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Histopathology images-based deep learning prediction of
prognosis and therapeutic response in small cell lung cancer
Yibo Zhang1,2,4, Zijian Yang2,4, Ruanqi Chen1,4, Yanli Zhu3,4, Li Liu1, Jiyan Dong1, Zicheng Zhang2, Xujie Sun1, Jianming Ying 1,
Dongmei Lin3✉, Lin Yang1✉ and Meng Zhou 2✉

Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer characterized by rapid tumor growth and early
metastasis. Accurate prediction of prognosis and therapeutic response is crucial for optimizing treatment strategies and improving
patient outcomes. In this study, we conducted a deep-learning analysis of Hematoxylin and Eosin (H&E) stained histopathological
images using contrastive clustering and identified 50 intricate histomorphological phenotype clusters (HPCs) as pathomic features.
We identified two of 50 HPCs with significant prognostic value and then integrated them into a pathomics signature (PathoSig)
using the Cox regression model. PathoSig showed significant risk stratification for overall survival and disease-free survival and
successfully identified patients who may benefit from postoperative or preoperative chemoradiotherapy. The predictive power of
PathoSig was validated in independent multicenter cohorts. Furthermore, PathoSig can provide comprehensive prognostic
information beyond the current TNM staging system and molecular subtyping. Overall, our study highlights the significant potential
of utilizing histopathology images-based deep learning in improving prognostic predictions and evaluating therapeutic response in
SCLC. PathoSig represents an effective tool that aids clinicians in making informed decisions and selecting personalized treatment
strategies for SCLC patients.
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INTRODUCTION
Lung cancer represents the most commonly diagnosed malignant
tumor worldwide1. Among the different subtypes, small cell lung
cancer (SCLC) accounts for ~15–20% of all lung cancer cases, and
is characterized by its highly invasive neuroendocrine nature,
rapid growth, early metastasis, frequent recurrence, and strong
resistance to drugs2,3. Despite advancements in therapy, the
prognosis for SCLC remains grim, with a dismal five-year survival
rate of less than 10%3, highlighting the urgent need for improved
prognostic tools and personalized treatment strategies. The
current clinical and pathological features used for prognostic
assessment and treatment decision-making in SCLC have certain
limitations, especially in predicting individual patient responses
and survival outcomes. Several efforts have been made to uncover
the complex heterogeneity of the disease, including investigations
into neuroendocrine differentiation, transcriptionally defined
subtypes and tumor microenvironment features4–7. Although this
knowledge has greatly improved our understanding of the
molecular mechanisms underlying SCLC heterogeneity and
provided prognostic and theragnostic implications to some
extent, their heterogeneity application in clinical trials and routine
patient care is limited by several challenges, including the
quantity and quality of the samples, trans-platform reproducibility,
expensive and time-consuming.
Histopathological examination of tissue slides is pivotal in

cancer diagnosis and treatment planning. Hematoxylin and Eosin
(H&E) staining, a widely adopted technique in pathology
laboratories, provides high-resolution images that capture essen-
tial morphological features of tumor tissues. However, the manual
microscopic examination of H&E-stained slides heavily relies on

the expertize of pathologists, making it labor-intensive and
experience-dependent. To address these limitations, there is a
growing interest in leveraging advanced technologies, such as
deep learning and computer image processing, to extract valuable
biological information from pathological slides beyond routine
diagnostics. Specifically, recent advancements made in deep
learning for computational pathology have enabled the use of
H&E-stained slides for automated cancer detection and differential
diagnosis8, quantification of morphologic phenotypes, and pre-
diction of patient survival stratification in various cancers9,10.
However, the application of artificial intelligence (AI) algorithms in
the field of SCLC digital pathology remains relatively limited and
warrants further exploration.
In this study, we propose unsupervised deep learning with

contrastive clustering computational framework (DL-CC) to extract
and analyze histomorphological features from H&E-stained
histopathological images, and develop a pathomics signature
(PathoSig). The extensive validation experiments in multicenter
retrospective datasets demonstrated the robustness and general-
izability of PathoSig in predicting prognosis and assessing the
clinical benefits associated with chemoradiotherapy in patients
with SCLC.

RESULTS
Patient characteristics and study design
The baseline characteristics of the 380 SCLC patients are
summarized in Table 1. The PUCH cohort comprised 94 cases of
pure SCLC (P-SCLC), while the CHCAMS cohort included 240
P-SCLC cases and 46 combined SCLC (C-SCLC) cases, such as SCLC
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combined with squamous cell carcinoma (n= 19, 41.3%), adeno-
carcinoma (n= 18, 39.1%), large cell carcinoma (n= 4, 8.7%), large
cell neuroendocrine carcinoma (LCNEC, n= 2, 4.3%), carcinoid
tumor (n= 1, 2.1%), carcinoid tumor and LCNEC (n= 1, 2.1%) and
adenosquamous carcinoma (n= 1, 2.1%). Male predominance is
observed across all cohorts (70% and 76.9% for P-SCLC and
C-SCLC in the CHCAMS cohort and 71.28% for the PUCH cohort).
The median (range) ages are 56.5 (19–82), 60 (39–76) and 59.5
(33–82) years, and median follow-up durations are 4.00, 4.69, and
3.33 years, and recurrence rates are 49.17%, 50% and 69.15% for
CHCAMS-P-SCLC, CHCAMS-C-SCLC, and PUCH cohorts, respec-
tively. In all cohorts, 141 (58.72%), 24 (52.17%) and 72 (76.60%)
cases were in stage I–II, while 99 (41.25%), 22 (47.83%) and 22
(23.40%) cases were in stage III-IV, with lymphatic metastasis
observed in 137 (57.08%), 30 (65.22%) and 37 (39.36%) cases
across all cohorts.
We conducted a discovery and validation multicenter study.

