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DRG-LLaMA : tuning LLaMA model to predict diagnosis-
related group for hospitalized patients
Hanyin Wang 1, Chufan Gao2, Christopher Dantona3, Bryan Hull4 and Jimeng Sun2,5✉

In the U.S. inpatient payment system, the Diagnosis-Related Group (DRG) is pivotal, but its assignment process is inefficient. The
study introduces DRG-LLaMA, an advanced large language model (LLM) fine-tuned on clinical notes to enhance DRGs assignment.
Utilizing LLaMA as the foundational model and optimizing it through Low-Rank Adaptation (LoRA) on 236,192 MIMIC-IV discharge
summaries, our DRG-LLaMA -7B model exhibited a noteworthy macro-averaged F1 score of 0.327, a top-1 prediction accuracy of
52.0%, and a macro-averaged Area Under the Curve (AUC) of 0.986, with a maximum input token length of 512. This model
surpassed the performance of prior leading models in DRG prediction, showing a relative improvement of 40.3% and 35.7% in
macro-averaged F1 score compared to ClinicalBERT and CAML, respectively. Applied to base DRG and complication or comorbidity
(CC)/major complication or comorbidity (MCC) prediction, DRG-LLaMA achieved a top-1 prediction accuracy of 67.8% and 67.5%,
respectively. Additionally, our findings indicate that DRG-LLaMA ’s performance correlates with increased model parameters and
input context lengths.
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INTRODUCTION
The emergence of LLMs, such as GPT-31 and InstructGPT2, has
brought about a transformative shift in the landscape of Natural
Language Processing (NLP). These LLMs have demonstrated
exceptional capabilities across many NLP tasks in the general
domain. However, the integration of LLMs into the medical field
remains at a nascent stage within the academic community.
Recent instances of progress highlight their significant potential,
including OpenAI’s GPT-43, Google’s Med-PaLM24, and Google
Deepmind’s Med-PaLM M5. GPT-4 and Med-PaLM 2 have achieved
impressive performance on the United States Medical Licensing
Examination (USMLE), and Med-PaLM M can even classify
radiology images. Nonetheless, the medical domain introduces
elevated concerns regarding safety and privacy, necessitating
detailed analysis regarding the performance and limitations of
LLMs to address the inherent risks such as hallucination, bias, and
reasoning deficiencies6.
Since its inception by Medicare in 1983, DRG has served as the

foundation for the inpatient prospective payment system within
the United States7. Each distinct DRG code is delineated by a
particular set of patient attributes, including principal diagnosis,
specific secondary diagnoses, procedures, sex and discharge
status8. Traditionally, the assignment of DRGs constitutes a
labor-intensive manual endeavor undertaken by coding specia-
lists, typically subsequent to a patient’s discharge. Given the
pivotal role of DRGs and their bundled metrics (e.g., case-mix
index, geometric length of stay) in the operational and financial
performance of hospitals, a pressing interest exists in the accurate
early prediction of DRGs during a patient’s hospitalization. This
prediction is vital for efficacious resource planning and allocation.
The task of DRG prediction presents distinct challenges compared
to automated International Classification of Diseases (ICD) coding.
This distinction stems from differences in the nature of the task:
DRGs involve multi-class classification, where one DRG code is

assigned to each visit, in contrast to the multi-label classification of
ICDs, where multiple codes may apply to a single visit9.
Additionally, the hierarchical structure of the codes, such as the
presence of a principal diagnosis in DRGs, and the context of
utilization in hospital operations further differentiate the two
tasks8. Previous studies have showcased advancements in DRGs
classification accuracy through various machine-learning algo-
rithms10 and deep neural networks11. More recently, a deep
learning-based NLP model leveraging adjusted Convolutional
Attention for Multi-Label Classification (CAML) has been applied to
predict DRGs based on clinical notes and yielded promising
outcomes12,13.
With LLM’s remarkable natural language synthesis and gen-

