: 92.53–96.16) for DL and 91.14% (95% CI:
84.89–94.96) for ML. The AUC for DL was 0.99 (95% CI:
0.97–0.99) and for ML was 0.93 (95% CI: 0.91–0.95). The diagnostic
accuracy using various ML algorithms are further detailed in
Supplementary Table 6.
In terms of sample sizes, 21 contingency tables had more than

100 samples, while 24 had fewer than 100. The hierarchical SROC
curves for these sample size subgroups are illustrated in
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Supplementary Fig. 24. The pooled SE for groups with over
100 samples was 95.61% (95% CI: 93.88–96.86) and for those with
fewer than 100 samples was 87.96% (95% CI: 84.20–90.93). Pooled
SP for the larger sample group was 95.13% (95% CI: 93.01–96.63)
and for those with fewer than 100 samples was 89.03% (95% CI:
82.30–93.40). The AUC was 0.99 (95% CI: 0.97–0.99) for larger
samples and 0.94 (95% CI: 0.91–0.96) for smaller samples.

Heterogeneity analysis
The meta-analysis of the included studies suggests a potential
benefit of AI algorithms in assisting the diagnosis of PD using PET
molecular imaging; however, the heterogeneity observed in some
subgroups suggests that cautious interpretation and further
validation are required.
Moderate to high heterogeneity was observed in distinguishing

PD from NC using presynaptic DA PET imaging, with an I2 of
79.85% (95% CI: 71.78–87.91) for SE and an I2 of 70.44% (95% CI:
57.34–83.55) for SP. In addition, heterogeneity was lower for PD
classification of AP, with an I2 of 44.46% (95% CI: 8.46–80.47) for SE
and an I2 of 79.51% (95% CI: 68.95–90.07) for SP. In contrast, when
DL algorithms were utilized in the subgroup analysis, low

heterogeneity was observed, with an I2 for SE of 6.41% (95% CI:
0.00–97.89) and an I2 for SP of 38.66% (95% CI: 0.00–84.07) for the
classification of PD and AP.
In postsynaptic DA PET imaging, low heterogeneity was

observed in distinguishing PD from AP, as indicated by an I2 of
44.99% (95% CI: 11.74–78.23) for SE and 23.76% (95% CI:
0.00–70.68) for SP.
Moderate heterogeneity in the classification of PD and AP was

observed with 18F-FDG PET imaging, with an I2 for SE and SP of
74.27% (95% CI: 66.81–81.74) and 73.11% (95% CI: 65.21–81.01),
respectively. However, substantial heterogeneity was found in the
classification of PD and NC, with SE at an I2 of 82.20% (95% CI:
79.30–85.09) and SP at an I2 of 90.37% (95% CI: 89.06–91.68).
Subgroup analyses were conducted to explore the sources of this
pronounced heterogeneity. Although I2 values remained high in
most subgroups with 18F-FDG PET imaging, heterogeneity was
reduced to an acceptable level in some subgroups.
Detailed results of all subgroups and meta-regression analyses

examining the potential source of heterogeneity between studies
are shown in Tables 2−3 and Supplementary Tables 7−10. The
results revealing statistically significant differences in covariates.
Publication bias of groups and subgroups resulting from visual

Fig. 1 PRISMA flowchart of study selection. PRISMA (preferred reporting items for systematic reviews and meta-analyses) flow diagram of
included studies.
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inspection of funnel plots are shown in Supplementary
Figs. 25−33.

Quality assessment
The quality of the included studies was determined by the quality
assessment of diagnostic accuracy studies-AI (QUADAS-AI).
Detailed assessment results are shown in a diagram in Supple-
mentary Fig. 34 and Supplementary Table 11. More than half of
the studies had high or unclear risk of bias for patient selection
(n= 12) and the index test (n= 19) because these studies had not
clarified the description of included patients with detailed
information about previous tests, presentation, setting, intended
use of the index test, and lack of adequate external validation.

