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Artificial intelligence-enabled ECG for left ventricular diastolic
function and filling pressure
Eunjung Lee 1, Saki Ito1, William R. Miranda1, Francisco Lopez-Jimenez1, Garvan C. Kane1, Samuel J. Asirvatham1,
Peter A. Noseworthy1, Paul A. Friedman 1, Rickey E. Carter 2, Barry A. Borlaug 1, Zachi I. Attia 1 and Jae K. Oh 1✉

Assessment of left ventricular diastolic function plays a major role in the diagnosis and prognosis of cardiac diseases, including
heart failure with preserved ejection fraction. We aimed to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG)
model to identify echocardiographically determined diastolic dysfunction and increased filling pressure. We trained, validated, and
tested an AI-enabled ECG in 98,736, 21,963, and 98,763 patients, respectively, who had an ECG and echocardiographic diastolic
function assessment within 14 days with no exclusion criteria. It was also tested in 55,248 patients with indeterminate diastolic
function by echocardiography. The model was evaluated using the area under the curve (AUC) of the receiver operating
characteristic curve, and its prognostic performance was compared to echocardiography. The AUC for detecting increased filling
pressure was 0.911. The AUCs to identify diastolic dysfunction grades ≥1, ≥2, and 3 were 0.847, 0.911, and 0.943, respectively.
During a median follow-up of 5.9 years, 20,223 (20.5%) died. Patients with increased filling pressure predicted by AI-ECG had higher
mortality than those with normal filling pressure, after adjusting for age, sex, and comorbidities in the test group (hazard ratio (HR)
1.7, 95% CI 1.645–1.757) similar to echocardiography and in the indeterminate group (HR 1.34, 95% CI 1.298–1.383). An AI-enabled
ECG identifies increased filling pressure and diastolic function grades with a good prognostic value similar to echocardiography. AI-
ECG is a simple and promising tool to enhance the detection of diseases associated with diastolic dysfunction and increased
diastolic filling pressure.
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INTRODUCTION
Left ventricular diastolic function becomes abnormal in myocar-
dial diseases, and with the worsening of diastolic function, filling
pressure rises even in the setting of preserved ejection fraction1.
Documentation of increased left ventricular filling pressure is,
therefore, a key component in the diagnosis of heart failure with
preserved ejection fraction which is becoming a major cardiovas-
cular condition1–3. Moreover, elevated diastolic filling pressure has
been associated with heart failure symptoms and higher mortality
in patients with myocardial infarction, valvular diseases, and
cardiomyopathies4–7.
Diastolic function is most commonly evaluated by echocardio-

graphy8. However, assessment of diastolic function requires a
skilled sonographer and a cardiologist with advanced training in
echocardiographic interpretation, and results of diastolic function
assessment are equivocal in a substantial proportion of patients9.
Twelve-lead electrocardiography (ECG) is widely performed with

little cost and recent studies have shown that artificial intelligence
(AI)-enabled ECG accurately detects various cardiac disorders that
have historically required more advanced imaging to detect10–12.
We sought to develop and validate a deep neural network based
on 12-lead ECG to predict diastolic function and increased filling
pressure determined by echocardiography, and then evaluate its
associations with all-cause mortality.

RESULTS
For this study, 274,710 patients who had an ECG and echocardio-
graphic diastolic function assessment within 14 days were
identified with no exclusion criteria. Using the recommended

algorithm, echocardiography determination of diastolic function
was possible in 219,462 patients (80%) but was indeterminate in
55,248 patients (20%). Baseline patient characteristics were similar
among training, validation, and testing groups (Supplemental
Table 1). There were 20,264 patients with left ventricular ejection
fraction <50% (9.2%), 15,548 patients with cardiac amyloidosis
(7.1%), 8,161 patients with hypertrophic cardiomyopathy (3.7%),
and 5409 patients with moderate to severe aortic stenosis (2.5%).
In the test set, estimated diastolic filling pressure by echocardio-
graphy was normal in 76,880 patients including 57,301 (58%) with
normal diastolic function and 19,579 (19.8%) grade 1 dysfunction,
and increased in 21,883 patients including 17,815 (18%) grade 2
and 4068 (4.1%) grade 3 dysfunction. Patients with increased
filling pressure determined by echocardiography were older and
had more comorbidities (p < 0.001, Table 1). Similarly, patients
identified as having increased filling pressure by AI-ECG had more
comorbidities (p < 0.001, Supplemental Table 2).