erating capabilities, we hypothesize LLM could be applied to
effectively predict DRGs directly from clinical notes. In this work,
we present DRG-LLaMA, a fine-tuned LLM derived from LLaMA14.
DRG-LLaMA is trained on discharge summaries from the MIMIC-IV
dataset for the task of DRG prediction. In our investigation, we
approached DRG prediction from two perspectives: 1) as a single-
label classification task, where the model makes an end-to-end
prediction of the DRG label, and 2) as a two-label classification
task, where the model predicts base DRG and CC/MCC status as
two separate labels, followed by the inference of the final DRG
label from these two components (i.e., base DRG and CC/MCC
status). Our work revealed superior performance of DRG-LLaMA
in DRG prediction compared to the previously reported leading
models of CAML13 and ClinicalBERT15.

RESULTS
Study cohort
A summary of the study cohort and data preprocessing steps was
shown in Fig. 1. We focused on hospital stays with Medicare
severity-DRGs (MS-DRGs) within the MIMIC-IV dataset. The “brief
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hospital course” section from discharge summary was extracted to
serve as input text. We also filtered out low-quality discharge
summaries and rare DRGs with less than 2 occurrences in the
cohort. 90% of the data was allocated as training set while the rest
10% as testing set, and this partitioning was stratified on DRGs.
The training and testing set contains 738 and 723 unique DRG
labels, respectively. There is no significant difference in the
average word counts in the training vs. testing set (398 vs. 399;
p = 0.51 from two-sided t-test). The distribution of cases per DRG
is imbalanced, with a median number of 124.5 in the training set
(Supplementary Fig. 1).

DRG prediction as a single-label classification task
We presented the results with a maximum input token size of 512
in Table 1. DRG-LLaMA consistently outperformed ClinicalBERT
and CAML across all evaluation metrics, with the most notable
contrast seen in macro-F1 score (showing a relative improvement
of 40.3% and 35.7% compared to ClinicalBERT and CAML,

respectively). The accuracy of top-1 and top-5 predictions
achieved by our fine-tuned DRG-LLaMA -7B model was 52.0%
and 84.8%, respectively. When only considering the most frequent
300 DRGs, the top-1 accuracy improved to 55.7%, and this further
increased to 69.4% in the most frequent 30 DRGs. As expected,
DRG-LLaMA ’s performance declined in less frequent DRGs (Fig.
2a). When compared to CAML, ClinicalBERT achieved higher AUC
and top-1 prediction accuracy but lower macro-averaged F1 score.
High AUC scores were obtained for all models due to the many
infrequent DRG classes, resulting in high true negative predictions
for all negative class predictions13.
We investigated DRG-LLaMA ’s performance across varying

model sizes and input context lengths (Table 2), observing a
consistent improvement in all evaluation metrics with larger
models and longer input contexts, measured in maximum token
numbers. The optimal configuration, utilizing a 13B LLaMA model
and a maximum input token size of 1024, achieved a top-1
prediction accuracy of 54.6%, a top-5 prediction accuracy of
86.5%, and a macro-F1 score of 0.361.

Fig. 1 Flow diagram of the cohort processing steps. We used regular expressions to extract the “brief hospital course” section from
discharge summaries in MIMIC-IV dataset as input text. We filtered the discharge summaries that were of low quality, identified by either
duplicated content or containing less than 40 words. We focused on MS-DRGs and consolidated all MS-DRG codes to version 34.0.
Additionally, we filtered out rare DRGs with less than 2 occurrences in the cohort.

Table 1. Main Results on DRG prediction with a max input token size of 512.

