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An intriguing vision for transatlantic collaborative health data
use and artificial intelligence development
Daniel C. Baumgart 1✉

Our traditional approach to diagnosis, prognosis, and treatment, can no longer process and transform the enormous volume of
information into therapeutic success, innovative discovery, and health economic performance. Precision health, i.e., the right
treatment, for the right person, at the right time in the right place, is enabled through a learning health system, in which medicine
and multidisciplinary science, economic viability, diverse culture, and empowered patient’s preferences are digitally integrated and
conceptually aligned for continuous improvement and maintenance of health, wellbeing, and equity. Artificial intelligence (AI) has
been successfully evaluated in risk stratification, accurate diagnosis, and treatment allocation, and to prevent health disparities.
There is one caveat though: dependable AI models need to be trained on population-representative, large and deep data sets by
multidisciplinary and multinational teams to avoid developer, statistical and social bias. Such applications and models can neither
be created nor validated with data at the country, let alone institutional level and require a new dimension of collaboration, a
cultural change with the establishment of trust in a precompetitive space. The Data for Health (#DFH23) conference in Berlin and
the Follow-Up Workshop at Harvard University in Boston hosted a representative group of stakeholders in society, academia,
industry, and government. With the momentum #DFH23 created, the European Health Data Space (EHDS) as a solid and safe
foundation for consented collaborative health data use and the G7 Hiroshima AI process in place, we call on citizens and their
governments to fully support digital transformation of medicine, research and innovation including AI.
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INTRODUCTION
Traditionally, patients present to healthcare systems with specific
symptoms or through a preventive healthcare program. Health-
care providers then capture information from the patient’s
medical history, perform a physical exam, review clinical data,
order additional investigations, before eventually arriving at a
diagnosis, prognosis and therapy based on their own medical
knowledge, clinical experience and a thought and decision
process. As the case evolves, decisions are critically revisited and
adjusted. Over time healthcare professionals learn from their
intervention outcomes and increasingly gather experience inform-
ing their future decisions.
Medical knowledge and data are growing exponentially. The

body of medical knowledge and clinical experience a healthcare
professional can acquire and apply depends on the individual’s
medical education and training, motivation, and support provided
within their health system. It can multiply and grow faster when
working in teams and across disciplines. Ultimately however,
effective and efficient medical knowledge acquisition and
translation are a function of capacity and time limited by the
individual’s life span.
Thus, our traditional approach to diagnosis, prognosis, and

treatment, can no longer process and transform the enormous
volume of information into therapeutic success, innovative
discovery, and health economic performance. The digital revolu-
tion in medicine began two decades ago1. Advancement of
information and communication technology, powerful computer
science methodology and digital innovation can help accelerate,
enhance and refine medical knowledge acquisition and
translation.

Precision health, i.e., the right targeted treatment2, for the right
person, at the right time in the right place, is enabled through a
learning health system, in which medicine and multidisciplinary
science, economic viability, diverse culture, and empowered
patient’s preferences are digitally integrated and conceptually
aligned for continuous improvement and maintenance of health,
wellbeing, and equity.
Healthcare-embedded research with real-world-evidence3 gen-

eration may overcome some of the limitations of traditional
clinical trials. Artificial intelligence (AI)4 including machine learn-
ing5 has been successfully evaluated in risk stratification, accurate
diagnosis and treatment allocation, and to prevent health
disparities6. Large language models make unstructured data
accessible7. AI can limit harm in drug development8, by deploying
computational tools to derive biological insights from large
amounts of data, and exploit “in silico” computer-assisted structure
and binding prediction9–11, synthesis12–15. and testing well before
any trial participant is ever exposed.
Healthcare facilities can become safer16 and smarter17 through