AI-enabled ECG classification performance
In the test set, the AI-enabled ECG for predicting echocardio-
graphically determined increased filling pressure had an area
under the curve (AUC) of the receiver operating characteristic
(ROC) curve of 0.911 (95% CI: 0.909–0.914) with a sensitivity of
83.2%, specificity of 82.9%, positive predictive value (PPV) of 58%,
and negative predictive value (NPV) of 94.5% with the threshold of
0.26, and prevalence of 22.2% (Fig. 1a and Table 2). The AI-enabled
ECG’s AUCs for grade ≥1, grade ≥2, and grade 3 were 0.847 (95%
CI: 0.844–0.85), 0.911 (95% CI: 0.909–0.914), and 0.943 (95% CI:
0.938–0.948) at thresholds of 0.443, 0.264, 0.058, respectively
(Fig. 1b and Table 2). The median output values for the increased
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filling pressure from the model were significantly higher in the
diastolic function grades 2 and 3 by echocardiography compared
to normal and grade 1 (Fig. 2). The model showed higher
specificity in younger patients and among patients with more
comorbidities there was a tendency towards decreased specificity
(Supplemental Fig. 1 and Table 3). Echocardiographic diastolic
parameters significantly differed between patients identified by
the model to have increased and normal filling pressure patients
in the testing (Supplemental Fig. 2). Those diastolic parameters

were almost identical in patients with normal filling pressure
determined by AI-ECG and echocardiography. Those values in
patients with increased filling pressure by both AI-ECG and
echocardiography were consistent with grade 2–3 diastolic
dysfunction and significantly different from values in patients
with normal filling pressure. In the indeterminate group, all
echocardiographic diastolic parameters except e’ velocity are
significantly different between normal and increased filling
pressure determined by AI-ECG (Supplemental Fig. 3).

Table 1. Patient characteristics of four diastolic grade groups determined by echocardiography in test set.

Test (n= 98,763)

Normal (n= 57,301) Grade 1 (n= 19,579) Grade 2 (n= 17,815) Grade 3 (n= 4068)

Age, year 54.0 ± 16.0 69.0 ± 10.8 73.9 ± 12.4 69.2 ± 14.6

Female sex, number (%) 28,873 (50.4%) 9678 (49.4%) 10,049 (56.4%) 1493 (36.7%)

Myocardial infarction, number (%) 3269 (5.7%) 1735 (8.9%) 2746 (15.5%) 705 (17.4%)

Congestive heart failure, number (%) 4774 (8.4%) 2598 (13.3%) 6777 (38.1%) 2633 (64.9%)

Cerebrovascular disease, number (%) 3835 (6.7%) 2340 (12.0%) 2537 (14.3%) 465 (11.5%)

Chronic pulmonary disease, number (%) 6444 (11.3%) 3097 (15.9%) 4370 (24.6%) 1051 (25.9%)

Diabetes, number (%) 5778 (10.1%) 3356 (17.1%) 5086 (28.5%) 1206 (29.6%)

Renal disease, number (%) 4786 (8.4%) 2633 (13.5%) 5288 (29.8%) 1406 (34.7%)

Hypertension, number (%) 19,673 (34.4%) 10,779 (55.2%) 11,990 (67.5%) 2378 (58.6%)

Obesity, number (%) 18,141 (31.7%) 6630 (33.9%) 6385 (35.8%) 1423 (35.0%)

Values are n (%) or mean ± SD. Obesity was defined as body mass index ≥30. Renal disease includes any stages of chronic kidney disease, hypertensive kidney
disease, glomerulonephritis, nephritic syndrome, hereditary nephropathy, end-stage renal disease, unspecified kidney failure, dialysis, and kidney transplant
status.

Fig. 1 AI-enabled ECG ROC curves for diastolic function grade and filling pressure. a ROC plot for detecting increased filling pressure.
b ROC plots for detecting diastolic function grades using an ordinal scale. ROC receiver operating characteristic, AUC area under the curve.

