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Uncertainty-aware deep-learning model for prediction of
supratentorial hematoma expansion from admission non-
contrast head computed tomography scan
Anh T. Tran 1, Tal Zeevi 1, Stefan P. Haider1,2, Gaby Abou Karam 1, Elisa R. Berson1, Hishan Tharmaseelan1, Adnan I. Qureshi3,
Pina C. Sanelli4, David J. Werring5, Ajay Malhotra1, Nils H. Petersen6, Adam de Havenon6, Guido J. Falcone6, Kevin N. Sheth 6,7✉ and
Seyedmehdi Payabvash 1,7✉

Hematoma expansion (HE) is a modifiable risk factor and a potential treatment target in patients with intracerebral hemorrhage
(ICH). We aimed to train and validate deep-learning models for high-confidence prediction of supratentorial ICH expansion, based
on admission non-contrast head Computed Tomography (CT). Applying Monte Carlo dropout and entropy of deep-learning model
predictions, we estimated the model uncertainty and identified patients at high risk of HE with high confidence. Using the receiver
operating characteristics area under the curve (AUC), we compared the deep-learning model prediction performance with
multivariable models based on visual markers of HE determined by expert reviewers. We randomly split a multicentric dataset of
patients (4-to-1) into training/cross-validation (n= 634) versus test (n= 159) cohorts. We trained and tested separate models for
prediction of ≥6mL and ≥3mL ICH expansion. The deep-learning models achieved an AUC= 0.81 for high-confidence prediction of
HE≥6mL and AUC= 0.80 for prediction of HE≥3 mL, which were higher than visual maker models AUC= 0.69 for HE≥6 mL (p= 0.036)
and AUC= 0.68 for HE≥3mL (p= 0.043). Our results show that fully automated deep-learning models can identify patients at risk of
supratentorial ICH expansion based on admission non-contrast head CT, with high confidence, and more accurately than
benchmark visual markers.
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INTRODUCTION
Hematoma expansion (HE) affects 13–38% of patients with acute
intracerebral hemorrhage (ICH)1,2, and is an independent
determinant of morbidity and mortality3. Every 1 mL increase
in hematoma volume is associated with a 5% higher risk of
death or long-term functional dependency4. As a modifiable
predictor of outcome, HE is a potential target for anti-expansion
interventions or hemostatic therapies5. Identification of patients
at risk of HE for targeted therapy, can increase the chances of
treatment benefit from anti-expansion interventions6. However,
there is yet no reliable tool available for prediction of HE in acute
ICH settings.
Non-contrast head Computed Tomography (CT)—as a fast and

widely available imaging modality—is the first line of diagnosis in
patients with suspected ICH. An actively hemorrhagic cerebral
hematoma—at risk of HE—tends to contain a mixture of
hyperdense acute and hypodense subacute clot materials, leading
to a heterogenous appearance on head CT7–10. Many groups have
described different visual markers of ICH heterogeneity pattern
and irregular shape on admission non-contrast head CT, which are
associated with subsequent HE—including swirl, hypodensity,
black hole, blend, fluid level, island, and satellite signs7–15. Such
visual markers are, however, subject to inter-reader variability and
overlapping definitions, indicating a need for reliable neuroima-
ging tools for prediction of HE.
Deep-learning algorithms, which are specialized in image

pattern recognition, can potentially address this unmet need by

identifying CT imaging patterns associated with a higher risk of
HE. Such automated image analysis tools can provide fast and
accurate HE-risk stratification in acute ICH settings, with
reproducible results across different centers16. Many groups have
applied Convolutional Neural Networks (CNN) to detect ICH on
non-contrast head CT17–19. However, there are only a few reports
about HE prediction using CNN20–22. We aimed to train, optimize,
and validate CNN-based models for end-to-end fully automated
prediction of HE from head CT images. In addition, we
implemented Monte Carlo dropout method to estimate predic-
tion uncertainty and achieve high-confidence prediction of
supratentorial ICH expansion23. We compared final deep-
learning model performance with benchmark visual predictors
of HE, which were based on expert review of scans (Supplemen-
tary Table 1).

RESULTS
Patients’ demographics
A total of 793 patients (610 patients from Antihypertensive
Treatment of Acute Cerebral Hemorrhage (ATACH-2) trial and 183
patients from Yale) were included in our analysis, and split (4-to-1)
into 634 training/cross-validation and 159 test cohorts (Fig. 1).
Table 1 summarizes the demographic characteristics, treatments,
and baseline clinical information of the training/cross-validation
and independent test cohorts. The rates of HE≥6mL, and HE≥3 mL

were respectively 16%, and 25% in both training/cross-validation
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and test cohorts (Table 1). Supplementary Table 2 compares the
clinical and demographic characteristics of the ATACH-2 and Yale
datasets. Overall, the ATACH-2 dataset had higher rates of Asian

patients, but lower rate of White patients, and smaller hematoma
volumes compared to the Yale dataset.

Automated hematoma segmentation
We developed and tested automated hematoma segmentation
models using similar training/validation and test data splitting. In
the 5-fold cross-validation, the best segmentation algorithm
achieved an averaged Dice similarity coefficient (DSC) of
0.86 ± 0.01, and volume similarity (VS) of 0.91 ± 0.01 in validation
folds. This model achieved a DSC of 0.87, and VS of 0.91 in the test
cohort. This segmentation model generated all automated
hematoma masks, which were then dilated to provide additional
inputs to axial head CT slices for the HE prediction model (Fig. 2).