Model DRG set MACRO-F1 ACC@1 ACC@5 ACC@10 MACRO-AUC MICRO-AUC Number (%) of cases

DRG-LLaMA -7B All DRGs 0.327 (0.004) 0.520 (0.003) 0.848 (0.002) 0.912 (0.002) 0.986 (0.001) 0.994 (0.000) 26,244 (100.0)

Top 300 DRGs 0.497 (0.005) 0.557 (0.004) 0.876 (0.002) 0.932 (0.001) 0.988 (0.000) 0.995 (0.000) 22,940 (87.4)

Top 50 DRGs 0.700 (0.004) 0.666 (0.004) 0.931 (0.002) 0.965 (0.001) 0.989 (0.000) 0.998 (0.000) 10,270 (39.1)

Top 30 DRGs 0.737 (0.005) 0.694 (0.005) 0.941 (0.003) 0.971 (0.002) 0.988 (0.001) 0.998 (0.000) 7,666 (29.2)

ClinicalBERT All DRGs 0.233 (0.003) 0.502 (0.003) 0.815 (0.002) 0.881 (0.002) 0.979 (0.001) 0.991 (0.000) 26,244 (100.0)

CAML All DRGs 0.241 (0.003) 0.447 (0.002) 0.785 (0.002) 0.865 (0.002) 0.976 (0.001) 0.991 (0.000) 26,244 (100.0)

F1 and AUC scores were calculated using macro-averaged or micro-averaged method as shown in the header. Notably, in a multi-class classification problem,
micro-averaged F1 score is equal to top-1 prediction accuracy when labels of all classes are considered. Accuracy @1, @5 and @10 measure whether the top-1,
top-5 and top-10 predictions by the model contain correct DRG code, respectively. Standard deviations are shown in parentheses and calculated using a
bootstrapping procedure. Top DRGs are selected based on the number of cases per DRG in the dataset. Number (%) of cases represents hospital stays covered
by the given DRG group in the testing set. Bolded scores denote the best performance with respect to the task. DRG-LLaMA outperformed ClinicalBERT and
CAML across all evaluation metrics, with better performance in more frequent DRGs. DRG denotes diagnostis-related group, AUC denotes area under the
receiver operating characteristic curve, and ACC denotes accuracy.
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DRG prediction as a two-label classification task
In the two-label approach, we first dissect each DRG into two
distinct components: a base DRG label and a CC/MCC label
(denoting complication or comorbidity / major complication or
comorbidity). This dissection process was based on the composi-
tion delineated within the MS-DRG v34.0 definitions manual8. The
five distinct labels attributed to CC/MCC are as follows: “without
CC/MCC”, “with CC”, “with MCC”, “without MCC”, and “not
applicable”. As an example, in DRG code 53 of “spinal disorders

and injuries without CC/MCC,” “spinal disorders and injuries”
represents the base DRG label, while “without CC/MCC” serves as
the CC/MCC label. Following this mapping process, the 738 DRG
codes were converted into a combination of 340 base DRG labels
each paired with one of the five CC/MCC labels. Results of the two-
label approach using DRG-LLaMA -7B with a maximum input
token size of 512 was shown in Table 3. The top-1 prediction
accuracy for base DRG and CC/MCC reached 67.8% and 67.5%,
respectively. This result suggests that predicting the principal

Fig. 2 Relationship between training cases per DRG and prediction accuracy by DRG-LLaMA. Results from DRG-LLaMA -7B with a
maximum input token size of 512. a Scatter plot of top-5 prediction accuracy versus DRG ranks by number of training cases. Y-axis is top-5
prediction accuracy of each DRG label. X-axis is the rank of the 723 DRGs by their number of training cases, where DRG ranked 1st has the
most training cases, and DRG ranked 723rd has the least training cases. Black dots indicate individual DRGs. The solid line represents
smoothing spline estimated relationship (generalized cross-validation score: 0.055). The gray shaded area denotes a 95% Bayesian confidence
interval for the smoothing spline estimated function. As expected, DRG-LLaMA ’s performance declined in less frequent DRGs. b Boxplot of
training cases per DRG with groups of different prediction accuracy. DRGs are grouped by range of top-5 prediction accuracy as shown in
X-axis. Y-axis is the number of training cases per DRG. The green line represents the median value; the box limits show the interquartile range
(IQR) from the first (Q1) to third (Q3) quartiles; the whiskers extend to the furthest data point within Q1-1.5*IQR (bottom) and Q3+1.5*IQR
(top). DRG groups with better prediction performance generally have a greater number of training cases, although there is a large variance in
the number of training cases within the best-performing group.
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diagnosis or procedure without considering CC/MCC is a
significantly easier task on its own.
Upon integrating a mapping rule designed to infer DRGs

