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Digital remote monitoring for screening and early detection of
urinary tract infections
Alexander Capstick 1,2✉, Francesca Palermo1,2,7, Kimberley Zakka3,4,7, Nan Fletcher-Lloyd 1,2, Chloe Walsh 1,2, Tianyu Cui1,2,
Samaneh Kouchaki 1,2,5, Raphaella Jackson1,2, Martin Tran1,2, Michael Crone 1,2, Kirsten Jensen1,2, Paul Freemont 1,2,
Ravi Vaidyanathan 1,2, Magdalena Kolanko1,2, Jessica True2,6, Sarah Daniels 1,2, David Wingfield1,2, CR&T Group*,
Ramin Nilforooshan 1,2,5,6 and Payam Barnaghi 1,2,3,4✉

Urinary Tract Infections (UTIs) are one of the most prevalent bacterial infections in older adults and a significant contributor to
unplanned hospital admissions in People Living with Dementia (PLWD), with early detection being crucial due to the predicament
of reporting symptoms and limited help-seeking behaviour. The most common diagnostic tool is urine sample analysis, which can
be time-consuming and is only employed where UTI clinical suspicion exists. In this method development and proof-of-concept
study, participants living with dementia were monitored via low-cost devices in the home that passively measure activity, sleep,
and nocturnal physiology. Using 27828 person-days of remote monitoring data (from 117 participants), we engineered features
representing symptoms used for diagnosing a UTI. We then evaluate explainable machine learning techniques in passively
calculating UTI risk and perform stratification on scores to support clinical translation and allow control over the balance between
alert rate and sensitivity and specificity. The proposed UTI algorithm achieves a sensitivity of 65.3% (95% Confidence Interval
(CI)= 64.3–66.2) and specificity of 70.9% (68.6–73.1) when predicting UTIs on unseen participants and after risk stratification, a
sensitivity of 74.7% (67.9–81.5) and specificity of 87.9% (85.0–90.9). In addition, feature importance methods reveal that the largest
contributions to the predictions were bathroom visit statistics, night-time respiratory rate, and the number of previous UTI events,
aligning with the literature. Our machine learning method alerts clinicians of UTI risk in subjects, enabling earlier detection and
enhanced screening when considering treatment.
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INTRODUCTION
Urinary Tract Infections (UTIs) are one of the most common
bacterial infections in older adults, constituting around 25% of all
infections1–5. Clinical presentation ranges from self-limited illness
to severe sepsis. UTIs account for ~9–31% of cases of severe sepsis
which itself has an estimated mortality of 20–40%4,6–9. To
differentiate between asymptomatic bacteriuria and UTIs, clin-
icians rely on positive findings of bacteriuria and genitourinary
symptoms. Diagnosis is further complicated by the presence of
cognitive impairment or dementia since People Living with
Dementia (PLWD) may find it challenging to report their
symptoms, and this could result in further complications10–12. As
a result, acute infections might not be diagnosed until symptoms
require hospitalisation13. In the United Kingdom, over 20% of
hospital beds are occupied by PLWD, with 9% of these attributed
to UTIs14–17.
Currently, a urine sample test and acute changes in baseline

cognition are used to diagnose UTIs in PLWD18. However, samples
can be difficult to obtain due to urinary incontinence, cognitive
impairment, sample contamination or previous use of antibiotics19

and are taken on suspicion of an infection, which may be delayed.
Additionally, although they can be used as rapid detectors,
dipstick tests have a high false positive rate for older adults and
require action from the PLWD or their carer which limits their
effectiveness for diagnosis3,20. Highlighting UTI risk by identifying

early symptoms would allow for prompt diagnosis, improved
health outcomes and effective allocation of healthcare resources.
Machine Learning (ML) offers opportunities for clinical diagnosis