Fig. 1 Patients’ flowchart. The dataset was split 4:1 into training/
cross-validation (5-fold) and test cohort, which was isolated from the
training process. ATACH Antihypertensive Treatment of Acute
Cerebral Hemorrhage Trial, HE Hematoma Expansion.

Table 1. The demographic and clinical characteristics of patients in training/cross-validation versus test cohorts.

Cross-validation/training data (n= 634) Test data (n= 159) P value

Hematoma expansion ≥6mL—n (%) 104 (16.4%) 26 (16.4%) 0.987

Hematoma expansion ≥3mL—n (%) 160 (25.2%) 41 (25.8%) 0.886

Sex [male]—n (%) 364 (57.4%) 96 (60.4%) 0.018

Agea [years]—mean ± SD 63.4 ± 31.6 63.7 ± 34.3 0.780

Ethnic group—n (%)

Hispanic 62 (9.8%) 16 (10.0%) 0.818

Not Hispanic 572 (90.2%) 143 (90.0%)

Race—n (%)

White 316 (49.9%) 66 (41.5%) 0.259

Black 113 (17.8%) 28 (17.6%)

Asian 189 (29.8%) 56 (35.2%)

Other 16 (2.5%) 9 (5.6%)

Systolic blood pressurea [mmHg] mean ± SD 171.4 ± 27.6 171.0 ± 25.2 0.867

History of hypertension—n (%) 514 (81.1%) 124 (78.0%) 0.389

History of diabetes mellitus type I/II—n (%) 148 (23.3%) 37 (23.2%) 1.000

History of hyperlipidemia—n (%) 235 (37.1%) 54 (34.0%) 0.359

History of atrial fibrillation—n (%) 62 (9.8%) 15 (9.5%) <0.001

Glasgow Coma Scale score at baseline—n (%)

3–11 105 (16.5%) 19 (11.9%) 0.010

12–14 164 (25.8%) 56 (35.2%)

15 356 (56.2%) 84 (52.9%)

unknown 1 (0.1%) 0

NIH Stroke Scale score at baseline—n (%)

0–4 146 (23.0%) 31 (19.5%) <0.001

5–9 139 (21.9%) 47 (29.5%)

10–14 149 (23.5%) 38 (23.9%)

15–19 104 (16.4%) 27 (17.0%)

20–25 71 (11.2%) 11 (6.9%)

>25 23 (3.6%) 5 (3.2%)

unknown 2 (0.4%) 0

Baseline hematoma volumea [mL]—mean ± SD 15.56 ± 16.88 14.41 ± 13.76 0.673

Follow-up hematoma volumea [mL]—mean ± SD 18.03 ± 19.76 18.39 ± 19.86 0.618

CT

Slice thicknessa [mm]—mean ± SD 4.5 ± 0.9 4.56 ± 0.91 0.673

In-plane pixel spacinga [mm]—mean ± SD 0.458 ± 0.032 0.461 ± 0.031 0.726

Min axial image matrix [n × n] 418 × 418 512 × 512

Max axial matrix [n × n] 512 × 734 512 × 666

Number of slices—mean ± SD 37.3 ± 19.7 37.5 ± 16.5

aUsing two-sample t tests; others using the chi-square test.
SD standard deviaton.
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Development and testing of deep-learning models for
prediction of HE
Table 2 summarizes the performance of HE prediction models
with different inputs in the testing cohorts using DenseNet12124

as the backbone CNN. The best results were achieved with dual
inputs from head CT axial slices and dilated mask of automatically
segmented hematoma (Table 2 and Fig. 2).
For HE≥6mL, the average AUC, sensitivity, and specificity in five

validation folds of cross-validation were 0.73 ± 0.09, 0.65 ± 0.08,
and 0.75 ± 0.08 respectively: with the best-performing model
achieving an AUC= 0.82, sensitivity= 0.62, and specificity= 0.86
in the validation fold. In the independent test cohort, our model
achieved an AUC (95% Confidence Interval) of 0.80 (0.71–0.90),
sensitivity= 0.77, and specificity= 0.80. After excluding patients
with high uncertainty in model prediction (8 out of 159), the final
deep-learning model predicts HE≥6mL with AUC= 0.81 (0.70–0.92),
sensitivity= 0.62, and specificity= 0.81.
For HE≥3mL, the average AUC, sensitivity, and specificity across

five validation folds in were 0.73 ± 0.05, 0.62 ± 0.15, and
0.78 ± 0.05, respectively: with the best-performing model achiev-
ing an AUC= 0.81, sensitivity= 0.71, and specificity= 0.76 in the
validation fold. In the independent test cohort, our model
achieved an AUC= 0.75 (0.67–0.84), sensitivity= 0.56, and speci-
ficity= 0.82. After excluding patients with high uncertainty in
model prediction (16 out of 159), the final deep-learning model
predicts HE≥3mL with an AUC= 0.80 (0.71–0.88), sensitivity= 0.84,
and specificity= 0.61.
Supplementary Table 3 represents the confusion matrix for all

models; and supplementary Table 4 summarizes precision, accuracy,
and Matthew’s correlation coefficients of the models. The heatmaps
confirmed that models’ decisions were predominantly based on

attention to ICH and surrounding parenchyma on head CTs, as high-
impact regions had an overlap with dilated ICH masks in all subjects
(Fig. 3)25. All the codes are publicly available on GitHub
(https://github.com/anhtrnyaleedu/HE).