Table 2. Model performance for filling pressure and diastolic function from the AI-enabled ECG in test set with AUC, sensitivity, specificity, PPV, and
NPV.

Class Prevalence AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Increased filling pressure 22.2% (21,883/98,763) 0.911 83.2 82.9 58.1 94.5

Grade 1 or above 42% (41,462/98,763) 0.847 76.6 75.3 69.2 81.6

Grade 2 or above 22.2% (21,883/98,763) 0.911 83.2 82.9 58.1 94.5

Grade 3 4.1% (4068/98,763) 0.943 89.8 86.0 21.6 99.5

Thresholds for grade 1 or above, grade 2 or above (increased filling pressure), and grade 3 are 0.443, 0.264, and 0.058, respectively, to evaluate the
performance.
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The AI-enabled ECG trained exclusively by ECG Lead I had AUCs
of 0.804 (95% CI: 0.801–0.807), 0.875 (95% CI: 0.872–0.878), and
0.915 (95% CI: 0.909–0.921) for grade ≥1, grade ≥2, and grade 3,
respectively. The AI-enabled ECG trained by ECG Lead I median
beat had AUCs of 0.763 (95% CI: 0.76–0.766), 0.834 (95% CI:
0.83–0.837), and 0.877 (95% CI: 0.87–0.884), respectively.
The AUCs of AI-enabled ECG between before and after the

median year of the echocardiography exam, i.e., 2014, were 0.856
and 0.839 for grade ≥1, 0.91 and 0.913 for grade ≥2, and 0.944 and
0.942 for grade 3, respectively (Supplemental Fig. 4).

Survival analysis
Death from any cause was observed in 20,223 (20.5%) of 98,763
patients in the test group and 18,224 (33.0%) of 55,248 in the
indeterminate group over a median follow-up of 5.9 years (IQR 2.7,
10.2) and 5.7 years (IQR 2.6, 9.9), respectively. Mortality was
significantly higher in patients with increased filling pressure
compared to those with normal filling pressure predicted by the
AI-enabled ECG after adjusting for age, sex, and comorbidities
(hazard ratio (HR) 1.7, 95% CI 1.645–1.757; Fig. 3a). It was similar to
the mortality predicted by echocardiographically determined filling
pressure (HR 1.65, 95% CI: 1.597–1.705; Fig. 3b). All-cause mortality
was also predicted by diastolic function grading determined by
ECG with significantly higher mortality in patients with grade 2 and
3 diastolic dysfunction compared to those with normal or grade 1
diastolic dysfunction (HR 1.299, 95% CI 1.279–1.319, Fig. 3c).
Diastolic function grading based directly upon echocardiographic
parameters had a similar prognostic value (HR 1.298, 95% CI
1.277–1.32, Fig. 3d) even after adjusting for age, sex, and
comorbidities. Since some patients had a discordance between
AI-ECG and echocardiography determination of diastolic function,
the study patients were separated into four groups in each
category of diastolic dysfunction: true positive (TP; AI-ECG (+) and
echocardiography (+), true negative (TN; AI-ECG (−) and
echocardiography (−), false positive (FP; AI-ECG (+) and echocar-
diography (−), and false negative (FN; AI-ECG (−) and echocardio-
graphy (+)). While TP had the worst mortality and TN the best in all
3 diastolic dysfunction groups, FP and FN groups had a similar
mortality in grade ≥1 or ≥2, but FP was found to have the same
mortality as that of TP which was significantly worse than that of

FN (HR 1.402, 95% CI 1.281–1.535) for grade 3 after adjusting for
age, sex, and comorbidities (Supplemental Fig. 5).
The risk of death was also greater among patients in the

indeterminate group with higher filling pressure predicted from
the AI-enabled ECG (HR 1.34, 95% CI 1.298–1.383). Among patients
with normal filling pressure by the AI-enabled ECG, grade 1
dysfunction had worse survival than normal grade in both the
testing and the indeterminate groups (Fig. 3c, e). Among patients
with grade 1 diastolic dysfunction by echocardiography, 54.7%
were classified as normal by the AI-enabled ECG, and those who
were labeled as normal had lower risk of death than patients who
labeled as grade 1 dysfunction by the AI-enabled ECG (Fig. 3f). The
AI-enabled ECG successfully discriminated risk of death among
specific age groups (≤50 years, 50 < age < 70 years, age ≥ 70 years)
even after adjusting for age, sex and comorbidities (Supplemental
Fig. 6).