and decision-support and recent advances show promise for
development of advanced predictive models that incorporate
patient data to improve diagnostic performance. For UTI detection
in PLWD, ML can improve diagnostic performance and timeliness.
Several investigations have been conducted for UTI risk prediction
on younger adult populations21,22, which do not generalise to
older adults. Existing methods developed for older adults also rely
on typical symptoms as predictor variables, precluding their use in
community-dwelling patients with dementia with atypical clinical
manifestations and who may struggle expressing symptoms23. In
parallel, low-cost monitoring devices have been developed to
offer complementary solutions to the typical diagnostic cri-
teria24,25. Rantz et al.26 use activity data collected from in-home
Passive Infra-Red (PIR) sensors to detect UTIs in older adults.
However, their work is limited to 37 participants and does not
utilise ML techniques. The study is also limited to the use of
activity data and does not utilise physiological measurements.
Work by Enshaeifar et al.17 employed an unsupervised approach
to predict UTIs based on in-home sensors and physiological
measurements, however their work showed insufficient diagnostic
performance and required the participant to record their own
physiology measurements twice a day.
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This study presents a machine learning application to identifying
the risk of UTI events in PLWD by analysing symptom-targeted
features, engineered from continuous in-home activity and physiol-
ogy data collected by low-cost and passive sensors (Fig. 1 presents
an overview). Then, through optimisation and consultations with
clinicians, we determine thresholds for the stratification of the risk
scores to improve the algorithm’s clinical applicability. The proposed
approach has been evaluated in an observational clinical study
consisting of 117 participants living with dementia within their own
homes. We have worked closely with healthcare professionals to
implement a reliable and non-intrusive UTI risk model. Our work will
(1) aid clinicians in the early diagnosis of UTIs, and (2) enable a better
understanding of in-home behaviour at the point of clinical decision-
making. The use of high-resolution in-home observation and
measurement data in conjunction with machine learning methods
result in timely interventions that can have a significant impact on
reducing preventable and unplanned hospital admissions in
dementia patients. Such a tool allows for precise collection of urine
samples for culture analysis, improved clinical outcomes, a reduction
in the burden on healthcare services, and decreased antibiotic
overuse and misuse in PLWD by reducing UTI detection time and
providing practitioners with more complete pictures of their patients.

RESULTS
Model performance
We examined Logistic Regression (LR), Extreme Gradient Boosting
Decision Trees (XGBoost)27, Multilayer Perceptron (MLP), Self-
Attention28, Random Forest (RF)29, and Naive Bayes (NB) in their
effectiveness to predict UTI events and found the best-performing
classification model was LR with L2 regularisation, acting over 3
consecutive days of data. Table 1 presents this model perfor-
mance on the different data splits. Results from the other models
are included in Supplementary Information Section 10. Analysis of
model reliability and calibration can be seen in Supplementary
Information Section 11.

Risk stratification
To improve flexibility of the model to varying clinical settings, we
calculate stratified risk scores as discussed in Section: Stratification
of Risk Scores for Clinical Reporting. Figure 2 shows the sensitivity
and specificity that can be achieved on the validation set by
stratifying the results. By varying the stratification thresholds,
sensitivity and specificity can be balanced with the number of
people given Green and Red alerts. In Supplementary Information
Section 12.1, we present the performance variations when jointly

changing the Red and Green thresholds. Here, we select thresh-
olds ½0%; 30%�; 30%; 80%ð �, and 80%; 100%ð � (following interval
notation) for groups Green, Amber, and Red respectively. Table 1
shows the results of grouping the risk predictions on the Red and
Green groups.

Early detection
We evaluated the model’s utility in correctly estimating the risk of
UTIs prior to the recorded clinical urine tests. Figure 3
demonstrates specificity, sensitivity and the area under
precision-recall curve for days prior to the recorded UTI events.
This shows that 2 days prior to a sample test, our model achieved
a sensitivity of 64.4 (95% CI= 61.1–67.8), specificity of 68.9 (95%
CI= 66.8–71.0), and area under the precision-recall curve of 64.5
(95% CI= 63.0–66.0), and 4 days prior, a sensitivity of 64.4 (95%
CI= 61.1–67.8), specificity of 71.9 (95% CI= 67.9–75.8), and area
under the precision-recall curve of 65.4 (95% CI= 60.8–70.0).