Comparison of deep-learning model with visual markers of HE
Supplementary Table 5 summarizes the distribution of eight visual
predictors of HE between the train/cross-validation and indepen-
dent test cohorts. The inter-rater agreement ranged from 0.44 to
0.61 (similar to our previous reports)26. After fitting logistic
regression models for prediction of HE in the training/cross-
validation cohort based on combination of the visual markers, we
compared the predictive performance of visual-marker models
with high-confidence predictions of deep-learning models in the
test cohort. The visual-marker model achieved an AUC= 0.69
(0.58–0.80), sensitivity= 0.50, and specificity= 0.80 for prediction
of HE≥6mL, and an AUC= 0.68 (0.58–0.79), sensitivity= 0.63, and
specificity= 0.70 for prediction of HE≥3mL. Deep-learning models
achieved higher AUCs compared to visual-marker models for
predicting HE≥6mL (p= 0.036) and HE≥3mL (p= 0.043)—the ROC
curves are depicted in Fig. 4. Additional risk assessment plots
(Fig. 5) also demonstrate that deep-learning models increased
sensitivity and identified more at-risk patients for HE compared to
visual markers. Of note, the baseline hematoma volume alone
could predict HE≥6mL with an AUC= 0.59, sensitivity= 0.42, and
specificity= 0.81; and HE≥3mL with AUC= 0.62, sensitivity= 0.52,
and specificity= 0.67. The deep-learning models had higher AUC
compared to hematoma volume for prediction of either HE≥6 mL

(p= 0.004) or HE≥3mL (p= 0.004).

Fig. 2 Fully automated pipeline for prediction of hematoma expansion. As detailed in the methods, we first applied voxel value constraint
and morphology-based skull stripping to remove the bony calvarium. Then, we applied a U-Net based convolutional neural network (CNN) to
segment hematoma lesions, followed by resampling to 1mm isotropic space. Next, we cropped all brain scans to fixed-size boxes centered
around the hematoma lesion. The dual input for the optimal deep-learning model (Table 2) included both the cropped box of axial head CT
and the dilated mask of hematoma and surrounding tissue. The CNN model structure is provided in our GitHub and Supplementary Fig. 2.
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Association of HE predictions with poor outcomes and death
Among patients with high-confidence prediction of HE≥6mL, the
odds ratios of poor outcome and death were 2.92 (p= 0.017), and
6.47 (p < 0.001), respectively. Among patients with high-
confidence prediction of HE≥3mL, the odds ratios of poor outcome
and death were 1.69 (p= 0.18), and 5.70 (p= 0.001), respectively.
In the same cohorts, patients with (ground truth) HE had higher
odds of poor outcomes and death. For HE≥6mL, the odds ratios of
poor outcome and death were 2.48 (p= 0.07), and 4.38
(p= 0.006); and for HE≥3mL, the odds ratios of poor outcome
and death, were 2.47 (p= 0.02), and 2.42 (p= 0.13), respectively.

DISCUSSION
We developed, optimized, and validated fully automated
uncertainty-aware deep-learning models for high-confidence
prediction of supratentorial ICH expansion based on admission
non-contrast head CT scans. We found that a dual input for
DenseNet121 CNN with axial slices and dilated mask of
(automatically segmented) hematomas produce optimal predic-
tions. We used Monte Carlo dropout to generate estimates of the
deep-learning model prediction uncertainty for each patient and
used that to identify subset of patients with high-confidence
prediction23. Compared to multivariable models combining eight
benchmark visual predictors of HE, the deep-learning models had
higher accuracy and improved risk assessment. Nevertheless, an
automated model offers several advantages over visual assess-
ment of CT scans including timely prediction in acute ICH settings,
reduced dependence on local expertize for interpretation of head
CTs, and reproducible results across different centers. Such deep-
learning models can quickly and automatically identify those
patients who are most likely to benefit from anti-expansion
therapies, and potentially guide treatment decisions in acute ICH
settings.
Different cut-offs have been proposed for binary categorization

of HE27–29. Dowlatshahi et al.27 reported that ≥26%, ≥33%, ≥3mL,
≥6mL, and ≥12.6 mL HE are associated with 2.59, 2.73, 2.99, 3.11,
and 3.98 odds ratio for poor outcome, respectively27. Recently,
many groups have adopted an increase in hematoma size of
“≥33% or ≥6mL” as HE definition29. However, we noted that 33%
increase in hematoma volume for HE prediction was prone to
inter-rater variability: for example, in a patient with a 1-mL ICH at

admission, a 0.1 mL difference between hypothetical 1.3 versus
1.4 mL hematoma segmentation on follow-up scan would change
HE binary classification. Thus, we decided to develop and validate
models for HE≥6mL as well as HE≥3mL. In our cohort, both HE≥6 mL

and HE≥3mL were associated with higher odds of poor outcomes
and death during 3-month follow-up. Notably, those identified at
risk of HE by the deep-learning model also had higher odds of
poor outcome and death, highlighting the clinical relevance of
models’ predictions.
Some of the prior studies applying deep-learning for prediction