The detailed flowchart of the study design is shown in Fig. 1 and
Supplementary Figure 1. Within the CHCAMS cohort of 286
cases, there were 240 P-SCLC cases and 46 C-SCLC cases. These
cases were categorized into three cohorts for the development
and internal validation of the deep-learning model: the
discovery cohort (n= 196), validation cohort-1 (P-SCLC, n= 44)
and validation cohort-2 (C-SCLC, n= 46). All 94 patients in the
PUCH cohort were used for external independent validation
(validation cohort-3).

Deep learning identifies histomorphological features
associated with prognosis
The discovery cohort was randomly divided into a training dataset
(n= 157) and a testing dataset (n= 39) at a ratio of 4:1. Each H&E-
stained slide was segmented into non-overlapping 224 × 224 tiles, in
which tiles covering less than 60% tissue coverage were filtered out.
A total of 73,199 tiles were collected for downstream analysis.
Contrastive clustering was employed at both the instance- and
cluster- levels to cluster the tiles from the training dataset, and 50 tile-
level histomorphological phenotype clusters (HPCs) were obtained as
histomorphological features, which were visualized by projecting
high-dimensional data into two- dimensions using the Uniform
Manifold Approximation and Projection (UMAP) (Fig. 2a). To analyze
the histomorphological differences between slide block clusters, we
histomorphologically selected the four farthest positions in UMAP,
including upper, lower-left, lower-right and middle. We located the
nearest three clusters for each position and visually inspected them
(Supplementary Figure 2). We observed that greater distance
between clusters corresponded to more significant morphological
differences, and vice versa. This observation underscores the
differential representation of slide information and morphological
features in each cluster in the deep clustering of pathological slides.
To quantify the histomorphological features in each slide, we

calculated the proportion of tiles belonging to each HPC relative
to the total number of tiles in the slide. Univariate Cox regression
analysis was performed to assess the association between

Table 1. Clinical characteristics of SCLC patients used in multicenter study.

Clinical characteristics CHCAMS cohort PUCH cohort

P-SCLC (n= 240) C-SCLC (n= 46) P-SCLC (n= 94)

Age, median (range) 56.5 (19–82) 60 (39–76) 59.5 (33–82)

Sex, n (%)

Male 168 (70.00) 35 (76.09) 67 (71.28)

Female 72 (30.00) 11 (23.91) 27 (28.72)

Smoking, n (%)

Yes 153 (63.75) 36 (78.26) 72 (76.60)

No 87 (36.25) 10 (21.74) 22 (23.40)

AJCC/UICC, n (%)

I 76 (31.67) 9 (19.56) 47 (50.00)

II 65 (27.08) 15 (32.61) 25 (26.60)

III 93 (38.75) 20 (43.48) 22 (23.40)

IV 6 (2.50) 2 (4.35) 0 (0.00)

Treatment modes, n (%)

Surgery alone 8 (3.33) 0 (0) 22 (23.40)

Postoperative chemoradiotherapy 183 (76.25) 41 (89.13) 51 (54.26)

Preoperative chemoradiotherapy 23 (9.58) 2 (4.35) 2 (2.13)

Preoperative and postoperative
chemoradiotherapy

0 (0.00) 0 (0.00) 11 (11.70)

Unknown 26 (10.84) 3 (6.52) 8 (8.51)

Follow-up (years), median (range) 4.00 (0.00–13.83) 4.69 (0.33–14.08) 3.33 (0.25–9.17)

Recurrence, n (%)

Yes 118 (49.17) 23 (50) 65 (69.15)

No 122 (50.83) 23 (50) 29 (30.85)

Lymphatic metastasis, n (%)

Yes 137 (57.08) 30 (65.22) 37 (39.36)

No 103 (42.92) 16 (34.78) 57 (60.64)

Death event, n (%)

Yes 92 (38.33) 18 (39.13) 59 (62.77)

No 148 (61.67) 28 (60.87) 35 (37.23)
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histomorphological features and OS in the training dataset.
Among the 50 investigated histomorphological features, we
identified four histomorphological features significantly associated
with OS. Of these, HPC19 was associated with improved OS
(HR= 0.720, 95% CI 0.562–0.921, p= 0.009), while HPC20 (HR=
1.169, 95% CI 1.012–1.349, p= 0.033), HPC21 (HR= 1.141, 95% CI