AI enabled patient18,19 and staff monitoring20, policy enforce-
ment21, provider competency assessment22,23, and resource
allocation24,25. Wearables promote continuous, citizen centered,
preventive care26. Public health threats can be taken on earlier
and more effectively27,28.
There is one caveat though: dependable AI models need to be

trained on population-representative, large and deep data sets by
multidisciplinary and multinational teams to avoid developer,
statistical and social bias29. Moreover, complex diseases can only
be understood through integration30 of basic research and health-
related and -defining information (e.g. environmental-, socio-
economic-, infrastructural-, and behavioral-, and social data). Such
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applications and models can neither be created nor validated with
data at country, let alone institutional level and require a new
dimension of collaboration. Federated learning, i.e., use of
decentralized data sources to build models and transfer learning,
enables multiple institutions to collaborate without changing the
physical location of data. While federated learning still requires a
central coordinator, swarm learning31 circumvents it by uniting
edge computing32 and blockchain33 enabled asynchronous
convergence.
However, other applications require true collaborative data use

as envisioned by the European Commission’s European Health
Data Space (EHDS)34. The EHDS is an ecosystem comprised of
rules, standards and practices, infrastructures, and a governance
framework empowering individuals through increased digital
access to their personal health data, at the national and EU level,
support their free movement, and foster a genuine single market
for electronic health record systems, relevant medical devices, and
health AI. It will provide a consistent, trustworthy, and efficient set-
up for the use of health data for research, innovation, policy-
making and regulatory activities.
Collaborative health data use and AI deployment at scale are

disruptive advances that potentially expose us to new risks (i.e.,
security, data manipulation, misuse, failure to recognize model
limitations, and moral ethical dilemmas) that need to be carefully
weighed against the above-outlined benefits. Balancing both in
medicine and healthcare is perhaps one of the most daunting
tasks, as it involves the most sensitive and vulnerable aspects of
our lives, but also one where we can have the greatest positive
impact at an individual and societal level.
Moral dilemmas for instance arise, when choosing between two

AI-enabled accurate, yet equally unfavorable decisions and their
consequences35. An AI-facilitated therapy recommendation can
only address the data-driven aspect of personalized medicine,
whereas the individual patient’s choice to accept or reject a
therapy recommendation (i.e. choosing a potentially less effective
therapy for personal reasons) remains unchanged. Ultimately, the
role of both AI algorithms and healthcare professionals remains to
help patients (and families) make their own, hopefully increasingly
better-informed decisions instead of making those decisions
for them.
Ethical challenges do not only result from data access, data

ownership and training data quality-related bias. Ethical conflicts
anticipated to occur with algorithms may in fact not be rooted in
AI itself, but rather exposed by it. Today’s physicians and
biomedical researchers find themselves in a conflicted situation
to serve their patients, their employers and payors, when other
components of the healthcare system may have different interests
(i.e. effort & expenditures vs. revenue). These interests determine
the goals of AI algorithm development5.
The German Federal Ministry of Health in collaboration with the

German Aerospace Center (DLR) organized a high-level Data for
Health conference36 in Berlin, Germany in June and a Follow-Up
Workshop37 in September at Harvard University in Boston, MA, USA
(#DFH23) with a representative group of stakeholders in society,
academia, industry, and government along with journalists and both
vocal supporters and critics for open and productive discussions. It
takes that joint perspective to drive the cultural change needed.
#DFH23 explored various ways of taking the EHDS concept

across the Atlantic. Three G7 countries, Germany, the United
States and Canada lead the way. The German Federal Ministry of
Health is committed to pass legislation to enable collaborative
health data use and AI, deploy a national electronic health record
aligned with the EHDS, and paperless communication in acute and
long-term care. In July the European Commission adopted its
adequacy decision for the EU-US Data Privacy Framework,
enabling European entities to transfer personal data to participat-
ing entities in the US. Government consultations are underway to
expand longstanding collaboration in AI with Canada38. #DFH23

developed harmonized contractual language and multi-lingual
consent documents as a start, realizing many other legal and
political challenges remain. Figure 1
Digital inclusion39 with engagement of all stakeholders, the