of HE were limited by smaller sample sizes20,21. In the largest
sample size thus far, Teng et al.22 utilized a dataset of 3016 ICH
patients (20% with HE) to train and validate a deep-learning
model for prediction of HE≥6mL. In an independent test set of
n= 118 ICH patients (24% with HE), their model achieved 89.3%
sensitivity, 77.8% specificity, and a Yoden index of 0.671. They
compared the model with BAT score, which is based on blend
sing, hypodensity, and CT time gap from the onset.
Overall, our study has several advantages over prior reports:

utilization of a large multicentric multinational dataset, reporting
improved prediction accuracy by dual-input model design,
implementation of prediction uncertainty estimates to identify
patients with high-confidence prediction, direct comparison of
deep-learning model with benchmark visual predictors in an
independent test cohort, and evaluating the risk assessment
benefits of deep-learning model over benchmark visual predictors.
In recent years, there has been increasing recognition of the

need for quantifying confidence and uncertainty of predictions by
artificial intelligence applications in medical field30,31. Since the
primary outputs of deep-learning classifiers are not necessarily
calibrated, they should not be assumed as empirical probabilities
without attention to prediction uncertainty32. Different methods
and metrics have been proposed to estimate uncertainty of a
deep-learning model prediction33. In this study, we applied a
recently described method, which involves Monte Carlo dropout
to randomly drop a proportion of nodes within the model
architecture when generating predictions23. Thus a single input
sample undergoes multiple forward passes through different
(suboptimal) variations of the final optimized network (with
dropped nodes) and generates a distribution of predictions during
the inference step34. Then, we applied Shannon’s entropy, which
measures the randomness in the distribution of model prediction

Table 2. Predictive performance of deep-learning models with different inputs.

Metrics

AUC Sensitivity Specificity

Input

Prediction of ≥6mL hematoma expansion

CT slices 0.72 0.42 0.93

CT slices + hematoma mask 0.76 0.65 0.75

CT slices + dilated hematoma mask 0.79 0.62 0.84

Monte Carlo Dropout excluding uncertain patients (input= CT slices + dilated hematoma mask) 0.81 0.62 0.81

Prediction of ≥3mL hematoma expansion

CT slices 0.72 0.51 0.84

CT slices + hematoma mask 0.75 0.56 0.85

CT slices + dilated hematoma mask 0.75 0.56 0.82

Monte Carlo Dropout excluding uncertain patients (input= CT slices + dilated hematoma mask) 0.80 0.84 0.61

Summary of model prediction performance in the test cohort with different inputs. Our final model was based on DenseNet121 3D convolutional neural
network (CNN) with inputs from axial slices encompassing the hematoma in addition to dilated circular mask of automatically segmented hematoma lesions—
which included peri-hematomal parenchyma (Fig. 2).
AUC area under the curve (of receiver operating characteristics analysis).
The performance metrics of the final model are depicted in bold font.
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outputs35. The optimal entropy cutoff point was a tradeoff
between model prediction accuracy and percentage of patients
excluded due to uncertainty. Our model was able to predict both
≥6mL and ≥3mL supratentorial HE with high confidence and
accuracy (AUC > 0.8) in >90% of patients in the independent test
set. The deep-learning model predictions were more accurate
than benchmark visual predictors of HE and were associated with
higher likelihood of poor outcome and death.
The use of dual input for model design was supported by prior

studies, our multistep experiments, and pathophysiology of HE.
Prior radiomics studies have shown the relevance of hematoma
lesion texture features on head CT in prediction of HE26,36–38. Teng
et al. also combined CNN and radiomics features extracted from
ICH lesions to predict HE22. From a technical standpoint, given the
small and imbalanced number of CT slices that contain hematoma
lesions, targeting the contiguous stack of slices containing ICH can
theoretically improve the CNN prediction by removing the noise
and inefficient features from large number of slices without any
hematoma. In addition, given the imperfection of automated
segmentation, a dilated mask can ensure inclusion of all slices and
brain regions with hemorrhage. The inclusion of parenchyma
around the ICH can also provide neurobiologically relevant
information from peri-hematomal edema, which contributes to
pathogenesis of HE39. As summarized in Table 2, we found an
incremental improvement in prediction accuracy by addition of
dual input from hematoma lesion mask to axial head CT slices, and
then from dilated circular mask including hematoma and

surrounding tissues (Supplementary Fig. 3). Our final model,
combined broad features from consecutive axial slices of skull-
stripped head CT, centered around the ICH with focal features
from dilated masks containing ICH and surrounding parenchyma
for the prediction of HE (Fig. 2 and Supplementary Fig. 2).
While different visual markers of ICH on admission head CT are

reported in association with increased risk of HE7–15, each marker
independently, and in combination with each other, have limited
predictive accuracy40,41. Some authors reported 0.70 to 0.96 inter-rater
agreement in evaluation of these markers41,42, which was higher than
ours26, and reflects the inter-institutional variability in application of
these markers. Nevertheless, these visual markers currently serve as
benchmark tools available to predict HE based on admission non-
contrast head CT in patients with acute ICH11. In our series, deep-
learning models had higher accuracy and improved risk stratification
compared to combination of eight different visual markers for
predicting HE≥6mL and HE≥3mL. Baseline hematoma volume is also a
main predictor of HE;43 however, we showed that deep-learning
models had higher AUC than hematoma volume in predicting HE.
Thus, the predictive performance of the model is not solely due to its
estimate of baseline ICH volume. Overall, our deep-learning model
could provide high-confidence and more accurate prediction of
supratentorial HE compared to visual predictors and baseline
hematoma volume.
In this study, we complemented AUC analysis with Net Reclassifica-

tion Improvement (NRI) and Integrated Discrimination Improvement
(IDI) indices, which provide additional insights to how new models

