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Towards trustworthy seizure onset detection using
workflow notes
Khaled Saab 1✉, Siyi Tang 1, Mohamed Taha2, Christopher Lee-Messer 3,6, Christopher Ré4,6 and Daniel L. Rubin 5,6✉

A major barrier to deploying healthcare AI is trustworthiness. One form of trustworthiness is a model’s robustness across subgroups:
while models may exhibit expert-level performance on aggregate metrics, they often rely on non-causal features, leading to errors
in hidden subgroups. To take a step closer towards trustworthy seizure onset detection from EEG, we propose to leverage
annotations that are produced by healthcare personnel in routine clinical workflows—which we refer to as workflow notes—that
include multiple event descriptions beyond seizures. Using workflow notes, we first show that by scaling training data to 68,920
EEG hours, seizure onset detection performance significantly improves by 12.3 AUROC (Area Under the Receiver Operating
Characteristic) points compared to relying on smaller training sets with gold-standard labels. Second, we reveal that our binary
seizure onset detection model underperforms on clinically relevant subgroups (e.g., up to a margin of 6.5 AUROC points between
pediatrics and adults), while having significantly higher FPRs (False Positive Rates) on EEG clips showing non-epileptiform
abnormalities (+19 FPR points). To improve model robustness to hidden subgroups, we train a multilabel model that classifies 26
attributes other than seizures (e.g., spikes and movement artifacts) and significantly improve overall performance (+5.9 AUROC
points) while greatly improving performance among subgroups (up to +8.3 AUROC points) and decreasing false positives on non-
epileptiform abnormalities (by 8 FPR points). Finally, we find that our multilabel model improves clinical utility (false positives per 24
EEG hours) by a factor of 2×.
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INTRODUCTION
The scalp electroencephalogram (EEG) is a non-invasive and
valuable technique to measure the brain’s electrical activity. Unlike
other modalities that image the brain (e.g., fMRI, PET), EEG enables
continuous analysis of rapid changes in the brain’s electrical
activity. In the intensive care unit (ICU), EEG is critical for the
detection of seizures that may lack a behavioral correlate and
worsen brain injury. Moreover, EEG is an essential tool to diagnose
and care for epileptic patients of all ages1.
While analyzing EEG data is a critical healthcare task, it poses

several challenges. First, the continuous recording of hours of
multi-channel EEG results in a vast amount of data that requires
thorough interpretation, which is a highly time-consuming and
costly task that demands deep neurologic-epileptologic under-
standing. Second, the gold-standard for EEG analysis is done by
fellowship-trained clinical neurophysiologists, who have not only
been trained to identify seizure patterns, but also many common
artifacts. For example, common artifacts on EEG signals may
include muscle movement or environment noise, along with
countless non-epileptiform abnormalities such as spikes and
slowing. Finally, there is a shortage of EEG specialists, and as a
result, low resource communities lack access to EEG interpreta-
tion2. Thus, there is a strong need to develop reliable tools that
help clinicians analyze EEG data more efficiently.
Many studies have shown that deep learning (DL) techniques

present great promise for automated seizure detection. There
have been substantial efforts for curating large and publicly
available EEG datasets, such as the Temple University Hospital
Seizure Detection (TUSZ) corpus that includes thousands of EEGs

from hundreds of patients3,4. The availability of large public
datasets has enabled rapid progress in benchmarking and
improved seizure detection models5–10. Recently, a DL model
named SParCNet was trained on 6097 EEGs from 2711 patients,
annotated independently by 20 fellowship-trained neurophysiol-
ogists, and was found to match or exceed most experts in
classifying seizures11.
Due to the high-stakes nature of healthcare, trustworthiness of

DL models remains a major roadblock to clinical adoption12,13.
Building trust requires addressing multiple facets, including model
interpretability, transparency, and robustness across subgroups.
Interpretability refers to the ability to explain why predictions are
made, transparency involves techniques like analyzing model
representations and decision boundaries to provide global
understanding of model behavior14,15, and robustness across
subgroups refers to reliable performance across diverse inputs like
different patient groups and disease types. As a first step towards
trustworthy seizure onset detection, this work focuses on
robustness by investigating performance across clinically relevant
subgroups. Alarmingly, there has been a growing body of work
revealing that healthcare models with “expert-level” performance
often rely on non-generalizable features16,17, resulting in unex-
pected drops in performance over hidden subgroups18,19 or under
data distribution shifts20. While many studies report impressive
overall seizure detection performance6,11, such studies lack the in-
depth analysis needed to understand the clinically meaningful
failure modes of existing models. For example, pediatric EEGs look
drastically different from adult EEGs, different seizure types display
unique EEG patterns, and there may be different types of
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abnormalities present in EEGs recorded from the ICU as compared
to other clinical settings1; as a result, models may underperform
on specific age groups, seizure subtypes, or ICU patients.
Unfortunately, conducting an in-depth error analysis requires
manual interpretation of both EEGs and model predictions over a
diverse set of studies, making it a costly process. However, a clear
understanding of a model’s systematic errors is critical to provide
trust in model predictions for clinical adoption.
In this work, we provide a strategy to scale training data,