Feature importance
The most important features influencing predictions were
identified using SHapley Additive exPlanations (SHAP)30, a method
for producing explainable predictions and calculating contribu-
tions from individual features to risk scores. The results of this, on
the test set, can be seen in Fig. 4a and reveal that the number of
previous confirmed UTI events, the standard deviation of the
nocturnal respiratory rate, the nocturnal average heart rate, and
the number of nocturnal awake states were positively correlated
with a higher risk score. We can also breakdown single predictions
to understand contributions to a risk score, as show in Fig. 4b.
Further examples can be seen in Supplementary Information
Section 13.

Frequency of generated alerts
To understand the requirements of our model in a clinical setting,
we calculated the risk groups of each day of data between 2022/
10/05 and 2022/12/01, for each of the PLWD in our dataset. We
find that on average, each of the PLWD will receive 0.25 Green
alerts, 0.69 Amber alerts and 0.06 Red alerts each day. In
Supplementary Information Section 14, we visualise how this risk
score varies over time and in Supplementary Information Section
15, we present the model performance on subsets of the sensors.
Additionally, in Supplementary Information Section 16, we
compare the performance between those with recurrent and
non-recurrent UTIs and in Supplementary Information Section 17,
we compare the results between Male and Female participants.

a b dc

Fig. 1 The dataset. a All PIR activations measured and the corresponding time of day. b The average proportions of PIR activations in a time
period for days containing a verified positive and negative UTI label for a selected participant. The difference in Bathroom activity is of note,
showing a significant increase in use for those days corresponding to a positive UTI. c All sleep state measurements within the dataset and the
corresponding time of day. d The first of the graphs show the percentage of a given time window a single participant spent in bed and awake;
the second and third shows the difference in heart rate and respiratory rate distributions for days labelled as positive and negative UTI for a
single participant. The elements of the boxplots correspond to: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers. Here HR corresponds to heart rate and RR corresponds to respiratory rate.
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DISCUSSION
The 2020 report of the Lancet Commission on dementia
prevention, treatment, and care emphasises the significance of
individualised interventions to address complex medical problems
in dementia, which result in unnecessary hospital admissions,
accelerated functional decline, and decreased quality of life31. An
area of priority development is infection prevention and timely
detection and treatment32. By conducting preliminary experi-
ments into early identification of possible UTIs in remote
healthcare settings, we hope to contribute to directly addressing
this priority by investigating more individualised, predictive, and
preventative healthcare.
We present a machine learning pipeline for continuous UTI risk

screening via analysis of passively collected in-home activity and
physiology data. We considered several models and found that LR
acting over 3 days attained the top performance (sensitivity of
65.2% (95% CI= 64.3–66.2) and 54.5% (95% CI= 52.7–56.4), and
specificity of 70.9% (95% CI= 68.6–73.1) and 73.0% (95%
CI= 71.2–74.8) on “Date-ID Split" and “Date Split" respectively).

The performance was higher on “Date-ID Split" than “Date Split",
which we hypothesise is due to some PLWD who have opposing
labels in the training and testing data. In this case, in “Date Split",
the model might over-fit to the training data from a PLWD.
However, in “Date-ID Split" all data seen by the model during
testing is from participants not appearing in training. The ratios of
positive to negatives in the test sets of the “Date Split" and the
“Date-ID Split" are 0.31 and 0.32 respectively and 0.47 and 0.47 for
the training set of the “Date Split" and the “Date-ID Split"
respectively.
Through stratification, risk scores were transformed into more

accessible groups, allowing for the flexible management of
actionable alerts within a time period. Following this, the
performance on the Green and Red groups were significantly
improved, achieving a sensitivity of 74.7% (95% CI= 67.9–81.5)
and 69.0% (95% CI= 64.4–73.5), and specificity of 87.9% (95%
CI= 85.0–90.9) and 94.1% (95% CI= 92.0–96.2) on the “Date-ID
Split" and “Date Split" respectively.
SHAP analysis then highlighted the features most strongly

predictive of the risk score. Our analysis shows that an increase in
the number of previously confirmed UTI events was associated

Table 1. Mean (95% CI) % of sensitivity, specificity, and area under the precision-recall curve of the UTI prediction model on the different data splits
with 10 bootstrap repeats.