Fig. 3 Attention maps for visual validation and interpretation of deep-learning model performance. Examples of 3D attention maps
highlighting the brain regions with the highest impact on decisions of deep-learning models confirm that predictions of hematoma
expansion were based on imaging patterns of parenchymal hemorrhage and surrounding tissues25.
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may improve risk stratification compared to an existing one44. While
the AUC is a valuable metric, it alone may not offer a complete picture
for a comprehensive analysis of the impact of new biomarkers and
models. Overall, deep-learning models were more sensitive in the
identification of patients at risk of HE, with a net improvement in risk
assessment compared to visual markers (Fig. 5). However, NRI and IDI
metrics have been criticized for overfitting, and such results should be
interpreted with caution45,46.
Although our results are promising, the current study has

several limitations. First, the study included only patients with
primary supratentorial ICHs that were smaller than 60mL. Notably,
although for both ATACH-2 and Yale datasets, we applied similar
baseline hematoma volume cutoff (<60mL), the ATACH-2 trial
patients had smaller ICH volumes (Supplementary Table 2). Given
the hematoma volume differences, we combined the two
datasets, since a model trained solely on ATACH-2 trial would
predominantly be exposed to smaller baseline ICH data. Moreover,
although ATACH-2 trial found no treatment benefit from intensive
blood pressure reduction, follow-up exploratory analysis in subset
of patients with basal ganglia ICH (444 of 1000)47, those receiving
ultra-early treatment (within 2 h of onset, 354 patients)48, or those
from Asia (n= 537)49 reported lower rates of HE in intensive
treatment versus controls. In subgroup of 610 patients from
ATACH-2 trial, who were included in our study, we could not
replicate any of prior sub-cohort analysis showing treatment
benefit in preventing either HE≥6mL or HE≥3mL. This can be in part
due to difference in the definitions of HE used in the trial (i.e.
≥33% or ≥6mL)50 and/or hematoma volume measurements
between our manual segmentation versus those from the clinical
trial imaging core. Of note, there was no significant difference
between admission systolic blood pressure between ATACH-2
versus Yale cohorts (Supplementary Table 2). In addition, reliable
details of clinical course during the hospital stay were not
available in all subjects; datasets with such detailed information
can facilitate the development of clinically informed predictive
models for identification of patients at risk of HE and neurological
deterioration. Finally, while the datasets for our study were

collected from multicenter hospitals and the model performance
is superior to benchmark visual predictors of HE, it still needs to be
externally validated in other institutes.
In summary, using a multicentric dataset of 793 patients with

acute supratentorial ICH, we trained, optimized, and tested
uncertainty-aware deep-learning models for high-confidence
prediction of HE based on admission non-contrast head CTs. In
independent test cohorts, the deep-learning models achieved
higher accuracy, and improved the risk assessment, compared to a
multivariable model combining eight benchmark visual predictors
of HE. The multicentric nature of our training and validation
datasets improves the stability and likely the generalizability of the
final model. Such automated models have the potential to guide
targeted treatment decisions in acute ICH settings.

METHODS
Study design and participants
The clinical and imaging data for this study are from the
Antihypertensive Treatment of Acute Cerebral Hemorrhage
(ATACH-2) trial50, and the Yale Longitudinal Study of Acute Brain
Injury51. ATACH-2 was a multicenter randomized trial enrolling
1000 patients who presented with a primary supratentorial ICH
smaller than 60mL, within 4.5 h from symptom onset and had
systolic blood pressure above 180 mmHg, across 11 medical
centers in United States, Germany, China, Taiwan, Japan, and
South Korea (ClinicalTrials.gov ID NCT01176565)50. However,
intensive blood pressure lowering had no treatment benefit in
ATACH-2 trial50. We supplemented the ATACH-2 dataset with a
patient cohort from the Yale Longitudinal Study of Acute Brain
Injury, which has been prospectively collecting the longitudinal
imaging and clinical information of patients presenting with acute
brain injury (including spontaneous ICH) to the Yale health
system51. From both datasets, we included adult patients
(>18 years old) with acute supratentorial ICH who had admission
non-contrast head CT and 24-hour follow-up scans, baseline

Fig. 4 Comparison of predictive performance of deep-learning versus visual-marker models. The raw and smoothed (95% confidence
interval) area under the curve (AUC) of receiver operating characteristic for high-confidence prediction of ≥6mL (left panel) and ≥3mL (right
panel) hematoma expansion (HE) by the deep-learning model (red) versus visual-marker model (blue). The deep-learning model had higher
AUC than visual markers in prediction of HE≥6mL (p= 0.036) and HE≥3mL (p= 0.043).
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hematoma volume <60mL, and either high admission systolic
blood pressure (>180mmHg) or history of hypertension. We
excluded patients who had head CT with axial slice thickness
≥5.8 mm, <28 slices, imaging artifacts affecting the hematoma
lesion, any interval craniectomy or drain placement affecting the
follow-up hematoma volume. This study received Institutional
Review Board approval from all corresponding centers. Informed
consent was waived given the retrospective nature of the study
and the use of de-identified data.