conduct a subgroup robustness analysis, and improve the
trustworthiness of seizure onset detection models in a cost-
effective manner. As opposed to relying on expensive gold-
standard labels, which require a fellow-trained neurophysiologist
to label EEGs outside existing clinical workflows, we propose to
leverage seizure annotations that are produced by healthcare
personnel within existing clinical workflows5—which we refer to
as workflow notes. Since workflow notes are produced as part of
routine clinical practice, we are able to train our DL models on an
unprecedented scale of 68,920 EEG hours. To conduct an in-depth
error analysis we stratify the evaluation set of EEG recordings into
clinically relevant subgroups and analyze discrepancies in seizure
onset detection performance in each subgroup. In particular, we
use a combination of patient metadata (e.g., age), expert-provided
subgroup labels (e.g., seizure types), along with numerous EEG
attributes, such as spikes, slowing, movements, jerks, photoelectric
stimulation, hyperventilation, and more (full list in Supplementary
Table 3), that are readily available from workflow notes.
To improve model robustness to non-epileptiform abnormal-

ities and hidden subgroups, we utilize the workflow notes to
increase class specificity. Specifically, as opposed to training a
binary classification model (seizure or no seizure onset), we train a
multilabel model to classify 25 classes in addition to seizure onset,
such as spikes, slowing, and hyperventilation. In addition, we
study how our improvements in seizure onset detection robust-
ness translate to clinical utility by tracking the false positives per
24 h for different deployment settings.

RESULTS
Results overview
We first describe how we utilize workflow notes to scale
supervision to 68,920 EEG hours (4,135,225 60-s EEG clips) in a

cost-effective manner, and show that training a model to detect
seizure onset using workflow notes greatly improves performance
compared with a model trained with a smaller set of gold-
standard, expert-labeled EEG clips. We further utilize the workflow
notes to reveal that even with large-scale training, our binary
seizure onset detection model underperforms on clinically
relevant subgroups of patients, and has higher false positive rates
for non-seizure EEG clips with abnormal patterns. To improve our
model’s performance across subgroups, we train a multilabel
model to classify 25 attributes extracted from the workflow notes,
in addition to seizure onset (Fig. 1). Finally, we propose a metric of
clinical utility to assess the degree to which the multilabel model
improves clinical utility over a range of settings.

Scaling training data with workflow notes
Following previous studies5,21, our task of interest is to classify the
existence of a seizure onset in a 60-s EEG clip. Each EEG contains
19 electrodes that sample voltage readings at 200 Hz, therefore
the input to the model is a 60-s EEG clip x 2 R12;000 ´ 19 and the
output is a binary label y∈ {0, 1} indicating the existence of a
seizure onset in that clip. To evaluate and compare the
performance of deep learning models on the task of seizure-
onset detection, we curated a gold-standard evaluation set of 626
EEG hours (37,588 60-s EEG clips) labeled by two fellowship-
trained EEG readers.
Since acquiring gold-standard labels for all 68,920 hours of EEG

(or 4,135,225 clips) would be extremely costly, we used a cost-
effective technique that leverages workflow notes proposed by
Saab et al.5. As illustrated in Fig. 1, EEG monitoring in clinical
settings involves an initial, collaborative analysis of the EEG signal
by a diverse team, consisting of technicians, fellows, students, and
board-certified epileptologists. Using the facilities of the clinical
EEG acquisition system (Nihon Kohden), preliminary annotators
mark potential seizures, abnormalities, and artifacts, which serve
as a reference for a board-certified clinician’s subsequent analysis
and final diagnosis.
In clinical routines, experienced technicians predominantly

create the workflow notes and are trained to be highly sensitive
when flagging potential abnormalities, especially in ambiguous
cases. Since each EEG recording may contain multiple seizures,
annotators may mark only a subset of seizures, leading to
moderate overall seizure recall. Annotations from medical