DISCUSSION
The role of PET molecular imaging in PD diagnosis has gained
importance in recent years, leading to an increase in studies
investigating AI as a potential diagnostic tool. Thus, we attempted
to ascertain which is the most accurate and reliable AI detection
technology for PD diagnosis within PET molecular imaging
currently available. By strictly adhering to diagnostic review
guidelines, we were able to maintain the integrity of the study.
Our findings indicate that AI algorithms demonstrate high
diagnostic accuracy in differentiating PD from NC and AP.
Specifically, the pooled AUC for presynaptic DA was 0.96 (95%
CI: 0.94–0.97) and 0.90 (95% CI: 0.87–0.93) for 18F-FDG in
classifying PD from NC. In distinguishing PD from AP, the pooled
AUCs were 0.93 (95% CI: 0.91–0.95) for presynaptic DA, 0.79 (95%
CI: 0.75–0.82) for postsynaptic DA, and 0.97 (95% CI: 0.96–0.99) for
18F-FDG. While these results highlight the potential of AI in
detecting PD, our analysis also identified significant methodolo-
gical limitations, which may limit its practical application.

Standardization of data attenuates confounding factors and
improves CNN learning of meaningful patterns and features from
neuroimaging data. Previous studies suggested that preproces-
sing is critical for the reliability and validity of CNN-based
neuroimaging studies in PD38, improving the quality of imaging
data and the accuracy of the AI model39. Most studies in the
present study have considered this step. Nevertheless, there are
some potential drawbacks, such as time consumption, inaccuracy,
etc., which need to be streamlined and simplified as AI technology
advances.
The lack of transparency of DL models can be challenging for

clinicians to understand diagnostic strategies, affecting their
confidence in predictions40. Emerging explainable artificial intelli-
gence (XAI), such as layer-wise relevance propagation (LRP), can
improve the interpretability of models by highlighting input
features and providing explanations about the model41,42. Despite
the infancy of PD, understanding its principles and applications
will accelerate the utility of this practice. In the clinical context, AI
can help clarify the factors the model considers in predicting
disease progression. DL can analyze complex physiological data to
detect disease onset and progression and potentially discover
new biomarkers or risk factors. However, the ability of DL, to
uncover correlations and associations should not be confused
with the direct discovery of causality. Therefore, any patterns
discovered by AI will require further research to confirm and
understand the underlying mechanisms.
The studies reviewed showed considerable heterogeneity due

to differences in AI methods, sample sizes, and imaging
modalities43. The results of these subgroup meta-analyses of the
variety of ML approaches (such as SVM, RF, LR, XGBoost, etc.),
demonstrate the variability in diagnostic performance across the
different ML methods, which could introduce heterogeneity in our
meta-analysis. In addition, none of the studies performed sample
size calculations, a glaring deficiency in reports of AI models10,44.
The performance of AI models depends on large datasets; small

Table 2. Summary estimates and meta-regression of pooled performance of AI-assisted PET imaging in the diagnosing PD from NC.

Parameter No. of
tables

AUC (95%
CI)

Sensitivity (%) p valuea Specificity (%) p valuea LR+ (95%
CI)

LR- (95%
CI)

SE (95% CI) I2 (95% CI) SP (95% CI) I2 (95% CI)

Presynaptic DA

Overall 21 0.96
(0.94–0.97)

91.47
(87.01–94.50)

79.85
(71.78–87.91)

88.23
(82.34–92.34)

70.44
(57.34–83.55)

7.77
(5.06–11.95)

0.10
(0.06–0.15)

Postsynaptic DA

Overall 3 - - - - - - -
18F-FDG

Overall 116 0.90
(0.87–0.93)

83.66
(81.42–85.68)

82.20
(79.30–85.09)

83.81
(80.69–86.51)

90.37
(89.06–91.68)

5.17
(4.30–6.20)

0.19
(0.17–0.22)

Highest
performance

8 0.95
(0.93–0.97)

91.98
(83.36–96.33)

91.04
(86.28–95.80)

84.02
(57.32–95.31)

96.78
(95.52–98.04)

5.76
(1.82–18.26)

0.10
(0.04–0.22)

Algorithm <0.001 <0.001

DL 53 0.93
(0.90–0.95)