Ground truth segmentation and labeling of patients with and
without HE
Using 3D-Slicer software52, trained research associates manually
segmented hematoma lesions on all axial head CT slices from
baseline and follow-up scans to calculate the ground truth hematoma
volumes. Segmentations only included the intraparenchymal hemor-
rhage and excluded the intraventricular or extra-axial components.
Then, all initial segmentations were further reviewed and edited by a
neuroradiologist with over 10 years of experience. We used the
manually segmented hematoma volumes on baseline and follow-up
scans to define HE. The landmark study by Dowlatshahi et al.27

reported that HE of ≥3mL and ≥6mL have odds ratios of 2.99, and
3.11 in association with poor outcomes—defined by modified Rankin
Scale (mRS) score 4–627. Since the adoption of a percentage increase
in hematoma volume (e.g., 33%) for HE prediction was prone to inter-
rater variability—especially for smaller admission ICH volume, we
decided to adopt ≥3mL and ≥6mL absolute increase in hematoma
size for binary definitions of HE28.

Image preprocessing for deep-learning models
Adjusting brain window-level in non-contrast head CT
scan images. During visual inspection of medical imagery,
radiologists usually apply window width and level settings to
optimize the image contrast difference for evaluation of various
tissue components53. In our study, we applied the brain window-
level (level= 40, and width= 80) to optimize the image contrast
between brain parenchyma and hemorrhage.

Skull stripping. To accentuate the model focus on brain parench-
yma, we applied Hounsfield units (HU) restrictions followed by
morphology-based methods to remove the skull from head CT
images. Based on osseous structure density on non-contrast CT
images, voxels with intensity <0 and >200 HU were removed to
facilitate skull stripping54,55. Then, we applied morphology-based
methods for skull stripping, including image dilation, erosion
operations (binary_erosion(), remove_small_objects(), binary_dila-
tion()), and removing boundary via the findContours() function.

Resampling of images. Head CT scans tend to differ in terms of
voxel size and the number of slices across centers. Based on the
patients’ image summary, we resized, cropped, or padded all 3D
brain scans into a 512 × 512 × 48 matrix to achieve a consistent
data size for the segmentation step. To maintain consistency of
voxel spacing, we then resampled all images (and segmented
masks) to isotropic 1-mm voxels (214, 214, 98)56–58.

Fixed-size cropped box containing axial slices centered around the
hematoma. For more efficient computation, we generated fixed-
size cropped boxes centered around the automatically segmented
hematoma masks. After hematoma segmentation, the first slices
containing hematoma mask were detected by traversing each
scan from bottom to top, and the last slices containing hematoma
mask were detected by moving backward. Thus, we could
determine the contiguous slices that contained hematoma, and
center a fixed-size crop box encompassing all slices with
hematoma. Given the hematoma size and number of contiguous
slices containing hematoma lesions, we transformed and resized
the image to (192, 192, 96) and then further cropped the volume
to the image center and a fixed-size box (128, 128, 96).

Experiments design
Using a nested cross-validation scheme, we designed, trained, and
validated different HE prediction models. The data from Anti-
hypertensive Treatment of Acute Cerebral Hemorrhage (ATACH-2)
trial and Yale Longitudinal Study of Acute Brain Injury were used

Fig. 5 Comparison of HE-risk assessment plot between the deep-learning and visual-marker models. The risk assessment plots for
prediction of hematoma expansion (HE, in black) versus non-expansion (red) show that deep-learning (solid line) models were more sensitive
than visual-marker models (dashed lines) in identification of patients at risk of both HE≥6mL (left panel) and HE≥3mL (right panel). The deep-
learning model improved HE≥6mL risk assessment (left panel) with an NRI (Net Reclassification Index) of 0.69 (0.28–1.10) (p < 0.001), and an
Integrated Discrimination Improvement (IDI) of 0.1073 (0.024–0.190) (p < 0.001). In addition, the deep-learning model improved HE≥3mL risk
assessment with an NRI of 0.75 (0.39–1.09) (p < 0.001) and an IDI of 0.2307 (0.12–0.48) (p < 0.001). Risk assessment plots demonstrate that
deep-learning models increased sensitivity and identified more at-risk patients for HE compared to visual markers.
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in this study. Patients were randomly divided into 20%
independent test data and 80% training data. Then, within the
training cohort, we employed a 5-fold cross-validation method for
both segmentation and classification tasks59. Thus, the training/
cross-validation dataset was randomly divided into 5 parts, 4 of
which were used for training, and the rest were used for
validation, repeated ×5 times. All data splitting (train/validation/
test) was performed using “Stratified K-Folds” splitting, preserving
the percentage of samples for each class. All experiments were
carried out by a computing device with AMD Ryzen 397SWX 32
Cores 2200H CPU (48 GB memory) and 4 GPUs (NVIDIA Quadro
RTX 6000) with 32 GB memory, using Ubuntu operating system,
Python 3.8, and the MONAI deep-learning framework60.