Fig. 1 Results overview. We find that increasing class specificity by providing additional supervision decreases false positives on artifacts and
improves subgroup robustness. Importantly, we supervise our models on large scale data (68,920 EEG hours) using readily available notes
produced within clinical workflows (left panel).
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students and fellows, diverse in their experience levels, augment
the annotations made by technicians. From manually analyzing
the workflow notes, we found 26 recurring event descriptions, or
attributes, and wrote simple regular expressions to extract the
unique attributes from the workflow notes (e.g., considering
synonyms and case-insensitivity). Figure 2 displays a histogram of
the 18 most frequent attributes, where for example we have
seizure onset annotations for 26,498 EEG clips, spike annotations
for 8942 EEG clips, and movement artifact annotations for 16,806
EEG clips.
Given the descriptive nature and high temporal specificity of

these workflow notes, marked by precise timestamps indicating
the onset of each event, they are a valuable potential resource for
supervising ML models. The extensive availability of these notes
across both our adult and pediatric hospitals allows for the
scalability of training data to unprecedented levels. However, it is
pertinent to note that these workflow notes, while extensive,
contain false positives and overlooked instances, leading to
“noisy” labels—a supervision setting referred to as weak learn-
ing22. Nevertheless, a study by Saab et al.5 demonstrates that the
expansive volume of data accessible through workflow notes can
compensate for these inaccuracies, facilitating the development of
highly proficient EEG ML models. This underscores the statistical
principle that, at times, leveraging a larger dataset with inherent
noise can be more advantageous in modeling than utilizing a
smaller, meticulously hand-labeled dataset, due to the diversity
and the variety it offers23. In the ensuing experiment, we further
validate the assertion that scaling training data with workflow
notes greatly benefits the performance of ML models for
detecting seizure onset.
We hypothesize that even though workflow notes may contain

errors and our regular expressions may extract noisy labels,
leveraging workflow notes to scale the training data results in
better-performing models compared to training models using a
much smaller subset of gold-standard labels. To test our
hypothesis, we considered the baseline setting of only having
access to our gold-labeled dataset of 37,588 EEG clips. In this
baseline setting, we randomly split our gold-standard labeled
dataset into train (50%), validation (10%), and test (40%) sets,
stratified by patients (i.e., there are no overlapping patients
among the three splits). We then trained two classification models,
where the first model was trained using the gold-labeled train set
(containing 16,058 EEG clips, of which 408 contained a seizure
onset), and the second model was trained using the entire training
set that was not gold-labeled, resulting in 4,097,637 EEG clips, of
which 25,254 contained seizure onset labels extracted from the
workflow notes. Details on model architecture and training

procedure can be found in the Methods Section. To evaluate
seizure onset detection performance, we assessed the Area Under
the Receiver Operating Characteristic curve (AUROC) on the held-
out test set, and report the 95% confidence intervals.
Leveraging the workflow notes improved the model’s perfor-

mance, where the model trained on the smaller gold-labeled
dataset achieved an AUROC of 73.3 ± 3.2, and the model trained
on the much larger workflow-labeled dataset achieved an AUROC
of 85.6 ± 0.9.

Revealing underperforming subgroups
To evaluate whether our models performed less well in certain
patient subgroups, we performed a subgroup analysis where we
evaluated the change in model performance across multiple
clinically relevant subgroups. We carried out the subgroup analysis
by using a collection of patient metadata, gold-labeled seizure
types, and the attributes from the workflow notes.
For patient subgroups, we recorded whether the patient was

from the adult or pediatric hospital, and whether a patient’s EEG
recordings were collected in the ICU. For seizure subtypes, we
analyzed performance differences among the focal spike-and-
wave, evolving rhytmic slowing, and generalized spike-and-wave
types (more details in the “Methods” section).
From our subgroup analysis on patient and seizure types in

Table 1, we find that our model performed better for patients from
the adult hospital with a 6.5 AUROC point difference compared to
patients from the pediatric hospital. There were also differences in
the performance of the model for various seizure types, with a 5.5
AUROC point difference between focal spike-and-wave and
evolving rhythmic slowing seizures. From our subgroup analysis
on workflow attributes in Fig. 3, we find that our model had the
highest false positive rate (FPR) with respect to seizure onset
detection for the “mislabeled sz” attribute (FPR of 0.27), i.e., EEG
clips that technicians mislabeled as seizures—a significant
difference compared to the overall EEG clips (FPR of 0.08). This
is not surprising because the “mislabeled sz” attribute represents
EEG clips that technicians thought might be seizures; since the
model was trained using technician labels (or workflow notes), the
model errors are correlated with the technician errors. We also
find from Fig. 3 that the top-3 attributes with the highest FPR
("mislabeled sz”, “unk. abnormality”, and “slowing”) all correspond
to non-seizure abnormalities. Details on metrics can be found in
the Methods Section.