87.84
(85.37–89.94)

79.03
(73.73–84.33)

84.69
(81.06–87.82)

90.43
(88.50–92.36)

5.74
(4.57–7.21)

0.14
(0.12–0.18)

ML 63 0.87
(0.83–0.89)

79.44
(76.06–82.46)

75.65
(69.78–81.53)

83.05
(77.45–87.49)

90.25
(88.44–92.06)

4.69
(3.5–6.27)

0.25
(0.21–0.29)

Sample size <0.001 <0.001

≥100 46 0.94
(0.92–0.96)

87.18
(84.72–89.29)

86.89
(83.77–90.00)

88.91
(86.25–91.10)

93.15
(91.81–94.49)

7.86
(6.23–9.91)

0.14
(0.12–0.17)

<100 70 0.86
(0.82–0.88)

79.58
(75.97–82.78)

69.42
(61.97–76.86)

78.87
(72.85–83.36)

81.86
(78.04–85.68)

3.71
(0.94–4.69)

0.26
(0.22–0.30)

NC normal control, PD Parkinson’s disease, DL deep learning, ML machine learning, 18F-FDG 18F-fluorodeoxyglucose, DA dopamine, LR+ Positive likelihood ratio,
LR− negative likelihood ratio, SE sensitivity, SP specificity, AUC under the curve.
ap value for heterogeneity between subgroups with meta-regression analysis.
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datasets could compromise their accuracy and generalizability. In
the current study, the diagnostic accuracy of the small-sample
study was significantly lower than the results of the large-sample
study. In addition, current research typically relies on databases
that are not open and rarely curated, which significantly hinders AI
model learning. We advocate for larger, more diverse image
databases for PD patients and an international consensus on the
use of PET in clinical contexts45. Regarding the imaging modalities
used, five studies utilized both PET and structural MRI to build the
AI model, while the remaining eighteen relied solely on PET
imaging. The heterogeneity of these studies, coupled with the
‘black box’ nature of their methodology represents a notable
limitation of this research. Consequently, we emphasize the
compelling need for standardization of AI methods and reporting

practices. Such standardization is critical to improving the
consistency and transparency of future research in this area.
External validation significantly impacts the risk of bias and the

generalizability of AI diagnostic studies. It is essential that only
externally validated models be employed in clinical practice46.
Only four of the studies included offered external validation.
Consequently, performance might decline if the algorithm is
applied in routine clinical practice, where all patients with
suspected PD are screened. Approximately half of the studies
reviewed were at high risk for bias, resulting in potentially inflated
performance estimates. Future research design should include
rigorous external validation, with multicenter studies playing a
vital role. Most studies are based on retrospective hospital data;

Fig. 2 Hierarchical summary receiver operating characteristic (SROC) curves of studies included in the meta-analysis to classify
Parkinson’s disease from normal control (11 studies). The 95% prediction region is a visual representation of between-study heterogeneity.
Presynaptic DA PET molecular imaging by using ML algorithms (21 contingency tables from three studies) (a), and 18F-FDG PET molecular
imaging by using AI algorithms (116 contingency tables from eight studies) (b).

Fig. 3 Hierarchical summary receiver operating characteristic (SROC) curves of studies included in the meta-analysis to classify
Parkinson’s disease from atypical parkinsonism by using AI algorithms (13 studies). The 95% prediction region is a visual representation of
between-study heterogeneity. Presynaptic DA PETmolecular imaging (13 contingency tables from four studies) (a), and 18F-FDG PETmolecular
imaging (45 contingency tables from six studies) (b).
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prospective studies yield more robust evidence, bridging the gap
between anticipated and actual effects.
Terminological discrepancies in AI research make it difficult to

distinguish independent datasets as found in the literature. To
address this issue, we propose to divide datasets into training,
tuning, and validation sets for model training, parameter
optimization, and performance evaluation. Therefore, datasets
used for in-sample validation should be referred to as internal
validation sets, while out-of-sample validation should be referred
to as external validation sets46. The consistency of these
parameters will improve the quality of the study.
AI’s potential to rapidly analyze medical images and integrate