Evaluation of model performance
Segmentation. DSC61 measures the volumetric overlap between
segmentation results and ground truth. Dice is computed where A
is the set of foreground voxels in the ground truth and B is the
corresponding set of foreground voxels in the segmentation
result.

Dice ¼ 2ðA \ BÞ
Aj j þ Bj j (1)

Volume Similarity measures and compares the absolute volume
of the segmented result and ground truth, defined as

VS ¼ 1� v1� v2j j
v1þ v2

(2)

Classification. Binary classifiers performance in imbalance data
are routinely evaluated with Area Under the Curve (AUC) in
Receiver Operating Characteristics (ROC) plots, sensitivity, and
specificity62. Recall, also called sensitivity, is the proportion of true
positives among all positives, and it varies between 0 and 1.

Sensitivity ¼ Recall ¼ TP
TP þ FN

(3)

Specificity measures the proportion of true negatives that are
correctly identified by the model.

Specificity ¼ TN
TN þ FP

(4)

where TP= true positive, TN= true negative, FP= false positive,
and FN= false negative.
The F1 score represents the harmonic mean of precision and

recall, with its optimal value at 1 and its worst value at 0.

F1 ¼ 2 � ðRecall � PrecisionÞ
ðRecall þ PrecisionÞ (5)

Matthews’s correlation coefficient (MCC) is a correlation
coefficient between the ground truth and predicted in binary
classifications with values between −1 and +1. A coefficient of +1
represents a perfect prediction, 0 no better than random
prediction and −1 indicates total disagreement.

MCC ¼ TP � TN � FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp (6)

Training a CNN model for automated hematoma
segmentation
During our model development experiments, we evaluated head
CT slices, segmented hematoma, dilated masks of hematoma, and
their combinations as input for prediction model. We found that
models with dual inputs from head CT slices and dilated masks
encircling hematomas can achieve the best prediction

performance. To devise a fully automated end-to-end predictive
model, we incorporated an ICH segmentation pipeline to provide
additional input for the prediction model. We trained and
validated a 3D CNN model for automated ICH segmentation
using SegResNet63, which is a deep semantic segmentation
network based on the U-Net (details in the supplementary
material). The input for the network has a size of 512 × 512 × 48
and the segmentation output is the intracerebral hemorrhage
(ICH) region. During training, we randomly zeroed some of the
elements of the input tensor with probability dropout_prob= 0.2.
Manual segmentations of hematomas were used as gold standard
(Supplementary Fig. 1). We used the DiceLoss as loss function,
Adam as the optimizer64, CosineAnnealingLR as the learning rate
scheduler, the sliding window inference method, and applied
RandFlip for augmentation. We used both baseline and follow-up
scans for training/validation and independent test data. Using
stratified 4-to-1 splitting, we divided the dataset into training/
cross-validation versus test cohorts (Fig. 1). We trained and
optimized the model using a 5-fold cross-validation scheme in
training/cross-validation cohort. Then, we trained the final model
using hyperparameters from cross-validation on the whole
training/cross-validation cohort and evaluated segmentation
performance in the independent test cohort against manually
segmented ICH masks as the ground truth. To evaluate the
hematoma segmentation model performance, we used DSC and
VS metrics, as described above.

Training, validation, and testing of CNN models for
prediction of HE
For the HE prediction model, we implemented a 5-fold cross-
validation scheme with the same splits as the segmentation step
described above. Then, we trained the final model in training/
cross-validation data with hyperparameters from cross-validation
to predict HE in the test cohort. Briefly, we trained a fully
automated end-to-end model by combining hematoma segmen-
tation and HE classification CNNs. In our experiments, we found
that dual inputs from head CT slices and hematoma segmentation
masks result in more accurate predictions. The hematoma mask
from the automated segmentation step will serve as one of the
two inputs for HE prediction CNN (Supplementary Fig. 2). For HE
prediction, we implemented a 3D CNN with a binary classification
output layer using our proposed method based on typical
DenseNet121. Our optimal model had dual input from (1)
consecutive axial CT slices centered around the ICH and (2) a
dilated mask based on automated hematoma segmentation,
which included both ICH and surrounding brain parenchyma.
Applying binary_dilation() function, we dilated hematoma masks
(Supplementary Fig. 3). For data augmentation, we used RandFlip
(spatial_axis= 0, 1, and 2), RandZoom(min_zoom= 0.8, max_-
zoom= 1.2), RandRotate(range_x= (0.2, 0.2), range_y = (0.2, 0.2),
range_z= (0.2, 0.2)), and RandAffine (shear_range= (0.2, 0.2)).
Examples of augmented scans are depicted in Supplementary Fig.
4. We used (static) augmentation, creating ×4 times the number of
data and balancing the data, before training the model on all
training/cross-validation set together. Moreover, in each epoch,
we applied additional (dynamic) augmentation during training
process to make input slightly different in each epoch. To avoid
overfitting, we used Dropout= 0.2, weight decay= 1e-5, and early
stopping= 15 steps. Adam with learning rate= 0.001 was used as
an optimization algorithm. The BCEWithLogitLoss, a binary cross-
entropy loss that comes with a sigmoid function, was employed as
a loss function (Supplementary Fig. 5). We applied StepLR learning
scheduler to decrease learning rate until convergence with
step_size= 15. The number of epoch= 100. The output is HE or
not (1 or 0). The final prediction models had dual input from axial
CT slices centered around the ICH and dilated masks from
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automated hematoma segmentation (Fig. 2 and Supplementary
Fig. 2).