1.020–1.275, p= 0.021) and HPC39 (HR= 1.268, 95% CI
1.090–1.474, p= 0.002) exhibited associations with poor OS
(Fig. 2b). We subjected them to multivariate regression analysis
to evaluate whether these four prognostic histomorphological
features held independent predictive power for survival. When
considering the mutual effect among four prognostic
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Fig. 1 Schematic illustration of deep learning-based pathomics signature construction. a Segmentation of tumor regions in the whole
slide image (WSI): Pathologists extracted the central regions of WSI tumors at 20x magnification, referred to as tumor tissue microarrays
(TMAs). Each TMA was partitioned into non-overlapping 224 × 224 pixel tiles using a watershed algorithm. b Deep-learning workflow for
pathological feature extraction. A deep learning framework based on unsupervised contrastive clustering was employed to extract
histomorphological features from tissue pathology images. The framework consists of two main modules: a non-redundant vector extraction
module and an instance-level contrastive feature mapping module. These modules automatically extract features from tissue pathology
images and map them to a 2048-dimensional space, capturing unique information. The framework also enables mapping the feature space to
a 50-dimensional latent space, facilitating effective image clustering. c Development and validation of the pathomics signature. The
pathomics signature was performed using TMAs or patients, each with one or multiple TMAs. Morphological features were constructed for
each TMA based on the segmented blocks and processed through clustering. The tiles within each TMA were clustered to form multiple
clusters, and the proportion of each cluster relative to all clusters constituted the feature vector for that TMA. These feature vectors were
utilized in Cox regression models to establish associations between tissue phenotypes and clinical annotations, enabling risk stratification of
patients.
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Fig. 2 Discovery and visualization of histomorphological features associated with prognosis. a UMAP-based dimensionality reduction of
instance-level feature vectors for each image tile, then mapping 50 tiles-level histopathological phenotype clusters (HPCs) onto the UMAP
plot. b Forest plot visualizing the hazard ratios (95% confidence interval) of univariate Cox regression analyses of each histomorphological
feature. c Forest plot visualizing the hazard ratios (95% confidence interval) of multivariate Cox regression analysis of four prognostic
histomorphological features (HPC19, HPC20, HPC21, and HPC39). d Kaplan–Meier survival curves of high-risk, intermediate-risk, or low-risk
groups according to the pathomics signature. e Visualization of histopathological phenotype clusters of HPC19 and HPC39. f Visualization of
HPC39 and HPC19 quantities in representative TMAs for low, intermediate, and high-risk patients.
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histomorphological features, this analysis revealed that only
HPC19 and HPC39 showed independent predictive power for OS
(Fig. 2c). Subsequently, we developed PathoSig, a composite index
incorporating HPC19 and HPC39, along with the corresponding
coefficients obtained from multivariate regression analysis, to
predict the risk of H&E-stained slides, as follows: PathoSig=
(0.2398* HPC39)+ (−0.3393* HPC19).
In the testing dataset, we applied PathoSig and determined the

optimal risk score threshold for H&E-stained TMA slide-level risk
stratification using the five-year ROC analysis. Using this threshold
and a voting algorithm, we stratified the patients in the discovery
cohort into high-, intermediate-, and low-risk groups with
significantly different OS (log-rank p= 0.030) (Fig. 2d). Notably,
the predicted high-risk group demonstrated poorer OS than the
low-risk group (HR= 2.055, 95% CI, 1.165–3.624; log-rank
p= 0.011) (Fig. 2d). This observation was further supported by
representative H&E-stained slides, where H&E-stained slides of
high-risk patients displayed more tiles corresponding to HPC39
and fewer tiles corresponding to HPC19, relative to H&E-stained
slides of low-risk patients (Fig. 2e, f).

Prognostic significance of the PathoSig in independent
validation cohorts
To validate the prognostic significance of PathoSig, we first tested
it on two internal independent cohorts, validation-1(P-SCLC) and
validation-2(C-SCLC), which were not used in the discovery and
model training phases. Using the same PathoSig model and cutoff
from the discovery cohort, we classified patients into three risk
groups (low, intermediate and high) based on histomorphological
phenotypes. We observed a significant stratification in OS time
among the three risk groups (log-rank p= 0.05 and p < 0.001,
respectively) in both internal independent cohorts (Fig. 3a-b).
Kaplan–Meier survival analysis further revealed that high-risk
patients had poorer OS than low-risk patients in both cohorts
(validation-1 cohort: HR= 3.62, 95% CI, 1.164–11.26, p= 0.026;
validation-2 cohort: HR= 9.478, 95% CI, 2.531–35.492, p= 0.001).
Additionally, intermediate-risk patients displayed worse OS than
low-risk patients, but better OS than high-risk patients in both
validation cohorts (Fig. 3a, b). The prognostic value of PathoSig
was further evaluated in the external PUCH cohort. As shown in
Fig. 3c, the PathoSig successfully distinguished patients into low-,
intermediate- and high-risk groups with significantly different OS
(log-rank p= 0.038).
To examine whether PathoSig provides independent prognostic

value, we conducted multivariate Cox regression analyses on

PathoSig in three independent validation cohorts, incorporating
various clinical features (such as sex, age, smoking history, and
stage). Results from the multivariate analysis revealed that the
high-risk group identified by PathoSig remained significantly
associated with poor OS (validation-1 cohort: HR= 5.030, 95% CI,
1.326–19.08, p= 0.018; validation-2 cohort: HR= 9.960, 95% CI,
2.493–39.80, p= 0.001; validation-3 cohort: HR= 2.484, 95% CI,
1.336–4.615, p= 0.004) even after adjusting for various clinico-
pathological features (Table 2). These findings demonstrate that
PathoSig is a robust and independent prognostic factor for
predicting OS in patients with SCLC.