Before risk Stratification

Sensitivity Specificity AUC Precision-Recall

Date Validation 67.3 (65.9–68.6) 69.1 (66.9–71.4) 67.7 (66.4–69.0)

Date Test 54.5 (52.7–56.4) 73.0 (71.2–74.8) 54.4 (53.4–55.4)

Date-ID Validation 87.7 (85.2–90.2) 66.0 (64.4–67.7) 78.3 (76.8–79.7)

Date-ID Test 65.2 (64.3–66.2) 70.9 (68.6–73.1) 63.5 (61.8–65.2)

After Risk Stratification

Sensitivity Specificity Precision

Date Validation 86.6 (80.9–92.3) 94.5 (91.7–97.3) 87.3 (82.2–92.4)

Date Test 69.0 (64.4–73.5) 94.1 (92.0–96.2) 81.9 (75.5–88.2)

Date-ID Validation 98.3 (95.5–101.1) 90.0 (85.5–94.5) 81.7 (74.4–89.1)

Date-ID Test 74.7 (67.9–81.5) 87.9 (85.0–90.9) 77.0 (71.9–82.1)

These results are reported before and after risk stratification is performed.

Fig. 2 Sensitivity and specificity with different thresholds. The
variations in sensitivity and specificity that can be achieved on the
validation set by changing the thresholds for defining Green and
Red groups. The line colours represent different threshold values.
Sensitivity and specificity are calculated on the data in the validation
set corresponding to Red and Green alerts. Here, to calculate the
metrics on the Green group, the Red threshold was set at >50%, and
when calculating the metrics on the Red group, the Green threshold
was set at ≤50%. This figure shows the average results from the
“Date Split" and “Date-ID Split".

Fig. 3 Performance at days prior to UTI label. The performance of
the model when tasked with analysing the risk of a UTI from the test
set, at different numbers of days prior to the verified recorded date.
The error bands represent the 95% confidence interval (1000
bootstrap samples) of the mean of the values from the 10 bootstrap
repeats.
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with a positive UTI prediction, agreeing with the literature33. We
also highlighted the frequency of the lounge and hallway
activations as negatively correlated with risk score, whilst the
bedroom frequency was positively correlated. We postulate that
this results from participants spending more time in bed due to
interrupted sleep, or due to the effects of comorbidities. Third,
increases in the standard deviation of the night time respiratory
rate and the night time average heart rate were correlated with a
higher risk of a UTI. Nocturnal respiratory rate has been linked to
stress, reflects physiologic and pathophysiologic determinants,
and has been suggested as a biomarker for impending
hospitalisation34–38. Increased nocturnal awake occurrences were
associated with a higher UTI risk, suggesting PLWD with UTIs were
having more disturbed nights of sleep; in agreement with the
literature39. This could additionally explain why increased standard
deviation of the night time respiratory rate and the night time
average heart rate were correlated with a higher risk of a UTI.
Considering the clinical manifestations of UTIs in older adults, our
feature importance results agree with the current understanding
of UTIs in PLWD.
This study contains a few limitations that would also allow for