Uncertainty-aware deep-learning model for high-confidence
prediction23

The primary output of deep-learning models does not directly
provide a measure of prediction confidence or (un)certainty. There
are several metrics to estimate uncertainty of a deep-learning
model prediction33. In this study, we applied Monte Carlo dropout
and processes, which have recently been proposed for develop-
ment of uncertainty-informed deep-learning models for high-
confidence predictions in digital histopathology slides23. Com-
monly, dropout is only applied during the training of deep-
learning models as a regularization method to avoid overfitting.
Dolezal et al. have proposed using Monte Carlo dropout to
generate a range of prediction probabilities and estimate deep-
learning model uncertainty for high-confidence classification of
lung adenocarcinoma versus squamous cell carcinoma on digital
histopathology slides23. In this study, we adopted similar strategy
to generate metrics of prediction uncertainty and achieve high-
confidence prediction. After developing the optimal model, we
deployed the Monte Carlo dropout (×100 times) when applying
the model on the test set, using the enable_dropout() function
with 0.2 dropout rate. In this method, the dropout generates (less
than perfect) variations of the model by dropping some of the
nodes of the trained model, and then applying them on the test
set resulting in distribution of prediction probability values for
each head CT in the test set. Then, we applied the Shannon
entropy, which can provide a measure of uncertainty from such
probability distribution35, with higher entropy representing higher
prediction uncertainty. In this scheme, although lower entropy
levels provide higher certainty, but they also exclude larger
number of patients. Thus, the optimal cutoff needs to strike the
proper balance between prediction accuracy/AUC, certainty/
confidence in prediction, the number of patients excluded due
to uncertainty, and the rate of HE in the remaining subjects. To
achieve such optimal entropy threshold, one by one, we excluded
the patient with the highest entropy (or the most uncertain
prediction), and recalculated the AUC, accuracy, and rate of HE in
remaining subjects. The process was stopped as soon as one of
the metrics decreased from the initial test levels.

Visual verification of deep-learning attention maps
To visually verify and confirm that the deep-learning model
decisions were indeed based on imaging features of hemorrhage,
we applied M3d-CAM25 to generate 3D attention maps and
highlight brain regions with the highest impact on model
prediction decisions on the original head CT. From the 3D input,
we applied the Grad-Cam from M3d-CAM to extract the feature
map from the last layer of the model, with the attention map
resulting in 3D images. Then, we resized the attention map to scan
dimension (e.g., 128 × 128 × 64), and overlaid the resized map
onto the original scan.

Prediction of HE based on CT imaging patterns determined by
visual inspection
Applying the criteria by the international non-contrast CT ICH
study group11, we determined eight visual predictors of HE on
admission head CTs—namely, the blend sign, hypodensity, swirl
sign, black hole sign, island sign, satellite sign, fluid level, and
irregular shape (defined in supplementary Table 1)26,36. Trained
research associates initially labeled admission head CTs, which
were then reviewed, confirmed or corrected by a board-certified
neuroradiologist (SP). Thus, each scan was reviewed by at least
two raters. We applied logistic regression models for prediction of
HE based on combining these visual markers in the training/cross-

validation cohorts and then tested their prediction performance in
independent test cohort.

Comparing the CNN model with visual markers of HE—risk
assessment plot
To compare the performance of the CNN model with current
benchmark visual predictors of HE in the test cohort, we used the
DeLong test for two related ROC curves. To measure the ability of
the deep-learning model for risk assessment compared to a pre-
existing visual marker44, we evaluated two additional metrics to
determine whether deep-learning models could more accurately
assess an individual patient’s risk for HE compared to visual
markers. The Net Reclassification Improvement (NRI) estimates the
proportion of patients reclassified to a more appropriate risk
category and can be used in conjunction with the AUC44. The
NRIevent is the net proportion of patients with events reassigned to
a higher-risk category and the NRInonevent is the number of patients
without events reassigned to a lower-risk category.

NRIevent ¼ P upjeventð Þ � P downjeventð Þ (7)

NRInonevent ¼ P downjnoneventð Þ � P upjnoneventð Þ (8)

NRI ¼ NRIevent þ NRInonevent (9)

The IDI is a measure of the change in the discrimination slopes
and shows the impact of new biomarkers on a binary predictive
model. The IDI is the sum of the integrated sensitivity (IS) and
integrated specificity (IP).

IDIevent ¼ P newjeventð Þ � P referencejeventð Þ (10)

IDInon�event ¼ P referencejnoneventð Þ � P newjnoneventð Þ (11)

IDI ¼ IDIevent þ IDInon�event (12)

Risk Assessment Plots provide visual depiction of NRI and IDI
reclassification metrics (Fig. 5).

Association of HE with poor outcomes and death
To evaluate the clinical relevance of HE prediction, we tested the
association of model predictions with 3-month clinical outcome.
Similar to prior studies27, we defined poor functional outcome by
mRS score 4–6 at 3-month follow-up. In the independent test
cohort, we separately determined the odds ratios of 3-month
follow-up poor outcomes as well as death during follow-up period
in patients who had HE (ground truth) as well as those predicted
to have HE by the deep-learning models.
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