Predictive value of pathomics signature for therapeutic
response
The predictive value of the pathomics signature for the clinical
efficacy of chemoradiotherapy was evaluated by analyzing DFS
and disease recurrence rates in different cohorts. In all four
cohorts, patients who received chemoradiotherapy after surgery
showed significantly shorter DFS durations when classified as
high-risk by PathoSig, compared to the low- and intermediate-risk
groups (log-rank p= 0.015 for discovery cohort; p= 0.013 for
validation-1 cohort; p= 0.043 for validation-2 cohort and p < 0.001
for validation-3 cohort) (Fig. 4a). In addition, the high-risk group
consistently displayed higher recurrence rates (73.1%, 75%, 90%,
and 100%) compared to the low-risk (47.1%, 43.8%, 42.1%, and
50%) and intermediate-risk groups (47.7%, 47.1%, 35.7%, and
45.5%) across all four cohorts (Fig. 4b). Multivariate Cox analysis
also indicated the independent prognostic value of PathoSig for
DFS when adjusting for various clinical features (Discovery cohort:
HR= 1.989, 95% CI, 1.119–3.538, p= 0.019; validation-1 cohort:
HR= 3.755, 95% CI, 1.213–11.62, p= 0.022; validation-2 cohort:
HR= 3.464, 95% CI, 1.055–11.38, p= 0.041 and validation-3
cohort: HR= 2.626, 95% CI, 1.462–4.714, p= 0.001) (Table 3). For
patients with SCLC who underwent preoperative chemoradiother-
apy, four cohorts were combined for further analysis due to the
limitation of a small number of patients in each cohort. The high-
risk group was associated with shorter DFS durations (Fig. 4c). The
5-year DFS rate for the high-risk group was 37.5%, whereas the
corresponding rate for the low-risk group was 61.9%, although
statistical significance was not reached, likely due to sample size
limitations (log-rank p= 0.26) (Fig. 4c). Additionally, the high-risk
group had an increased risk of recurrence compared to the low-
and intermediate-risk groups (62.5% vs. 40% and 35.7%) (Fig. 4d).
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PathoSig added value to the current staging system
To assess whether PathoSig can provide improved survival
predictions within the same clinical stage, we carried out a
stratified analysis of SCLC patients with early-stage (stage I/II) and
late-stage (stage III/IV) disease for both P-SCLC and C-SCLC
patients, respectively. Our findings indicate that PathoSig can
potentially refine existing stage-based prognoses in SCLC.
Kaplan–Meier survival analysis revealed that PathoSig could
classify early-stage patients into high-, low- and intermediate-
risk groups, with obvious differences in OS and DFS observed
between the high- and low-risk groups in both P-SCLC (log-rank
p < 0.001 for both) and C-SCLC patients (log-rank p= 0.071 and
0.018, respectively) (Fig. 5a and Supplementary Figure 3a).
Similarly, PathoSig demonstrated significant prognostic value for
OS and DFS in late-stage patients, both in P-SCLC (log-rank
p= 0.025 and 0.007, respectively) and C-SCLC patients (log-rank
p= 0.006 and 0.16, respectively) (Fig. 5b and Supplementary
Figure 3b). We further conducted a stratified analysis of patients
with or without metastasis and found that PathoSig exhibited
prognostic significance in both metastatic and non-metastatic
subgroups of patients (Fig. 5c, d and Supplementary Figure 3c, d).
In the non-metastatic subgroup of patients, high-risk PathoSig was
associated with significantly shorter OS and DFS compared to
intermediate- and low-risk PathoSig in the P-SCLC cohort (log-rank
p < 0.001 for OS and p < 0.001 for DFS) and the C-SCLC cohort (log-
rank p= 0.001 for OS and log-rank p= 0.79 for DFS) (Fig. 5c and

Supplementary Figure 3c). Similarly, in the metastatic subgroup,
samples with high-risk PathoSig also had poorer OS and DFS
compared to those with intermediate- and low-risk PathoSig in
both P-SCLC (log-rank p= 0.051 for OS and p= 0.0065 for DFS)
and C-SCLC (log-rank p= 0.039 for OS and p= 0.15 for DFS)
patients (Fig. 5d and Supplementary Figure 3d). These results
collectively suggest that PathoSig can add additional prognostic
value to the current staging system.

Stratification analysis of PathoSig for molecular subtypes
We further investigated the association between PathoSig and
consensus molecular subtypes defined by the predominant
expression of transcription factors ASCL1 (SCLC-A), NEUROD1
(SCLC-N), POU2F3 (SCLC-P) and YAP1 (SCLC-Y)11. We measured the
protein expression of ASCL1, NEUROD1, POU2F3, and YAP1 by
immunohistochemistry in 286 SCLC patients of the CHCAMS
cohort, and then classified these SCLC patients into one of four
subtypes based on the predominant expression of four transcrip-
tion factors. Notably, 50.9% of SCLC-A subtype patients were
classified into the low-risk group based on our PathoSig, while the
high-risk group exhibited the highest proportion of patients with
SCLC-N subtype (40.0%) (Fig. 6a). Furthermore, we conducted a
survival risk stratification analysis by integrating the four
molecular subtypes with PathoSig. Notably, patients with the
same molecular subtype were classified into different risk groups
with different OS and DFS outcomes (log-rank p= 0.038 and 0.095

Table 2. Univariable and multivariable analyses for PathoSig and other clinical factors for overall survival in different cohorts.