DISCUSSION
Here we report that a deep neural network of an AI-enabled ECG
was developed to detect patients with increased filling pressure
and to grade diastolic dysfunction. This study shows three main
findings. First, our AI-enabled ECG model is able to identify
patients with increased left ventricular filling pressure with high
accuracy. Second, the prediction of the model for diastolic
function and filling pressure is well aligned with echocardiogra-
phically determined diastolic function and estimated diastolic
filling pressure. Additionally, ECG-based diastolic function grading
and filling pressure assessment are associated with mortality.
Recently, several machine learning-based algorithms have been

developed to predict echocardiographic diastolic dysfunction
assessment13–16. Chao et al.13 used nine diastolic function
variables to classify patients into normal, impaired relaxation
and increased filling pressure groups. Pandey et al.16 developed a
deep neural network algorithm to identify increased filling
pressure based on clusters from an unsupervised learning network
using echocardiographic values. Tromp et al.17 used a deep
learning algorithm to automatically annotate 2D videos and
Doppler velocities for diastolic function assessment. Gruca et al.18

used machine learning to train left atrial strain (LAS) curves to
detect LV end-diastolic pressure ≥15mmHg, yielding a LAS index.
However, these studies relied upon echocardiographic and
Doppler parameters to evaluate diastolic function. Kagiyama
et al.15 suggested a machine learning model using ECG to
estimate myocardial relaxation to detect diastolic dysfunction, but
the model was not designed to predict diastolic filling pressure
which is more closely associated with heart failure symptoms and
prognosis. The present model was designed to predict filling
pressure as well as diastolic function grade using only an ECG
which is much more cost-effective and scalable to a wider range
of population. It is noteworthy that echocardiographic parameters
in patients with different diastolic function grades predicted by
the AI-enabled ECG were comparable to those in the correspond-
ing grades determined by echocardiography. Advanced diastolic
dysfunction with increased filling pressure determined by
echocardiography has been shown to predict increased mortality
in various cardiovascular disorders including heart failure with
preserved ejection fraction (HFpEF)4,7,19. Likewise, the AI-enabled
ECG discriminated risk of death as well as the stratification based
upon echocardiography. This is likely explained by characteristic
ECG features shaped by delayed myocardial relaxation and
increased filling pressure detected by the neural network. Tsai
et al.20 have shown that AI-ECG is predictive of mortality in various
cardiovascular diseases. Their deep learning model was based on
ECG patterns associated with mortality and designed to identify
high-risk patients due to any cardiovascular disease. Our model
was predictive of mortality based on increased filling pressure.
Since increased filling pressure is a key component of various

Fig. 2 AI-enabled ECG output distribution for increased filling
pressure by estimated diastolic function grade. The distribution
was described as a box plot with a kernel density plot. Box plots
show median and first and third quartiles with outliers as 1.5 times
IQR.
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cardiovascular diseases resulting in heart failure, our data suggest
a promising role for AI-enabled ECG as a screening test to identify
or exclude a cardiac cause in patients who present with dyspnea
or other signs of heart failure. HFpEF is a common and growing
public health problem that particularly affects older adults2.

Clinical trials have recently demonstrated a significant benefit in
heart failure with preserved ejection fraction patients from
sodium–glucose Cotransporter-2 inhibitor21,22, but these treat-
ments can only be administered when the diagnosis is
established, and current evidence suggests that HFpEF remains