Fig. 2 Training dataset overview. In the left panel, we provide statistics on the scale our training dataset of EEG recordings aggregated from
adult and pediatric hospitals. In the middle panel, we plot the histogram of attribute labels extracted from workflow notes. In the right panel,
we visualize four EEG clips, three of which are non-seizure EEG clips. The non-seizure EEG clips exhibit significant differences in temporal
features, motivating the opportunity to use them to increase class specificity.
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Improving subgroup robustness with class specificity
We hypothesize that our model underperforms on clinically
relevant subgroups as a result of the target task being under-
specified. Since we train our model to only classify whether an EEG
clip contains a seizure onset or not, all abnormal patterns and
artifacts are grouped together with normal brain activity patterns
(in the non-seizure class). As a result, unlike the training protocols
of expert EEG readers, our model does not learn to differentiate
among normal activity, abnormal seizure-like activity, and actual
seizures, which we hypothesize causes the systematic errors
displayed in Table 1 and Fig. 3.
To combat task underspecification, we propose to train a

multilabel model, where instead of outputing a binary class
(seizure or non-seizure), the model identifies multiple attributes
from an EEG clip, such as spikes, slowing, and movement.
Importantly, since the workflow notes provide these attributes,
we are able to train our multilabel model at no additional
annotation cost, and training the model to recognize the
additional attributes provides class specificity that we hypothesize
can improve model performance. To test our hypothesis, we
compared the overall and subgroup performances of a model
supervised with binary seizure/non-seizure labels, which we will
refer to as the binary model, to the same model trained on the
same data but trained to classify the 26 attributes (including

seizure onset) extracted from workflow notes, which we will refer
to as the multilabel model. While the multilabel model outputs
probabilities for all 26 attributes, we only consider the probability
of seizure onset for evaluation (a binary classification setting), and
calculate the AUROC with respect to the gold-labeled test set for
each subgroup.
As shown in Table 2, the multilabel model has significant

improvements in both overall performance and subgroup
performance (except for 2 of the seizure subgroups). The overall
performance improved by 5.9 AUROC points, while the perfor-
mance on patients from the pediatric hospital improved by 8.3
points, and 7.7 AUROC points for focal spike-and-wave seizure
types. Importantly, the improvements in performance significantly
minimized the gaps in performance among subgroups. In
addition, we compared the FPRs for each attribute (shown in
Supplementary Fig. 1) and found that the overall FPR decreased
from 0.08 to 0.02. The top 3 attributes with the highest FPR, which
correspond to abnormal attributes (mislabeled seizure, unknown
abnormality, and slowing), all decreased significantly (e.g., FPR for
EEG clips with unknown abnormal patterns decreased from 0.15
to 0.08). We further compared the 2D projected embeddings of
the binary and multilabel models in Supplementary Fig. 2, which
shows that the embeddings of the multilabel model of abnormal
EEG clips cluster more tightly than the embeddings of the binary
model, reaffirming that the multilabel model can better differ-
entiate EEG abnormalities.
We also investigated the impact of training a multilabel model

on different subsets of the workflow attributes on subgroup
robustness. We choose two additional subsets of classes:
classifying seizures along with two abnormalities highly relevant
to seizures (spikes and slowing), and classifying seizures along
with only abnormal attributes (i.e., we remove the following
attributes: drowsy, jerk, tap, respiration, eyes open/closed, asleep,
ekg, arousal). As shown in Supplementary Table 2, we first found
that all multilabel models improved overall seizure detection
performance over the binary model. Interestingly, training a
multilabel model for detecting seizure onset along with only
abnormal attributes performed similarly to the multilabel model
trained on all attributes, indicating that increasing class specificity
with the abnormal attributes is the most important.