Characteristics Univariable analysis Multivariable analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Validation cohort-1 (P-SCLC)

PathoSig

Low Ref. Ref.

Intermediate 1.578 (0.481–5.179) 0.452 2.491 (0.701–8.859) 0.159

High 3.620 (1.164–11.26) 0.026 5.030 (1.326–19.080) 0.018

Sex (male vs. female) 1.135 (0.408–3.162) 0.808 1.133 (0.315–4.072) 0.848

Age (>60 vs. ≤60) 1.816 (0.729–4.522) 0.200 7.150 (1.853–27.590) 0.004

Smoking (yes vs. no) 0.698 (0.280–1.738) 0.440 0.483 (0.155–1.510) 0.211

AJCC/UICC (III&IV vs. I&II) 2.602 (1.020–6.641) 0.045 3.722 (1.161–11.93) 0.027

Validation cohort-2 (C-SCLC)

PathoSig

Low Ref. Ref.

Intermediate 2.520 (0.756–8.403) 0.133 2.567 (0.738–8.925) 0.138

High 9.478 (2.531–35.492) 0.001 9.960 (2.493–39.80) 0.001

Sex (male vs. female) 0.906 (0.298–2.755) 0.862 1.419 (0.354–5.691) 0.621

Age (>60 vs. ≤60) 1.879 (0.727–4.861) 0.193 1.966 (0.665–5.816) 0.222

Smoking (yes vs. no) 1.865 (0.428–8.118) 0.406 1.113 (0.182–6.817) 0.908

AJCC/UICC (III&IV vs. I&II) 1.746 (0.676–4.506) 0.249 1.931 (0.731–5.096) 0.184

Validation cohort-3 (P-SCLC)

PathoSig

Low Ref. Ref.

Intermediate 1.376 (0.665–2.847) 0.390 1.125 (0.528–2.398) 0.760

High 2.122 (1.184–3.804) 0.012 2.484 (1.336–4.615) 0.004

Sex (male vs. female) 0.544 (0.309–0.957) 0.035 0.152 (0.048–0.480) 0.001

Age (>60 vs. ≤60) 1.277 (0.765–2.132) 0.349 1.242 (0.723–2.135) 0.432

Smoking (yes vs. no) 0.681 (0.372–1.248) 0.214 3.828 (1.180–12.420) 0.025

AJCC/UICC (III&IV vs. I&II) 2.194 (1.256–3.834) 0.006 1.919 (1.066–3.455) 0.030

Bold values indicates a significant p value.

Y. Zhang et al.

6

npj Digital Medicine (2024)    15 Published in partnership with Seoul National University Bundang Hospital



for SCLC-A subtype; p= 0.057 and 0.15 for SCLC-P subtype;
p < 0.001 and 0.001 for SCLC-N subtype; p= 0.033 and 0.064 for
SCLC-Y subtype) (Fig. 6b–e and Supplementary Figure 4). These
findings indicate that PathoSig was able to further stratify patients
with different molecular subtypes, providing more comprehensive
prognostic information beyond the molecular subtypes
themselves.

DISCUSSION
SCLC presents unique challenges in prognosis prediction and
treatment compared to other lung cancer types12. Unlike lung

adenocarcinoma, where molecular subtyping and targeted
therapies have shown promise, SCLC is often diagnosed at
advanced stages, making surgical intervention less feasible.
Additionally, the limited availability of clinical pathological tissue
samples presents a significant obstacle to in-depth research on
SCLC13,14, and restricts the application of traditional methods that
rely on biopsied tissues and molecular experiments to understand
tumor characteristics and vulnerabilities in SCLC15,16.
This study addressed these challenges by leveraging deep

learning techniques and H&E-stained histopathology images to
develop PathoSig, a predictive pathomics signature for prognosis
and therapeutic response in SCLC. We introduced an unbiased
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method for histomorphological phenotype representation
through self-supervised learning and community detection. Self-
supervised learning offers independence from manual labeling or
delineation of target regions, reducing the potential bias
introduced by human sampling and saving time. Furthermore,
we concentrated on pixel tile segmentation and proposed an
unbiased approach for extracting histomorphological phenotype
representations17,18. This method divides the slides into multiple
non-overlapping mosaic-like regions, providing supplementary
information on cellular arrangement and histological texture
characteristics. Importantly, it eliminates the need to retrain the
model, as would be necessary with supervised or weakly-
supervised end-to-end solutions.
The validation of PathoSig in both medical center cohorts

demonstrated its robust prognostic value and significant potential
for clinical applications. The stratification of patients into low-,

intermediate-, and high-risk groups based on PathoSig allowed for
significant differentiation in OS and DFS, providing more precise
predictions of patient outcomes. Furthermore, the prognostic
capability of PathoSig extends not only to P-SCLC but also to C-
SCLC, a highly heterogeneous subgroup that has been relatively
understudied in previous research. Additionally, PathoSig accu-
rately predicted the clinical efficacy of post-surgery chemora-
diotherapy in patients. We specifically focused on two significant
indicators, DFS and disease recurrence rates, to evaluate the
predictive efficacy of PathoSig. To avoid the confounding effects
of neoadjuvant therapy, we divided patients into “surgery-
sequential chemoradiotherapy” and “chemoradiotherapy-sequen-
tial surgery” to verify the treatment effects of different risk groups.
The results confirm that PathoSig remains valuable in predicting
treatment responses, even when patients have received neoadju-
vant therapy, highlighting its potential as a tool for identifying

Table 3. Univariable and multivariable analyses for PathoSig and other clinical factors for disease-free survival in different cohorts.