through the combination of base DRG and CC/MCC labels, the
accuracy reached 51.5% across all DRGs. Notably, this performance
was comparable with the accuracy attained in the single-label
approach of 52.0% using the same base model, showing that the
LLM was able to achieve state-of-the-art performance via either
classification setting.

Error analysis
As noted above, a correlation exists between the number of
training cases and prediction performance. DRGs with a top-5
prediction accuracy exceeding 80% are associated with a median
of 309 training cases per label. In contrast, those DRGs with a top-5
accuracy below 20% are associated with only a median of 17
training cases per label (as shown in Fig. 2b). However, other
factors, such as the type of DRG, also affect prediction
performance. For instance, out of the DRGs with a top-1 prediction
accuracy of 100%, 8 out of 9 are surgical DRGs, which have distinct
hospital courses that make them easier for the model to
comprehend (as listed in Supplementary Table 2). We randomly
selected 10 samples from the subset where the model presented
erroneous predictions within its top ten outcomes for manual
error analysis (as listed in Table 4). Broadly, the identified errors
were categorized as follows: erroneous CC/MCC (1/10), correct
information needed for DRG prediction unavailable (1/10),
difficulty in selecting correct base DRG (3/10), inadequate clinical
concept extraction (4/10) and an isolated case of a plausible
incorrect DRG label (1/10). Certain errors, like inadequate clinical
concept extraction, indicate the model’s weaknesses. Other errors,
such as the difficulty in selecting the base DRG, likely stem from
the intricacies of the DRG assignment rules. Furthermore, errors
such as the unavailability of correct information required for DRG
prediction underscore the limitations of solely relying on
discharge summaries for DRG predictions.

DISCUSSION
Language models based on the transformer architecture, either
pretrained or fine-tuned using biomedical corpora, have demon-
strated efficacy across a spectrum of NLP benchmarks within the
biomedical realm16–18. When contrasted with their predecessors
rooted in the BERT architecture19, LLMs stand out due to their
substantial size and their pretraining on expansive, cross-
disciplinary text corpora. LLMs exhibit a notable capacity for
comprehending and reasoning with clinical knowledge. Without
domain-specific fine-tuning or specialized prompt crafting, GPT-4
exceeded the passing score on USMLE by over 20 points and set a
new state-of-the-art3. On this premise, it is plausible to speculate
that once attuned to the medical domain, an LLM could deliver
robust performance across diverse NLP tasks, including the
prediction of DRGs.
Toward deploying a local LLM, we used LLaMA, a robust and

openly accessible foundational LLM with parameters ranging from
7 billion to 65 billion14. Instruction-following models fine-tuned
from LLaMA such as Alpaca20 and Vicuna21, exhibit performance
on par with GPT-3.5. Within the medical context, several groups
have directed their efforts toward fine-tuning LLaMA. Notable
examples among these are ChatDoctor (trained on authentic
patient-physician dialogues), HuaTuo (fine-tuned with a Chinese
medical knowledge graph), and PMC-LLaMA (fine-tuned on
biomedical academic papers)22–24. These LLaMA-based models
focused on medical question answering, yielding encouraging
outcomes.
In this study, we demonstrated superior performance of the

fine-tuned LLaMA in the text classification task of DRG prediction.
Previous studies have underscored the effectiveness of employing
diverse machine learning algorithms and deep neural networks for
DRG prediction within healthcare systems outside the United
States10,11. These studies focused on using structured data as
input variables instead of clinical text. More recently, CAML model
exhibited superior ability to predict DRGs13. CAML model,
exclusively utilizing clinical notes, surpassed the performance of
a Long Short-Term Memory (LSTM) model using structured clinical
variables13. When compared with ClinicalBERT, CAML provided
improved F1 scores but lower AUC13,15. We observed that DRG-

Table 2. DRG-LLaMA performance on different model and max input token sizes.