Measuring clinical utility
A major barrier for technicians and neurophysiologists who have
access to commercial seizure detection models is the high number
of false alarms13,24, which results in alarm fatigue and in clinicians
not utilizing model predictions. Therefore, a good metric to assess
clinical utility is the average number of false positives after

Table 1. Subgroup analysis

Model classification performance (AUROC with 95% confidence intervals) for both patient and seizure subgroups. Rows highlighted in blue indicate
subgroups that the binary model underperformed on.

Fig. 3 False positive rate among workflow attributes. We plot the
FPR with respect to seizure onset for each subgroup within the
workflow attributes. Darker shaded bars represent attributes where
the FPR is different than the overall FPR with statistical significance
using the two-proportion Z-test.
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scanning 24 h of EEG (FPs/24 h). In particular, we look at two
parameters that directly impact the number of false positives:

● Recall (or sensitivity): Specifying the desired recall implicitly
determines the threshold used to binarize the seizure
probabilities. While having a higher desired recall is advanta-
geous (since we miss fewer seizures), it is in direct tension with
false positives, where number of false positives increase as we
increase recall. In some settings, such as counting the precise
number of occurring seizures, it may be critical to have a high
recall. While in other settings, where the model is used as an
assistant to prioritize which parts of the EEG to read first,
having a high recall is not as critical. For these reasons, we
look at the FPs/24hr for a recall of 0.5, 0.8, and 0.9.

● Delay tolerance (Δt): we define the delay tolerance to be the
maximum amount of time allowed between the actual seizure
onset and the predicted seizure onset. In other words, if the
time between actual and predicted seizure onset (T) is greater
than Δt, we count the predicted seizure as a false positive;
however, if T < Δt then we count the predicted seizure as a
true positive. The delay tolerance is an important parameter
because not only does it impact how we determine the

difference between a true or false positive, but it is also
implicitly related to seizure detection latency—the speed in
which our model flags seizures. Seizure detection latency may
be critical in some settings, for example, if we would like to
precisely localize the seizure onset region for patients in the
epilepsy monitoring unit, it is critical we accurately analyze the
EEG near the true onset zone before spreading occurs. In other
settings, such as counting number of seizures, seizure
detection latency is not a critical parameter. For these reasons,
we look at the FPs/24 h for a delay tolerance of 1 min
and 5 min.

In Fig. 4, we compared the FPs/24 h for six different settings
while varying recall and delay tolerance, and observed that the
multilabel model improved our clinical utility metric by a factor of
roughly 2× across all settings.

DISCUSSION
In this work, we presented a strategy to improve the trustworthi-
ness of seizure detection models by scaling training data and class
specificity in a cost-effective manner. Unlike existing techniques

Fig. 4 Clinical utility metric. On the left, is an EEG in which the red line indicates the actual seizure (sz) onset, and the black line indicates the
predicted seizure onset by the model. The time elapsed between the actual and predicted onset is T, which is used to decide whether the
predicted seizure onset is a true positive or false positive (depending on the delay tolerance for the clinical setting). The bottom left plot
displays the model seizure onset probabilities across time, where the dashed line indicates the model threshold that is determined by the
desired recall value. On the right, we compare the average number of false positives that occur every 24 h of EEG in six different settings: a
threshold such that we achieve a recall of 0.5, 0.8, or 0.9, with either of two values of ΔT, which is a proxy to seizure detection latency (the
maximum time between the ground truth and predicted seizure onset we tolerate).

Table 2. Improving subgroup robustness with class specificity

Increasing class specificity improves overall model performance along with robustness to hidden subgroups. We stratified our evaluation set by patient and
seizure subgroups, where the patient subgroups included patients from the adult hospital, pediatric hospital, or adults within or outside the ICU. We report
the average AUROC along with 95% confidence intervals. Rows highlighted in blue indicate subgroups that the binary model underperformed on. We
estimated the p-value using the DeLong test, which evaluates how statistically significant the improvements of the multilabel model are compared to the
binary model.
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that require fellowship-trained neurophysiologists to annotate
thousands of EEGs11, we instead leveraged annotations that
provide class specificity and are generated in existing clinical
workflows5, allowing us to scale training data to an unprece-
dented level of 68,920 EEG hours at no additional annotation cost.
In addition to bypassing expert labeling of the training set,
workflow notes can also facilitate the ongoing training of
healthcare models as additional data are accumulated over time,
leading to significant cost savings in terms of upfront and
maintenance expenses.
Aside from annotation costs, a major roadblock to successfully