future research directions. Whilst this work was conducted using
readily available and low-cost sensors (with preliminary analysis of
sensor importance presented in Supplementary Information
Section 15), further directions of work could improve the
understanding of the balance between the cost and complexity
of deployment and UTI risk prediction performance. The deployed
PIR sensors allow us to collect data at low cost, but they do not
allow for the distinction between data generated by the person of
study and other members of the house. Further work could
explore methods of passively collecting personalised data. We
found that the sleep mat (which does collect personalised data)
significantly improved the analysis performance (Supplementary
Information Section 15). In Supplementary Information Section 11,
we discuss the model reliability and calibration and find that our
model overestimates UTI risk, likely because of the data imbalance
in the training set. This motivates the applied risk stratification
which allows the monitoring team to balance the sensitivity and
specificity with the number of generated alerts; however, when
deploying this system, work should be done to understand the
trade-off between false positives and false negatives to ensure
that the risk groups are well-calibrated. Finally, whilst this work
focused on an important section of the population (People Living
with Dementia), it would be helpful to apply these techniques in a
larger cohort study or one containing older adults in community
living environments such as care homes, assisted living, or skilled
nursing facilities.

Our feasibility study was conducted within real-world in-home
settings on data collected in (near) real-time using off-the-shelf
and low-cost sensory technologies and engineered, clinically
meaningful, features for predicting UTIs determined by clinicians,
urine sample analysis, and a clinical monitoring team. We provide
preliminary evidence for the use of such an operation and model
which, with further testing, could prove to reduce delays in
detecting UTIs in PLWD, and potentially reduce the number of
avoidable hospital admissions when used to support clinicians
with care. The proposed approach can be scaled rapidly and
enable human-in-the-loop decision support by taking advantage
of technological advancements, cloud computing, and machine
learning. Moreover, risk stratification allows for model calibration
to improve patient outcomes and care delivery whilst balancing
the cost associated with testing for UTIs. Within an ongoing study
or in production, the group thresholds can be modified over time
to account for care team resources. SHAP analysis will enable the
presentation of explainable results (such as in Supplementary
Information Section 13), allowing clinicians to explore why the UTI
algorithm has made a given prediction. Additional future work will
involve continuing to investigate our in-home monitoring
systems’ effects on clinical outcomes, as well as patients’ quality
of life.
When deployed, our model will be continually trained on new

data as collected. To ensure the performance consistently meets a
minimum standard, we will routinely evaluate the model on a test
set and track its performance. Feature importance will also be
monitored to confirm the algorithm is producing clinically
founded results. This will enable rapid debugging of errors and
maintain a high level of quality in predictions.

METHODS
Study design and population
This study was performed in collaboration with Imperial College
London and Surrey and Borders Partnership NHS Trust. Partici-
pants were recruited from the following: (1) health and social care
partners within the primary care network and community NHS
trusts, (2) urgent and acute care services within the NHS, (3) social
services who oversee sheltered and extra care sheltered housing
schemes, (4) NHS Community Mental Health Teams for older
adults (CMHT-OP), and (5) specialist memory services at Surrey
and Borders Partnership NHS Foundation Trust. All participants
provided written informed consent. Capacity to consent was
assessed according to Good Clinical Practice, as detailed in the
Research Governance Framework for Health and Social Care
(Department of Health 2005) and the Mental Capacity Act 2005.
Participants were provided with a Participant Information Sheet

a b

Fig. 4 SHAP values. a The feature importance for the top 10 most important features, as calculated by SHAP on the test set, and their
corresponding feature values. The colour represents the normalised feature value, whilst the position in the x-axis represents the contribution
that value made to the prediction. “MA" refers to the moving average, whilst “Delta" refers to the percentage change in the value from the
previous day. These values are calculated on the test set of the “Date-ID Split". b The breakdown of a single prediction shows how each feature
contributed to a correct prediction of a positive UTI. Here, the values on the arrows correspond to the normalised feature value in units of
standard deviations away from the mean.
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(PIS) that includes information on how the study used their
personal data collected in accordance with the GDPR require-
ments. If the participant was deemed to lack capacity, a personal
or professional consultee was sought to provide written consent
to the study. Additionally, capacity of both the participant and
study partner is assessed at each research visit. Research staff
conducting the assessment have completed the NIHR GCP
training and Valid Informed Consent training. If a participant is
deemed to lack capacity but is willing to take part in the research,
a personal consultee is sought in the first instance to sign a
declaration of consent. If no personal consultee can be found, a
professional consultee, such as a key worker, is sought. This
process is included in the study protocol and ethical panel
approval is obtained.
Eligible study participants included adults >50 years with a