Model size Max input token size MACRO-F1 ACC@1 ACC@5 ACC@10 MACRO-AUC MICRO-AUC

13B 1024 0.361 (0.004) 0.546 (0.003) 0.865 (0.002) 0.925 (0.001) 0.986 (0.001) 0.994 (0.000)

512 0.334 (0.005) 0.524 (0.002) 0.853 (0.002) 0.914 (0.002) 0.984 (0.001) 0.993 (0.000)

340 0.312 (0.006) 0.499 (0.003) 0.834 (0.002) 0.902 (0.002) 0.983 (0.001) 0.992 (0.000)

7B 1024 0.346 (0.004) 0.539 (0.003) 0.861 (0.002) 0.923 (0.001) 0.986 (0.001) 0.994 (0.000)

512 0.327 (0.004) 0.520 (0.003) 0.848 (0.002) 0.912 (0.002) 0.986 (0.001) 0.994 (0.000)

340 0.303 (0.005) 0.493 (0.003) 0.828 (0.002) 0.896 (0.002) 0.981 (0.001) 0.992 (0.001)

Experiments were performed on LLaMA with a size of 7 billion and 13 billion parameters. Bolded scores denote the best performance. We observed that DRG-
LLaMA ’s performance consistently improved with larger models and longer input contexts.

Table 3. Main Results on DRG prediction as a two-label task with a max input token size of 512.

Component MACRO-F1 ACC@1 ACC@5 ACC@10 MACRO-AUC MICRO-AUC Number of labels

Base DRG 0.520 (0.005) 0.678 (0.002) 0.912 (0.001) 0.953 (0.001) 0.990 (0.001) 0.995 (0.000) 340

CC/MCC 0.680 (0.003) 0.675 (0.003) – – 0.909 (0.001) 0.918 (0.001) 5

DRG – 0.515 (0.003) – – – – 738

Experiments were performed with DRG-LLaMA -7B and a maximum input token size of 512. The top-1 prediction accuracy for base DRG and CC/MCC reached
67.8% and 67.5%, respectively. A top-1 prediction accuracy of 51.5% was achieved by employing the mapping rule on base DRG and CC/MCC labels, as
elaborated in the method section.
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LLaMA outperformed prior leading models of ClinicalBERT
and CAML.
ClinicalBERT and CAML already stand as robust baselines, with

the added benefit of much faster training times (supplement
Table 1). While BERT-based models have a maximum input length
of 512 tokens, CAML has the flexibility to handle longer
context13,19. We also observed that the performance of DRG-
LLaMA enhanced with the utilization of larger models and longer
input context length. Interestingly, a recent study revealed that
the optimal performance of LLMs is attained when pertinent
information is positioned at either the beginning or the end of the
input context, with a decline as the input context expands25. In
our constrained experiments conducted with a maximum input
token limit up to 1024, we have yet to encounter this limitation. In
our study, the performance of both the baseline models and DRG-
LLaMA surpassed the outcomes reported in prior research13.
Beyond the substantially larger training dataset employed in
MIMIC-IV compared to MIMIC-III (236,192 vs. 17,815), it is plausible
that this enhanced performance is predominantly linked to our
strategic input data selection.
The study by Liu et al.13 included only clinical notes charted up