data from multiple sources can improve the diagnostic process
and be particularly beneficial in emergencies. In addition, AI can
facilitate junior physicians training by providing immediate
diagnostic feedback47. A collaborative human-AI model could
optimize diagnostic accuracy by integrating the unique strengths
of both components and potentially incorporating nonimage-
based patient data such as demographic information and history
of motor impairment48–50. These AI methods, with their potential
for quality assurance and personalized, predictive medicine,
represent promising models for improving healthcare. However,
given the variability of diseases and the urgent need for
mechanism research, a standardized molecular AI application for
imaging remains a distant goal.
A recent study reported high diagnostic accuracy using

standard reporting protocols with 18F-FDG PET, achieving an
overall accuracy of 74% in distinguishing PD from AP51. Meta-
analytic evidence also suggests that 18F-FDG PET, when used with
metabolic pattern analysis, discriminates PD from NC with a
pooled SE of 0.88 (95% CI: 0.82–0.92), a pooled SP of 0.90 (95% CI:
0.85–0.94), and an AUC of 0.95 (95% CI: 0.93–0.97). It also
separates PD from AP with comparable efficacy, showing a pooled
SE of 0.88 (95% CI: 0.84–0.91) and a pooled SP of 0.93 (95% CI:
0.89–0.96) and an AUC of 0.95 (95% CI: 0.93–0.97)52. This indicates
that the metabolic pattern appears to have higher accuracy than
AI-assisted 18F-FDG. Previous studies have also shown the
consistency of different semiquantitative presynaptic dopaminer-
gic PET imaging in PD diagnosis53. Therefore, we divided the
dopaminergic radioligands into presynaptic and postsynaptic DA
to analyze the diagnostic performance for PD. In the present
study, AI-assisted presynaptic DA PET appears to have similar
performance to other results from the meta-analysis, which
showed an AUC of 0.95 (95% CI: 0.92–0.97) for distinguishing PD
from NC using traditional tracer uptake of presynaptic dopami-
nergic neuroimaging54. This ability to extract complex data
features from medical images that are unobservable or unquanti-
fiable to the human eye increases diagnostic potential and
contributes to disease progression modeling. AI-assisted presy-
naptic DA appears to have better performance in discriminating
PD from NC, and AI-assisted 18F-FDG appears to have better
performance in discriminating PD from AP, supporting the
diagnostic pathway (two-step) of PET imaging in clinical practice
for PD55. Normal dopaminergic imaging was included as an
absolute exclusion criterion and the clinical utility of 18F-FDG PET
in distinguishing PD from AP.
This study has several limitations that warrant consideration.

Firstly, we focused on English-language articles, potentially
overlooking valuable findings from non-English studies. Secondly,
for studies with insufficient information, we did not contact the
authors to provide the required data. Future research should aim
to validate the performance of AI in real-world conditions. The
majority of the included articles relied on clinical diagnostic
criteria without pathological verification when diagnosing PD,
introducing another potential limitation in our findings. Further-
more, the MSA, PSP, and other subtypes were included in different
proportions in the group of AP patients. Due to the limited
literature, this study did not investigate where the heterogeneity

of differences between studies originates from, and further
research is needed to investigate the diagnostic accuracy of AI
algorithms in more homogeneous patient groups. Given the
limited availability of PET data, ML methods used for meta-analysis
in the literature may be prone to overfitting problems, and the
generalizability of data from different sites is not addressed in this
study, which is also our future research direction.
This research highlights the considerable potential of AI

algorithms in detecting PD using PET molecular imaging and
points to a promising future in nuclear medicine50. Although the
challenges such as false positive and negative risks, data privacy
and security concerns, and regulatory approval requirements, AI is
an important adjunct to assist physicians in diagnosis. We also
highlight the need for improved research design in PD AI-based
diagnostic systems.

METHODS
The systematic review and meta-analysis were performed accord-
ing to the standard PRISMA (preferred reporting items for
systematic reviews and meta-analyses)56. The study was registered
in the PROSPERO (CRD42022367782).