Characteristics Univariable analysis Multivariable analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Discovery cohort (P-SCLC)

PathoSig

Low Ref. Ref.

Intermediate 1.031 (0.596–1.782) 0.914 1.130 (0.637–2.004) 0.676

High 2.172 (1.228–3.842) 0.008 1.989 (1.119–3.538) 0.019

Sex (male vs. female) 1.861 (1.080–3.207) 0.025 1.366 (0.673–2.773) 0.388

Age (>60 vs. ≤60) 0.670 (0.406–1.107) 0.118 0.830 (0.493–1.398) 0.483

Smoking (Yes vs. No) 1.635 (0.976–2.737) 0.062 1.281 (0.656–2.502) 0.469

AJCC/UICC (III&IV vs. I&II) 2.314 (1.442–3.712) 0.001 2.127 (1.301–3.478) 0.003

Validation cohort–1 (P–SCLC)

PathoSig

Low Ref. Ref.

Intermediate 0.771 (0.252–2.358) 0.648 1.045 (0.317–3.452) 0.942

High 2.965 (1.133–7.761) 0.027 3.755 (1.213–11.62) 0.022

Sex (Male vs. Female) 1.292 (0.506–3.304) 0.592 1.521 (0.458–5.048) 0.494

Age ( > 60 vs. ≤60) 1.189 (0.484–2.917) 0.706 1.992 (0.667–5.951) 0.217

Smoking (Yes vs. No) 1.001 (0.432–2.321) 0.997 0.633 (0.221–1.812) 0.394

AJCC/UICC (III&IV vs. I&II) 2.403 (1.006–5.736) 0.048 1.855 (0.725–4.750) 0.198

Validation cohort-2 (C-SCLC)

PathoSig

Low Ref. Ref.

Intermediate 1.328 (0.476–3.708) 0.588 1.179 (0.394–3.527) 0.768

High 3.751 (1.233–11.415) 0.020 3.464 (1.055–11.38) 0.041

Sex (male vs. female) 0.749 (0.274–2.046) 0.573 0.933 (0.254–3.427) 0.917

Age (>60 vs. ≤60) 1.466 (0.619–3.468) 0.384 1.414 (0.496–4.032) 0.517

Smoking (yes vs. no) 1.489 (0.437–5.075) 0.525 1.153 (0.264–5.036) 0.850

AJCC/UICC (III&IV vs. I&II) 1.215 (0.515–2.870) 0.657 1.144 (0.476–2.749) 0.763

Validation cohort-3 (P-SCLC)

PathoSig

Low Ref. Ref.

Intermediate 1.255 (0.631–2.499) 0.517 1.305 (0.652–2.613) 0.452

High 2.314 (1.330–4.023) 0.003 2.626 (1.462–4.714) 0.001

Sex (male vs. female) 0.755 (0.440–1.297) 0.309 0.447 (0.153–1.307) 0.141

Age (>60 vs. ≤60) 1.005 (0.617–1.638) 0.983 1.010 (0.618–1.650) 0.968

Smoking (Yes vs. No) 0.802 (0.449–1.433) 0.456 1.620 (0.524–5.014) 0.402

AJCC/UICC (III&IV vs. I&II) 1.887 (1.099–3.237) 0.021 1.823 (1.041–3.193) 0.036

Bold values indicates a significant p value.
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high-risk patients from SCLC postoperative pathological sections,
an important aspect of postoperative management and supple-
mentary treatment planning to enhance DFS and reduce
recurrence rates.
Additionally, PathoSig has demonstrated significant prognostic

stratification capabilities for the recently proposed transcription
factor-based molecular subtypes11. While preclinical studies
indicate that the subtypes may have distinct treatment vulner-
abilities4, their prognostic significance in clinical tumor sample-
based studies remains controversial19,20. Qi et al. reported that the
YAP1 and ASCL1 subtypes showed the best and worst prognosis,
respectively19, but most other studies have failed to confirm the
prognostic stratification significance of these molecular sub-
types21,22. Our earlier research found that the SCLC-Y subtype
has a poorer prognosis in C-SCLC, while its prognostic significance
remains unclear in P-SCLC21, highlighting the need to investigate
further and validate these molecular subtypes to determine their
prognostic significance in clinical settings. Nevertheless, our
findings indicate that PathoSig can provide comprehensive
prognostic information beyond molecular subtyping, suggesting
its potential to improve risk stratification and guide treatment
decisions for patients with SCLC.
Despite the promising results obtained in our study, it is