Fig. 3 All-cause mortality using a Kaplan–Meier curve with 95% point-wise confidence intervals. a Kaplan–Meier curve for a test group of
patients according to filling pressure predicted by the AI-enabled ECG. b Kaplan–Meier curve for a test group of patients according to filling
pressure by echocardiography. c Kaplan–Meier curve for the test group according to diastolic function grades predicted by the AI-enabled
ECG. d Kaplan–Meier curve according to diastolic function grades by echocardiography. e Kaplan–Meier curve for the indeterminate group
according to diastolic function grades predicted by the deep learning model. f Kaplan–Meier curve for echocardiographic grade 1 in the
testing group according to diastolic function grade normal and grade 1 predicted by the AI-enabled ECG. Number at risk tables are described
below Kaplan–Meier curves. Log-rank test is used for the p-value. ECG electrocardiogram.
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under-recognized in the community23,24. Demonstration of
increased left ventricular filling pressure is necessary to support
the diagnosis of HFpEF, but in most cases requires either
echocardiographic or even invasive evaluation23,25. The present
AI-enabled ECG may be able to identify patients with a high
likelihood of HFpEF in conjunction with AI-ECG determination of
left ventricular ejection fraction. It may also be possible to identify
relatively asymptomatic patients with early-stage HFpEF and they
can be treated to avoid symptomatic heart failure. Prospective
clinical trials will be required to prove such a potent, but
hypothetical use of AI-ECG to detect patients with increased
filling pressure. Another potential clinical application of AI-ECG for
diastolic function with a high negative predictive value would be
to exclude cardiac etiology in patients with unexplained dyspnea
when the AI-enabled ECG indicates normal diastolic function or
filling pressure. A preliminary retrospective data in two thousand
patients with dyspnea evaluated in the emergency department at
our medical center, AI-ECG determination of normal and increased
filling pressure was shown to be significantly associated with non-
cardiac and cardiac dyspnea, respectively (unpublished). In
patients with known heart failure, this model may be able to
monitor response to its management to optimize the filling
pressure. Since the AI-enabled ECG trained by single-lead or
median beat ECG showed a promising performance, it can be
incorporated into the patient’s watch to adjust heart failure
medications.
Echocardiography is the established diagnostic tool with well-

documented reliability in the determination of diastolic function
and filling pressure6 and was used as the reference technique in
this study. Our data suggest that the AI-enabled ECG may also
offer incremental value to echocardiographic assessment of
diastolic function. The model can predict diastolic filling pressure
when echocardiography is not able to assess diastolic function,
which is a relatively frequent situation in clinical practice.
Moreover, the risk of death was robustly predicted by our model
in patients whose diastolic function assessment was indetermi-
nate by echocardiography. Echocardiographic parameters reflect-
ing diastolic function and filling pressure (the ratio between mitral
inflow early diastolic velocity (E) and mitral annulus early diastolic
velocity (e’) (E/e’), left atrial volume index, tricuspid regurgitation
velocity, and the ratio between mitral inflow early and late velocity
(E/A)) differed between normal and increased filling pressure
predicted by ECG in the indeterminate group (Supplemental
Fig. 3), similar to those in patients with clear echocardiographic
determination of diastolic function. A main reason for indetermi-
nate diastolic grading by echocardiography is a discrepancy
among the four variables used for evaluating diastolic function.
The recommended echocardiographic diastolic function para-
meters’ normal values are specific for diastolic dysfunction/
increased filling pressures, but not sensitive17,18. The difference
in echocardiographic diastolic parameters between the increased
and normal filling pressure groups was smaller in the indetermi-
nate than in the test group, which likely contributed to the
discrepant echocardiographic evaluation.
It is noteworthy that 54.7% of the patients with grade 1 by

echocardiography were identified as normal by our AI-enabled ECG.
A main difference between normal and grade 1 dysfunction is
delayed myocardial relaxation, but both have normal filling
pressures. Grade 1 diastolic dysfunction by echocardiography
includes a heterogeneous population. It is a common finding with
normal senescence but is also observed in those with compensated
heart failure. Interestingly, patients predicted as normal by our
model were younger (66.1 ± 10.9 vs. 71.6 ± 9.1 years) and had fewer
comorbidities compared to patients with grade 1 diastolic dysfunc-
tion by AI-ECG and echocardiography (Supplemental Table 4). Left
atrial volume index, e’, E/e’, and E/A were significantly different
(p < 0.001) between the two groups (Supplemental Fig. 7). Moreover,
the group with grade 1 diastolic dysfunction by echocardiography