deploying healthcare AI is the limited understanding of their
errors within hidden subgroups of patients, leading to a lack of
trust12,13,24. Currently, the gold-standard technique to conduct an
in-depth error analysis requires a clinician to manually interpret
multiple data samples that the model classified incorrectly and
find patterns that combine errors into clinically relevant sub-
groups. Instead, we proposed to utilize patient metadata, gold-
labeled seizure types, and multiple attributes describing EEG
events to stratify the evaluation set and analyze differences in
model performance. Apart from the gold-labeled seizure types, we
are able to extract the attribute labels from the workflow notes,
allowing us to greatly improve performance of our model with no
additional costs. From our subgroup error analysis, we found that
binary seizure classification models may have large performance
gaps among patient age groups (−6.5 AUROC points on pediatrics
compared to adults), seizure types (−5.5 AUROC points on focal
spike-and-wave versus evolving rhythmic slowing), and has
significantly higher false positives (+19 FPR points) for non-seizure
EEG clips with abnormal brain activity compared to non-seizure
clips. Identifying underperforming subgroups is a critical step in our
goal towards trustworthy seizure classification models.
Our core hypothesis is that our binary classification model has

high false positives on abnormal non-seizure EEG clips as a result
of task underspecification. Since fellows are not only trained to
differentiate seizure from non-seizure activity, but also to identify
multiple artifacts and abnormalities to rule out seizure25, we
reason that a model should similarly be trained. To reduce high
false positive rates and systematic errors, we leveraged attribute
labels extracted from workflow notes and trained a multilabel
model that learns to classify 26 EEG events such as seizures, spikes,
slowing, and movement. We found that such a multilabel model
significantly improves overall performance (+5.9 AUROC points),
along with closing the performance gap among subgroups, and
decreased the false positive rate on abnormal non-seizure clips by
8 FPR points, compared to the binary classification model. We
believe this general direction of increasing the specificity of the
supervision task is a promising approach to improve model
subgroup robustness. Other successful approaches within this
direction include increasing spatial specificity for radiology19 (e.g.,
segmentation) and training a chest X-ray model with a
comprehensive class ontology26.
In our investigation of seizure detection models, we also

establish a metric of clinical utility. We report the average number
of false positives per 24 h of EEG for different recall and latency
settings. We found that across different clinical settings, increasing
class specificity reduces the FPs/24 h by a factor of 2×, suggesting
that our improvements in subgroup robustness may translate to
improvements in clinical utility.
Our proposed supervision strategies for improving trustworthi-

ness of seizure detection models have limitations. First, while
workflow notes offer a great alternative to manual expert labeling,
the resulting labels come from personnel that are instructed to
bias their reading to not miss abnormalities since final diagnosis is
reviewed by an interpreting physician, which results in false
positive labels and sub-optimal supervision. In addition, our
regular expressions to extract labels from the workflow notes may
not correctly identify some of the labels, or they may produce

errors or not apply to other institutions. Second, while we consider
many clinically relevant subgroups, our analysis can be more
comprehensive by including many other important groups such
as patient demographics, more seizure types, and finer-grained
abnormal events. Third, we do not investigate other important
robustness settings that include common distribution shifts, such
as different EEG devices and patients from multiple hospitals.
Other settings for improving trust may also include proper model
calibration, calibration scores, and out-of-distribution detection.
We believe it is critical to investigate robustness on a compre-
hensive list of settings before claiming a model to be trustworthy
for deployment.
Future work is needed for improving the robustness of seizure

detection models. Further scaling training data to include diverse
patients can be done by combining our hospital datasets with
existing publicly available datasets such as the TUSZ corpus3,4.
Collaborating with additional hospitals may increase the diversity
of our patients, allowing for greater coverage of possible
attributes to consider. In a similar spirit, we can utilize publicly
available EEG-based models that classify seizures, sleep staging,
and brain states6,27, to either label relevant attributes or enable
transfer learning. Another exciting direction is self-supervised and
generative AI, where models do not rely on labeled training data
to learn useful data representation. For example, recent work has
shown that pretraining to forecast EEG signals boosts perfor-
mance on rare seizure types21. We also envision models that
generate text reports from EEG28 may prove to have more robust
representations due to learning finer-grained concepts.
In summary, our work provides evidence that scaling training

data using labels from workflow notes and increasing class
specificity are promising techniques to improve robustness of
models to detect seizure onset. We believe that combating
robustness challenges through in-depth error analyses, and
assessing detection performance of models as well as clinical
utility metrics, will be critical to continue improving upon the
trustworthiness of AI tools for clinical deployment.