important to acknowledge several limitations. Firstly, the retro-
spective nature of our study and the reliance on surgical resection
samples raise concerns about the generalizability of PathoSig for
extensive stage cases, which mostly rely on biopsies. Further
validation using biopsy tissue samples is necessary to establish the
validity of our findings. Secondly, the slide-level risk stratification
rules used in this study seem too rigid, lacking a nuanced
approach rather than a clear-cut label due to the intratumoral and
intertumoral heterogeneity of SCLC. More sophisticated models or
risk stratification strategies should be introduced to handle these
heterogeneities more accurately. Moreover, obtaining the neces-
sary medical licensing and regulatory approvals may present
challenges for translating the deep learning model into routine
clinical practice.
In conclusion, our study highlights the potential of utilizing

histopathology images-based deep learning to improve prognos-
tic predictions and therapeutic response evaluation in SCLC. The
PathoSig we developed, validated through extensive analysis of
multicenter retrospective datasets, demonstrates remarkable
predictive performance, robustness and generalizability, offering
clinicians valuable insights for making informed treatment
decisions. Further validation studies and integration of PathoSig
into clinical practice are warranted to fully realize its potential in
improving patient outcomes in SCLC.

METHODS
Ethics statement
This multicenter retrospective study has received ethical approval
from the Ethics Committee and Institutional Review Boards of the
Cancer Hospital, Chinese Academy of Medical Science (No. 22/250-
3452) and Peking University Cancer Hospital (No. 2023KT23). As
this was a retrospective study, the requirement for informed
consent was waived.

Study participants and patient cohorts
We retrospectively collected 380 surgically resected and
pathologically confirmed specimens of SCLC from two indepen-
dent medical centers, including 286 patients from the Cancer
Hospital, Chinese Academy of Medical Science (CHCAMS cohort),
spanning the period from January 2005 to December 2016, and
94 patients from the Peking University Cancer Hospital between
January 2010 and April 2023 (PUCH cohort). The inclusion criteria
for the study were as follows: (i) Pathologically diagnosed with

SCLC, including pure SCLC or combined SCLC; (ii) Availability of
complete clinical and pathologic information; (iii) Availability of
follow-up data for both disease-free survival (DFS) and overall
survival (OS), and (iv) Accessible tumor tissues. DFS is defined as
the time from primary surgery to the first confirmed tumor
recurrence, progression, death, or the last follow-up for disease-
free patients. OS is defined as the time from the surgery date to
death or the last follow-up. The clinical characteristics of these
two cohorts are shown in Table 1.

Acquisition of H&E-stained histopathology images
Archival formalin-fixed paraffin-embedded (FFPE) tumor sections
were retrieved from the pathological specimen repository of
CHCAMS and PUCH cohorts, and subsequently reviewed by
experienced thoracic pathologists following the diagnostic criteria
of the 2021 World Health Organization classification of lung
tumors23. For cases with atypical morphological features, neu-
roendocrine markers such as Neural Cell Adhesion Molecule 1
(NCAM1, also known as CD56), Synaptophysin (Syn) and
Chromogranin A (ChrA), and proliferative index of Ki-67 were
used to differentiate poorly differentiated squamous cell carcino-
mas, adenocarcinomas, carcinoid and atypical carcinoid.
Next, representative tissue slides and corresponding tumor

blocks were chosen for constructing tissue microarrays (TMAs)
(1–4 cores per case, 1.5 mm in diameter and 6mm in depth).
Consecutive tumor sections with a thickness of 4 μm were
obtained for H&E staining using a fully automated and intelligent
staining and sealing system (Dakewe Biotech Co., Ltd. Shenzhen,
China). Again, experienced thoracic pathologists confirmed
qualified tissue core slides with more than 60% tumor purity for
downstream digital scanning captured at 20x magnification using
a digital slide scanner (KF-LPE-006, Jiangfeng Biotechnology Co.,
Ltd., China). We obtained 573 TMA slides from 286 patients of the
CHCAMS cohort and 188 TMA slides from 94 patients of the PUCH
cohort for subsequent image preprocessing.

Image preprocessing
We initially segmented the TMA slides captured at 20x magnifica-
tion into non-overlapping 224 × 224 pixel tiles. Otsu thresholding
was applied to effectively separate the white background from the
tissue regions within the tiles, ensuring that only tiles with tissue
coverage surpassing 60% of the total area were retained. To
enhance the robustness of our model, we employed six random
image augmentation techniques, namely flipping, rotation, con-
trast adjustment, scaling, HSV adjustment and noise addition.
These augmentation techniques were applied during the pre-
processing stage, resulting in an increased diversity of the training
dataset. We generated 223,002 tiles for two medical center
cohorts through this image preprocessing process.