and normal diastolic function by the present model had lower
mortality than the group with grade 1 diastolic dysfunction by both
echocardiography and the model. We have previously shown that
one-third of the patients with grade 1 dysfunction at rest developed
increased filling pressure with exercise26,27. It will be clinically helpful
to investigate whether the filling pressure response to exercise is
different between the two groups.
Our AI-ECG model has no exclusion criteria and the patients

with reduced ejection fraction or cardiac diseases that are
characterized by both diastolic dysfunction and abnormal ECG
patterns such as hypertrophic cardiomyopathy, cardiac amyloi-
dosis, and aortic stenosis were included. Interestingly, the majority
of the patients with grade 3 diastolic dysfunction by AI-ECG had
cardiac amyloidosis or reduced left ventricular ejection fraction
followed by moderate to severe mitral regurgitation and
hypertrophic cardiomyopathy (Supplemental Table 5). There were
9072 patients with low ejection fraction in the testing group and
3007 (33%) of them were predicted as having normal diastolic
function or grade 1 by AI-ECG, but they had lower NPV compared
to that of the patients with normal ejection fraction (Supplemental
Fig. 8). Previously, we developed an AI-ECG for low EF10, defined as
EF ≤ 35%, and the output of the AI-ECG EF showed AUC of 0.728
(95% CI: 0.724–0.733), sensitivity of 29.3%, and specificity of 95%
for detecting increased filling pressure, indicating that AI-ECG
models for low EF and diastolic filling pressure are based on
different sets of ECG features. Supplemental Fig. 9 shows a case of
a 30-year-old female who developed heart failure due to post-
partum cardiomyopathy with LVEF of 30%. AI-ECG at that time
showed reduced LVEF and increased filling pressure. She became
asymptomatic with heart failure treatment, but LVEF remained
reduced. AI-ECG at follow-up showed reduced LVEF and normal LV
filling pressure.
There are several limitations to our study. First, this study used

echocardiographic determination, non-invasive measure of dia-
stolic function and filling pressure as their reference. While
invasively measured filling pressure is the gold standard,
echocardiographic measurement is a clinically accepted tool for
estimating left ventricular filling pressure and has been adopted in
the guideline and scoring algorithms for detecting heart failure
with preserved ejection fraction25,28,29. In addition, only four
echocardiographic parameters were used to determine diastolic
function in this study. If more parameters were used such as
pulmonary vein Doppler velocity, isovolumic relaxation time, and
deceleration time of mitral inflow velocity, the diastolic function
could have been determined in some patients with indeterminate
diastolic function. However, most of the clinical practice relies on
those four parameters. Second, ECG and echocardiography were
obtained non-simultaneously, but the mean interval between the
two tests was 0.5 ± 1.2 days. This limitation may explain some
discrepancies between the AI-enabled ECG and echocardiography
of filling pressure. However, the progression of diastolic function
status takes a long time, and it is very unlikely to have a major
change in filling pressure in 2 weeks. Third, our AI-ECG model was
created from retrospective data. While there are numerous
potential clinical applications of this model, future prospective
studies are needed to establish the precise clinical diagnostic and
prognostic role of our model in various cardiovascular diseases.
Fourth, the data were only collected at a major tertiary medical
center in the United States, so external validations in more
heterogeneous populations with greater diversity are needed.
Fifth, our current model has limited interpretability to elucidate
the prediction of diastolic function grade besides heatmap-based
approaches. To enhance interpretability, explainable AI models
trained leveraging ECG features for diastolic function become
imperative.
In conclusion, the present study shows that the application of

AI-enabled ECG allows for grading of diastolic dysfunction and
estimation of filling pressure, with a robust prognostic value
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similar to that of comprehensive echocardiography. These data
suggest that AI-enabled ECG may be useful to enhance diagnostic
evaluation of disorders associated with diastolic dysfunction and
increased filling pressure in the community, including heart failure
with preserved ejection fraction.