METHODS
Dataset description
Our dataset consists of all EEGs recorded in both the Stanford
Hospital and Lucile Packard Children’s Hospital from 2006 to 2017.
In total, our dataset contains 68,920 EEG hours from 12,297
patients. Our dataset is diverse, where patients span all ages, come
from different hospital locations (ICU, epilepsy monitoring unit,
and ambulatory), and have different seizure types and etiologies.
More details on the statistics of our diverse patients can be found
in Fig. 2 and Supplementary Fig. 2 in Saab et al.5.
To prepare input data samples from long-form EEG recordings,

we segment each recording into non-overlapping 60-s clips (i.e.,
stride is 60 s). In total, our dataset contained 4,135,225 clips. To
ensure consistent information across patients, we only considered
the 19 electrodes from the standard 10–20 International EEG
configuration, and exclude premature infants or patients with
small heads that prevent the full deployment of the 19 electrodes.
We further normalize each EEG clip across the temporal dimension
using the global average and standard deviations for each
channel. Such normalization of input samples is standard practice
in deep learning and we find this improves training.
Two fellowship-trained EEG readers (M.T. and C.L.M.) interpreted

a randomly selected subset of EEG recordings, annotating for
seizure onset. This resulted in an evaluation set of 37,588 60-s EEG
clips (or 626 EEG hours), of which 1244 clips contain seizures from
395 patients. Patients in the evaluation set are excluded from the
training set. C.L.M. labeled or supervised the labeling of each EEG
clip according to the seizure type as defined by EEG ictal patterns;
specifically, whether a seizure was a focal spike-and-wave,

K. Saab et al.

6

npj Digital Medicine (2024)    42 Published in partnership with Seoul National University Bundang Hospital



evolving rhythmic slowing, generalized spike-and-wave, parox-
ysmal fast acivity, polyspike-and-wave (myocolonic), or electro-
graphically silent, for a subset of 358 patients from the gold-
labeled EEGs. However, due to the low frequency of some seizure
types, our evaluations only included focal spike-and-wave,
evolving rhytmic slowing, and generalized spike-and-wave types
(more details can be found in Supplementary Table 1).
Each EEG recording is complemented by a table of workflow

notes, generated from the EEG annotator software utilized by the
preliminary annotators, with each row indicating an event
description along with the event start time. The event descriptions
are free-form text, and while the preliminary annotators use
repetitive and standard descriptions, there may be slight
deviations. M.T. and C.L.M. analyzed the most common 1000
event descriptions and by consensus determined a set of unique
attributes that met two criteria: attributes are (1) visibly detectable
on EEGs, and (2) typically used when searching for seizures. For
example, attributes of interest included common artifacts that
must be distinguished to ascertain seizure onset, such as patient
movement, and other abnormalities like spike and slowing.
Conversely, event descriptions like “PAT”, which stands for pattern,
indicating that the annotator modified the EEG display by altering
the arrangement of electrodes, or “IMP”, signifying impedance
check, a routine check to verify the proper attachment and
conductivity of the electrodes, did not qualify as attributes of
interest as they do not meet our two criteria.
From the manual analysis, we identified 26 unique class

attributes of interest (listed in Supplementary Table 3). To
determine the presence of these attributes in event descriptions,
we developed simple regular expressions to recognize various
synonyms and acronyms employed by the annotators. For
example, an annotator may write “seizure”, “sz”, “spasm”, or
“absence”; the description of an unknown abnormality may simply
be indicated by “x”, or “xx”; another example is the description of a
movement artifact, where the annotator may write “movement”,
or “mvt”. Under the guidance of M.T. and C.L.M., we listed all
synonyms and acronyms for each attribute to form the regular
expressions (refer to Supplementary Table 3).