reduction of barriers for those with disabilities and the elderly, are
critically important for success and have become a social
determinant of health. Translation into daily practice critically
depends on overcoming the knowledge asymmetry through
education and training. To build trust, several model projects with
explicit citizen and patient participation demonstrating tangible
benefits of collaborative data use and AI to promote healthy living
and well-being, advance cancer detection and care, streamline
data access, verify AI readiness, accelerate knowledge translation
into everyday healthcare were developed and agreed in bar
camps, workshops and discussed on the podium at #DFH23.
As the UNs WHO and ITU establish a benchmarking process for

AI in health, regulatory bodies need to adapt their workflows40.
The US FDA decided to regulate AI as a device in line with the
International Medical Device Regulators Forum’s commitment to
develop a harmonized approach to the management of AI41.
Transparency (explainable AI [XAI]), decision autonomy level,
decision effect size, and opportunity of human oversight and
override will be critical for approval. Post marketing surveillance
and liability of developers and users are complex tasks since
medical, unlike industrial AI models, are not static over their
lifecycle42,43.
Rising concerns of cyber security with the exploitation of

personal data44 have led the EU to foster citizens’ right to
informational self-determination through the General Data
Protection Regulation45. Narrow GDPR interpretation may how-
ever fail citizens by depriving them of the profound benefits of
collaborative data use and AI. #DFH23 attendees propose a
legislative and enforcement effort to prioritize regulating data use
not just protection. Effective legal deterrents rather than
unreasonable measures to avoid criminal decryption and re-
identification are urgently needed.
In October, one month after the #DFH23 Follow-Up Workshop37

at Harvard University the entire G7, i.e. Canada, France, Germany,
Italy, Japan, the United Kingdom, the United States as well the EU
passed an agreement on International Guiding Principles on
Artificial Intelligence (AI)46 and a voluntary Code of Conduct47 for
AI developers referred to as the Hiroshima AI process.
Based on what we know today, it is unlikely that there will be

true competition between humans and machines in healthcare
compared with the manufacturing or service industries. Although
service robots have been experimentally deployed to hospitals
and publicly shared places during the COVID-19 pandemic to
clean, take temperatures and deliver food, minimize person
contacts, this cannot be the primary goal to address manpower
challenges or achieve cost-control in healthcare48. Human
healthcare professionals and machines can supplement each
other, as both have unique skills and strengths. In fact, it is
conceivable in our competitive, increasingly performance-driven
healthcare systems, clinicians will have more time again to spend
with their patients, a critical element of empathetic healthcare
that has been missed lately due to the economic pressures
imposed by hospital operators, payors and governments aiming
to lower costs.
With the momentum #DFH23 created, the EHDS as a solid and

safe foundation for consented national, EU-wide and transatlantic
collaborative health data use as well as the G7 Hiroshima AI
process in place, we call on citizens and their governments to fully
support digital transformation of medicine, research and innova-
tion including AI implementation. It’s time to rethink healthcare.
Our citizens and patients deserve it.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
This manuscript does not include any additional data that could be made available.
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Fig. 1 EHDS inspired transatlantic collaborative health data use and artificial intelligence development. Collaborative health data enabled
innovation requires cultural change with establishment of trust among all stakeholders in a precompetitive space. Trustworthy communication of
goals, risks, benefits and challenges, continuous dialogue with citizens and patients (i.e. joint AI readiness assessment with patients), prejudice free
consent and opt-out mechanisms, harmonization of technical and administrative standards (i.e. an international patient summary, harmonized
transatlantic patient consent forms) will enable interoperability, aligned regulatory processes (i.e. development of regulatory fact sheets), model
use cases and exemplary projects (i.e. a cancer genome tracker, a registry for cancer immune therapy) and a streamlined exchange platform for
citizens, researchers, developers and innovators (i.e. a stake holder council, online R&D “tool box”).
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