Search strategy and eligibility criteria
The Ovid MEDLINE, Ovid Embase, Web of Science Core Collection,
Cochrane, and IEEE Xplore databases were systematically searched
for studies that developed an AI algorithm in PET imaging for
diagnostic performance from PD and were published by August
17, 2023. Only English-language articles were included. Supple-
mentary Methods summarizes the search strategy used in each
database. Eligible studies that reported AI-assisted PET imaging for
the diagnosis of PD with diagnostic outcomes such as SE and SP
were then used to calculate the 2 × 2 contingency tables. The
inclusion/exclusion criteria of literature were listed in Supplemen-
tary Methods.

Data analysis
The characteristics and diagnostic performance were extracted
independently by two reviewers using a standardized data
extraction sheet. Discrepancies were resolved by discussion, or a
third reviewer was consulted. Information was collected on the
data set, including participant demographics: inclusion criteria,
exclusion criteria, total sample, reference standard; data char-
acteristics: imaging agent, poor image quality information, data
source; algorithm details: design, algorithm model, type of
validation; and diagnostic accuracy data.
Binary diagnostic accuracy data were extracted and contin-

gency tables were constructed at the reported thresholds.
Diagnostic accuracy data, including SE, SP, AUC, true-positive
(TP), false-positive (FP), true-negative (TN), and false-negative (FN)
for the AI model, were extracted directly into contingency tables
and used to calculate SE and SP. If a study provided multiple
contingency tables for the same or different AI algorithms, the
contingency tables for different AI algorithms were used
independently. The contingency tables for the included studies
are summarized in Supplementary Tables 12−13. An additional
analysis of the included studies was performed to determine the
optimal performance of an AI model. The contingency table with
the highest performance from each study was selected, where the
highest performing was defined either by the AUC or, if the AUC
was not available, by the positive prediction (total number of true
positives and true negatives).
The risk of bias and applicability of all selected studies were

assessed by using the QUADAS-AI57 criteria. It provides research-
ers with a specific framework for assessing the risk of bias and
applicability when conducting reviews that evaluate the accuracy
of AI-assisted diagnostic tests. In addition, an applicability analysis
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was also conducted. The list of all questions used to assess
signaling, risk of bias, and applicability can be found in
Supplementary Table 14. All of the studies were reviewed and
analyzed by at least two separate authors. When disagreements
occurred, they were resolved either by consensus or by a third
reviewer. The methodological quality of the included studies was
evaluated using RevMan software (Version 5.4).
We estimated the diagnostic performance of AI algorithms

using a meta-analysis of studies with contingency tables. The
random-effects model was conducted because of the assumed
differences between studies. We intended to perform a meta-
analysis if at least five contingency tables were eligible for
inclusion, which is recommended for random-effects meta-
analysis58. We used the contingency tables to construct hierarch-
ical SROC curves, forest plots, and to calculate pooled sensitivities
and specificities, anticipating a high level of heterogeneity59. The
combined curve was plotted with the corresponding 95%
confidence region, and 95% prediction region around the
averaged estimates of SE, SP, and AUC in the SROC figures. The
risk of publication bias was assessed using the funnel plot and
regression test. Heterogeneity was assessed using the I2 statistic
(25–49% was considered to be low heterogeneity, 50–74% was
moderate and >75% was high heterogeneity). The calculations
were performed by using STATA statistical software (version 17.0)
(Midas and Metandi modules; StataCorp). Statistical significance
was indicated at a P value of 0.05.
Considering the difference of the control group in clinical utility,

the included studies were first divided into the classification PD
from the NC group and the classification PD from the AP group.
The diagnostic performance of the different tracers (glucose
metabolism, pre- and postsynaptic DA) was evaluated separately,
as the functional and regional brain uptakes are varied in the
radioligands. Subsequently, in order to identify the source/sources
of the extreme heterogeneity, the subgroup analysis was
conducted based on: (1) AI algorithms (ML or DL); (2) the sample
size of the AI algorithms (≥100 or <100). A meta-regression
analysis was conducted to investigate the sources of hetero-
geneity among studies, taking into account the type of AI
algorithms and sample size as covariates.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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