Model architecture and training
There have been many deep learning model architectures
proposed for seizure classification, such as convolutional models
(CNNs)5,29–31, recurrent neural networks (RNNs)32–34, graphical
neural networks (GNNs)21,35,36, and more6,9,37–39. In our work, we
study the impact of training data scale and the specificity of the
supervision task on seizure classification performance, and not
model architecture. However, due to the inherent advantages of
some architectures, such as simplicity and computational effi-
ciency, we chose S4, a recently proposed convolutional-based
model motivated by principles in signal processing40.
The global architecture of S4 follows a similar deep learning

architecture as the transformer encoder, in which each layer is
composed of multiple filters, where each filter is a sequence-to-
sequence mapping (mixing across time), followed by a non-linear
activation function, followed by a linear layer (mixing across
filters), and finally a residual connection. The major deviation from
the transformer encoder is the sequence-to-sequence filter, which
as opposed to an attention mechanism, is a one-dimensional
convolutional filter parametrized by linear state-space models
(SSMs). An SSM is a fundamental model to represent signals and is
ubiquitous across a range of signal processing and control
applications41,42. A discrete SSM, which maps observed inputs uk
to hidden states xk, before projecting back to observed outputs yk,

has the following recurrent form:

xkþ1 ¼ Axk þ Buk (1)

yk ¼ Cxk þ Duk (2)

Where A 2 Rd ´ d , B 2 Rd ´ 1, C 2 R1 ´ d , and D 2 R are learnable
SSM parameters, and d is the dimension of the hidden state x.
Importantly, we can also compute the SSM as a 1-D convolution,
which unlike recurrent models, enables parallelizable inference
and training. To see how, if we assume the initial state x0= 0, and
follow equations (1) and (2), we arrive at the following by
induction:

yk ¼
Xk�1

j¼0

CAk�1�jBuj (3)

We can thus compute the output yk as a 1-D convolution with
the following filter:

F ¼ ðCB;CAB;CA2B; ¼ ;CAℓ�1BÞ (4)

yk ¼ ðF � uÞk (5)

Following prior work on sequence model classification40, we
simply use the output squences from the last layer to project from
the number of filters to the number of classes (e.g., 2 classes for
the binary model and 26 classes for the multilabel model), and
perform mean pooling over the temporal dimension before a
softmax to output class logits.
There are many advantages of using deep SSMs for long

sequence modeling described in recent work40,43,44. We highlight
the following advantages for EEG modeling: since our EEG clips
are of length 12,000, RNNs are slow to train, while CNNs fail to
capture long-range dependencies due to limited filter lengths; on
the other hand, SSMs are computationally efficient to train (due to
their convolutional view), but are also able to capture long-range
dependencies with structured initialization of the A matrix.
Moreover, we do not need to learn graph structures among the
EEG electrodes, which adds an additional layer of complexity in
recent state-of-the-art EEG classification models6. Nevertheless, to
validate that S4 is a well-suited model architecture for seizure
classification, we compared its performance to other architectures
on the public TUSZ benchmark in Supplementary Table 4, and
found that S4 is competitive with state-of-the-art models while
being more computationally efficient.
We trained all models with the cross-entropy loss using the

Adam optimizer in Pytorch45, with randomly initialized weights.
The learning rate was initially set at 0.004 and followed a cosine
scheduler46. We used a weight decay of 0.1 and a dropout
probability of 0.1. Since the training set is very large (~4 million
samples) and highly unbalanced with just 0.6% of clips having
seizure onset, we used a weighted random sampler with a 25-to-1
bias for positively labeled clips. For more frequent checkpointing,
we randomly sampled a maximum of 150,000 clips for each epoch
(with replacement), and trained for 200 epochs, while checkpoint-
ing on the validation set AUROC. The S4 model architectures had a
parameter count of 366k for the binary classification model, and
379k for the multilabel model (due to larger output dimension).
The model architecture contained 128 filters per layer for 4 layers
with a hidden state dimension d of 64, and the gaussian error
linear unit for the non-linear activations. We performed a grid
search for the initial learning rate, weight decay, and dropout
values using our validation set. We used default values for the
other hyperparameters, including model architecture.

Performance metrics
The two main classification metrics used to evaluate seizure
classification performance are the the AUROC and the FPR. We
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chose the classification threshold such that the class balance of
the model predictions matches the ground truth class balance.
The ROC curve displays the tradeoff between the True Positive
Rate (TPR) and FPR for different classification thresholds. There-
fore, the AUROC summarizes the ROC curve in a single scalar value
regardless of the specific classification threshold chosen. The FPR
and TPR are defined as follows:

FPR ¼ FP
FP þ TN

(6)

TPR ¼ TP
TP þ FN

(7)

where true-positives (TP) are correct seizure classifications, true-
negates (TN) are correct non-seizure classifications, false-positives
(FP) are incorrect seizure classifications, and false-negatives (FN)
are incorrect non-seizure classifications. To calculate 95% con-
fidence intervals and p-values when comparing the AUROC of two
models, we used the DeLong test47.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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