Extraction of histomorphological features via self-supervised
deep learning architecture
We proposed a self-supervised deep learning framework called
DL-CC (Deep Learning with Contrastive Clustering) to extract
histomorphological features from histopathological images. The
DL-CC framework consists of two main modules: the Non-
Redundant Vector Extractor module and the Clustered Instance-
Level Contrastive Feature Mapping module. These modules
automatically extract features from histopathological images and
map them into a 2048-dimensional space, capturing unique
information. Additionally, the framework allows for mapping the
feature space to a 50-dimensional entity space, enabling effective
image clustering.
For the Non-Redundant Vector Extractor module, we utilized a

pair of ResNet50 networks with shared weights to handle distinct
augmented images, allowing us to capture complex
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morphological features within the tissue tiles. The resulting
features are then mapped into a 2048-dimensional space,
effectively converting each 224 × 224 pixel image into a tile
vector representation fz 2 Rd;d ¼ 2048g. To capture robust
feature vectors, a comprehensive strategy is employed to
minimize the total loss. Specifically, the diagonal loss is employed
to define the scaling and rotation boundaries of the feature
vectors. Simultaneously, the off-diagonal loss is utilized to control
the orthogonality of vectors. The cross-correlation matrix c is
calculated in Eq. (1):

c ¼ 1
d
BN zað ÞT�BN zbð Þ (1)

Here, za and zb represent two feature vectors extracted by
ResNet50 after image augmentation, d represents the dimension-
ality of the tile vector representation, and BN represents the Batch
Normalization operation.
The representation loss is then calculated in Eq. (2):

Representation loss ¼
Xd

i¼1

ðcii � 1Þ2 þ λ
Xd�1

i�1

Xd

j¼iþ1

c2ij (2)

Where c represents the correlation matrix, and λ represents the
weight of the loss for uncorrelatedness.
For Clustered Instance-Level Contrastive Feature Mapping

module, two strategies are employed in the clustering part of
our model: instance-level and cluster-level contrastive heads. The
instance-level contrastive head is designed to optimize the
representation of images in the feature space by maximizing the
similarity of ‘positive pairs’ (generated from the same tile images
but subjected to different augmentation techniques) and mini-
mizing the similarity of ‘negative pairs’ (generated from different
tile images). The cluster-level contrastive head projects the
morphological features of the image into a 50-dimensional
feature vector, serving as a “soft label” for each tile and indicating
the probabilistic degree of belongingness to a specific class.
The instance-level contrastive loss is calculated in Eq. (3):

Instance loss ¼ 1
2Nð Þ

XN

i¼1

φa
i þ φb

i

� �
(3)

The cluster-level contrastive loss is calculated in Eq. (4):

Cluster loss ¼ 1
2Mð Þ

XM

i¼1

ψa
i þ ψb

i

� �� H Yð Þ (4)

Here, N represents the batch size (number of image tiles
processed in each iteration), M denotes the number of clusters
(distinct groups the image tiles are mapped to), and H(Y) is the
entropy of cluster assignment probabilities. These loss functions
enhance the model’s ability to learn discriminative feature
representations and improve clustering performance.
Our approach simultaneously optimizes three loss components,

namely the Representation loss, instance-level contrastive loss and
cluster-level contrastive loss, to achieve the overall objective
function24, which can be expressed in Eq. (5):

Loss ¼ Instance lossþ Cluster lossð Þ � 1� αð Þ
þ Representation loss � α (5)

Here, the hyperparameter α is specifically introduced to
regulate the balance between the Representation loss and the
instance-level and cluster-level contrastive losses in our proposed
methodology. It allows for controlling the relative importance of
each loss component.
The DL-CC framework enables a precise transformation of

image data from each slide into an abstract representation in the
histomorphological feature space. The resulting vector

representations for each H&E-stained histopathological image
are high-dimensional and correspond to the number of histomor-
phological clusters identified. Each vector dimension represents
the relative proportion of that cluster within the histopathological
image, providing information about the composition and dis-
tribution of different histomorphological features within
the image.

Development of a pathomics signature (PathoSig)
The univariate analysis was used to assess the relationship
between individual histomorphological features and survival time,
and histomorphological features that are statistically significantly
associated with overall survival are evaluated independently for
their prognostic significance in the multivariate analysis. A
PathoSig was constructed as a linear combination of the selected
prognostic histomorphological features based on the estimated
regression coefficients obtained from the multivariate analysis. To
determine the risk label for each H&E-stained TMA slide, a
threshold is set using the optimal risk score determined from the
five-year ROC analysis in the testing dataset. H&E-stained TMA
slides with risk scores above the threshold are classified as high-
risk, while those below the threshold are classified as low-risk. For
patient-level risk stratification, a voting strategy is employed to
aggregate the risk assessments. If all H&E-stained TMA slides from
a patient are consistently classified as either high-risk or low-risk,
the patient is predicted to belong to the corresponding risk group.
However, in cases where the H&E-stained TMA slides derived from
one patient showed conflicting risk features (both high-risk and
low-risk), the patient was classified as an intermediate-risk group.

Statistical analysis
All statistical analyses were performed using R software (version
4.1.3) and relevant R packages. Continuous variables between two
groups are compared using a Wilcoxon rank sum test, while
categorical variables are compared using Fisher’s exact test or the
Chi-squared test. Survival curves were generated using the
Kaplan–Meier method, and the log-rank test was employed to
compare the curves using the R package ‘survminer’ (version
0.4.9). Cox regression analysis was conducted for univariate and
multivariate analyses to estimate the hazard ratios (HR) and
corresponding 95% confidence intervals (CI).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The H&E images and clinical information analyzed during the current study are not
publicly available for patient privacy purposes. Data access can be obtained through
a reasonable request to L.Y. (yanglin@cicams.ac.cn). Access to the data will be
restricted to non-commercial research, which removes patient-sensitive information.

CODE AVAILABILITY
The source code of this work can be downloaded from https://github.com/
ZhoulabCPH/PathoSig.
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