clinically ascertained diagnosis of dementia or mild cognitive
impairment and current or previous treatment at a psychiatric
unit. Participants lacking capacity for informed consent were
required to have a partner or caregiver who had known them for
at least 6 months and was able to attend research assessments
with them. Exclusion criteria were as follows: (1) patients receiving
treatment for terminal illness (2) presence of severe mental health
conditions including depression, anxiety, psychosis, and agitation
(3) presence of active suicidal thoughts. In total, 117 participants
were selected for participation using the above-mentioned
recruitment process.
The cohort characteristics can be seen in Table 2 and a patient

disposition is available in Supplementary Information Section 1.

Data collection and definition of outcome
Demographic data was collected during the baseline assessment,
whilst psychometric scales were used to collect various physical
and cognitive data during regular visits. In-home observation and
measurement data was obtained using low-cost off-the-shelf
monitoring technologies, including PIR sensors (for measuring
activity) and sleep monitoring devices. Figure 1 presents cohort-
wide sleep and activity activations, and differences in sleep and
activity for a participant with both UTI positive and negative days.
PIR sensors can detect motion within 9 metres and with a
maximum angle of 45∘ and the sleep mat device can monitor
breathing rates, heart rates, and sleep states. For an illustration of
the layout of sensors see Supplementary Information Section 2.
Urine samples were collected from several enrolled participants

to be labelled by clinicians. Additionally, a baseline algorithm
developed in our previous work40 suggested patients to the study
monitoring team to check for additional symptoms of UTIs and
arrange a sample collection and refer to the GP if needed. Once
samples were collected, a urine sample analysis was performed
and the results sent to clinicians, who with information from the
monitoring team, determine a UTI. In total, we have 258 labelled
urine samples from 64 participants, of which 81 were confirmed
positive UTI cases. If a single day has been labelled, we assume the
preceding and proceeding 3 days would also be labelled the same
(see Supplementary Information Section 6). This extends the
number of labelled days of data to 1752, consisting of 534
positives and 1218 negatives. For our experimentation, we used
data collected between 2021/06/28 and 2022/12/01. The models
were trained to predict whether a participant had a UTI on a given
day (24 h time window). The distribution of labels can be found in
Supplementary Information Section 3.

Data pre-processing and feature selection
In addition to sensor readings, we performed feature engineering
inspired by well-known symptoms of UTIs such as incontinence,
urgency and increased frequency of urination, and behavioural
changes (https://www.nhs.uk/conditions/urinary-tract-infections-

utis/) to allow clinical interpretability and improve model
performance and generalisability.
Raw features were: (1) frequency of bathroom, bedroom,

hallway, kitchen, lounge activations; (2) mean and standard
deviation of nocturnal heart rate and respiratory rate; (3) nocturnal
awake occurrences. Engineered features were: (4) bathroom day
and nocturnal frequencies, moving average, and percentage
change; (5) mean and standard deviation of the movement time
from any location within the house to bathroom; (6) daily entropy
in PIR sensor activation; (7) number of previous UTIs to date. More
information on the features selected can be found in Supple-
mentary Information Section 4.
Data collection occurred outside controlled environments using

in-home devices so missing measurements inevitably occurred. To
limit the effects of incomplete data41, we imputed missing values
based on strategies depending on the given features (see
Supplementary Information Section 5 for more information).

Analysis platform
All analyses were performed on a secure computing environment
at Imperial College London using Python version 3.9. The
Pandas42, Numpy43, Scikit-Learn44, and Pytorch45 packages formed
much of our pipeline.

Table 2. Characteristics of the study cohort.