METHODS
Data and study population
We identified all adults (age ≥18 years) who had at least one ECG
and transthoracic echocardiogram with echocardiographic assess-
ment of diastolic function performed within 14 days of ECG between
September 2001 and April 2023 from the Mayo Clinic Unified Data
Platform. No exclusion criteria were applied. All ECGs were measured
with 250 or 500 Hz sampling rate using a GE-Marquette machine for
a standard 10-s 12-lead ECG and were stored in the GE-MUSE system
(Marquette, WI, USA). ECGs with an original sampling rate of 250 Hz
were up-sampled to 500 Hz prior to analysis. The final cohort
(n= 219,462) was divided into training (n= 98,736, 45%), validation
(n= 21,963, 10%), and testing (n= 98,763, 45%) sets. We further
tested our final model in 55,248 patients with indeterminate diastolic
function by echocardiography (for additional details on the cohort,
see Supplemental Fig. 10). The Mayo Clinic Internal Review Board
(Jeche, Resa Jo) approved this study with a waiver of the requirement
to obtain informed consent in accordance with 45 CFR 46.104d and a
waiver of Health Insurance Portability and Accountability Act (HIPAA)
authorization in accordance with applicable HIPAA regulations.

Filling pressure and diastolic function grading assessment
As recommended by the 2016 ASE/EACVI diastolic function guide-
lines8, four parameters were used to evaluate diastolic function: e’, E/
e’, tricuspid regurgitation velocity, and left atrial volume index, with a
minor modification30 (Supplemental Fig. 11). When 3 or all of the
above four parameters were abnormal, filling pressure was
determined to be elevated. This group was subsequently separated
into grade 2 or 3 based on E/A of 2.0. When 3 or all parameters were
normal, filling pressure was determined to be normal. These patients
were further separated into normal diastolic function or grade 1
according to the E/A ratio separating the value of 0.8. When the four
parameters were split into 2 normal and 2 abnormal, diastolic
function was assessed as indeterminate. Diastolic function and filling
pressure were labeled based on the above algorithms for all subjects.

Overview of AI model
The primary goal of developing the AI-enabled ECG was to predict
left ventricular filling pressure and diastolic function grade using a
12-lead ECG. As model architecture, we implemented convolu-
tional neural networks of the ResNet-1831. Each ECG has 12 × 5000
matrix that consists of 12-lead ECG by 10-s sampled at 500 Hz. For
input of the network, we split the ECG by 2 s and average the
output values from 5 splits. The network was trained with a
learning rate of 0.001 and Adam optimizer for 20 epochs. The
validation performance was converged before the 20th epoch.
The final model was chosen according to the AUC value from the
validation set for increased filling pressure. The model was trained
as a multi-class model with four outputs representing the four
grades of diastolic function and the sum of four outputs was 1.
Normal and grade 1 were considered normal filling pressure, and
grades 2 and 3 were considered increased filling pressure. While
the model outputs four values, the sum of the outputs of normal
and grade 1 represents the output of normal filling pressure, and
the sum of grades 2 and 3 outputs represents the output of
increased filling pressure. Likewise, the sum of the outputs of
normal and increased filling pressures was 1. Using the sum of
each two classes, we converted the multi-class model to a binary
model and we applied the Youden index32 to the final output

value. Likewise, we created an aggregated output and a label for
grade 1 or above, grade 2 or above, and grade 3, respectively, to
evaluate the performance with the ordinal scale of diastolic
function grade. Additionally, we trained deep neural networks
with the same architecture for single-lead ECG and single-lead
median beat. Since Lead I is most widely measured for wearable
devices, Lead I is used for both models. Single-lead median beat is
the representative beat for 10-s and the duration is 1.2 s. We
reported the hold-out test set result from the selected model.

Statistical analysis
The model’s ability was assessed by calculating the AUC of the ROC
curve, sensitivity, specificity, PPV, NPV, and accuracy. Two-sided
95% confidence intervals were calculated. We also assessed
whether the model discriminates the risk of all-cause mortality
using the Kaplan–Meier estimate and compared it with the log-rank
test. Multivariable Cox proportional-hazards models were devel-
oped. Age, sex, and comorbidities (diabetes, hypertension, obesity,
myocardial infarction, congestive heart failure, cerebrovascular
disease, chronic pulmonary disease, and renal disease) were used
for the adjustment of the hazard ratio. For continuous variables,
groups were compared using Student’s t-test. For categorical
variables, chi-squared tests were used. A two-tailed P-value < 0.001
was considered significant, however, its interpretation was carefully
and comprehensively made because of the large sample size.
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