Characteristic Entire cohort Labelled
cohort

No. % No. %

Sex

Female 54 46 27 42

Male 63 54 37 58

Birth year

1920-1930 13 11 5 8

1930-1940 47 40 27 42

1940-1950 41 35 26 41

1950-1960 13 11 5 8

1960-1970 2 2 1 2

1970-1980 1 1 0 0

Ethnicity

White 95 81 60 94

Asian 8 7 3 5

Black/African/Caribbean 3 3 0 0

Mixed/Multiple Groups 1 1 0 0

N/A 10 9 1 2

Household

Lives Alone 45 38 16 25

Lives with Partner 60 47 73

N/A 12 10 1 2

Primary diagnosis

Alzheimer’s 61 52 39 61

Vascular Dementia 10 9 5 8

Parkinson’s 5 4 2 3

Other and Mixed 40 34 18 28

N/A 1 1 0 0

Some participants requested not to share their information outside the
study and correspond to the Not Available information.
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Methodology
To ensure generalisability, we evaluated our work in two different
ways.
Firstly, the dataset was split temporally into training and testing

subsets in an 80:20 ratio. The data collected from 2021/06/28 to
2022/10/05 represented 80% (n= 1394 days in total, from p= 54
participants) of the dataset, whilst the data between 2022/10/05
and 2022/12/01 represented 20% (n= 358, p= 39).
This formed the first analysis, evaluating the model at making

predictions on future data from the same cohort as it was trained
on. We will refer to this experimental setting as “Date Split".
In the second analysis, we used a leave-one-out cross-validation

strategy46. Here, data was split in the same way as in the first
evaluation method. Then, training and testing of our machine
learning models was performed using a leave-one-out strategy on
data from each of the PLWD. This way, we are able to test the
model performance on data from participants outside of the
cohort it has been trained on. We will refer to this experimental
setting as “Date-ID Split".
During model development and whilst optimising model

parameters, validation sets were produced by splitting the training
data on the date 2022/09/11. All experiments were performed
multiple times, with each run using a bootstrap sample46 of the
training set to ensure reproducibility. See Supplementary Informa-
tion Section 8 for a visualisation of this evaluation.
We used sensitivity, specificity, and area under the precision-

recall curve to measure model performance (for definitions of
metrics, please see Supplementary Information Section 7).

Model development
We tested Logistic Regression (LR), Extreme Gradient Boosting
Decision Tree (XGBoost)27, Multilayer Perceptron (MLP), Self-
Attention28, Random Forest (RF)29 and Naive Bayes (NB) models
at predicting the risk of UTIs. Hyper-parameters were tuned using
Bayesian optimisation on train-validation splits, with the model
producing the highest area under the precision-recall curve (on
validation data) selected for the final analysis. The number of days
of data used as input to the model was jointly tested, ranging
from 1 day to 7 days. Supplementary Information Section 9
contains information on the decisions made regarding each step
of the UTI model pipeline.

Stratification of risk scores for clinical reporting
Risk scores from the model are stratified into three groups, used to
inform clinical decisions in a concise way and provide precise
control over the number of actionable alerts. Outputs are split into
the groups Green, Amber, and Red; referring to minimal, medium,
and high risk of a UTI respectively. By varying these thresholds, we
can balance levels of sensitivity and specificity for the different
groups with the number of alerts. This allows our process to be
flexible to different clinical scenarios and resources.
Within this work, the optimal thresholds used in our analysis of

results were calculated using the algorithm’s predictions on the
data collected between 2022/09/11 and 2022/10/05 (validation
data), and with feedback from a clinical team. More information
on the risk stratification is included in Supplementary Information
Section 12.

Ethics approval
The study received ethical approval from the London-Surrey
Borders Research Ethics Committee; TIHM 1.5 REC: 19/LO/0102.
The study is registered with National Institute for Health and Care
Research (NIHR) in the United Kingdom under Integrated Research
Application System (IRAS) registration number 257561.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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