to 48 hours post-admission or 48 hours after ICU admission. In the
MIMIC-III database, a large portion of records during this time
window comprises nursing and radiology notes, potentially
lacking the pivotal admission History of Present Illness (HPI) notes.
In contrast, our methodology entailed the utilization of discharge
summaries as the input data source. Discharge summary is a
comprehensive clinical narrative encapsulating pivotal events,
diagnostics, and treatments during hospitalization. To accommo-
date the input token limitations of LLaMA, we exclusively focused
on the “brief hospital course” section of the summary, intention-
ally excluding other segments such as physical examinations,
radiology, laboratory, and medication list. Additionally, to enhance
data consistency, we formulated an algorithm aimed at addressing
discrepancies in DRG nomenclature and assignments across
different years.
In the context of the DRG system, a DRG code comprises a base

DRG and a CC/MCC status. The base DRG represents the principal
diagnosis (for medical cases) or procedures (for surgical cases)
leading to the patient’s admission. Meanwhile, CC/MCC categor-
izations gauge the severity of the patient’s condition. In the 34.0
version of the MS-DRG system, there are 154 three-way split DRGs,
44 two-way split DRGs with MCC/CC and no CC, 65 two-way split
DRGs with MCC and CC/no CC, and 77 base DRGs with no splits
(examples in Supplementary Note 1)8. We experimented to
resemble this structure through a two-label DRG prediction
strategy. Surprisingly, the top-1 accuracy for CC/MCC stands at
67.5%, similar to 67.8% of the base DRG despite the considerably
smaller label count (5 labels in CC/MCC vs. 340 labels in base DRG).
These unexpected results likely stem from the noisy nature of CC/
MCC assignment. For instance, the DRG code “pulmonary edema
and respiratory failure” does not have a CC/MCC split. Therefore, a
hospital stay with this DRG code may truly contain MCC, but the
MCC would not be labeled as positive in the training set. To
address this challenge, we formulated rules in both the DRGs
dissection phase (extracting base DRGs and CC/MCC from DRGs)
and the inference phase (deriving DRGs based on base DRGs and
CC/MCC). These rules cater to various split scenarios, thus
improving accuracy. Implementing such rules has culminated in
a final DRG prediction accuracy close to single-label prediction
(51.5% vs. 52.0%).
Our error analysis also revealed intriguing observations. While

certain vulnerabilities (e.g., erroneous CC/MCC classification and
inadequate clinical concept extraction) present opportunities that
theoretically can be addressed through employment of larger LLM
and more data, other challenges likely stem from inherent
limitations within our training data setup. For instance, in Case 2
in Table 4, despite the discharge summary providing a more

comprehensive discussion on gastrointestinal bleeding compared
to acute renal failure, the latter was deemed the correct base DRG.
This selection is guided by the DRG assignment rule8, a factor
extending beyond the scope of what is directly evident within the
discharge summary.
Our study has several limitations. 1) We were limited by the

constraints of the MIMIC-IV dataset and could only use discharge
summaries as input data, which are only available after the patient
is discharged from the hospital. However, an effective alternative
for predicting early DRGs would be to utilize HPI notes and/or
Emergency Department (ED) notes. This approach has the
potential to significantly impact hospital operations. The “assess-
ment and plan” in HPI notes are similar in structure to the “brief
hospital course” in discharge summaries. Thus, LLMs might find it
easier to extract information related to the principal diagnosis
from these notes, given their earlier time stamp in the
hospitalization process. 2) We were also restricted by computa-
tional resource limitations, so we could only experiment with the
LLaMA model up to a parameter size of 13 billion. Unfortunately,
we couldn’t perform an extensive hyperparameter search. The
largest LLaMA models have over 65 billion parameters.
The results presented in this study highlight the potential of

adapting LLMs for medical purposes, particularly in predicting DRGs.
Future research should involve collaborating with healthcare
systems and utilizing admission notes to enable early DRG
prediction. Additionally, our findings suggest that experiments
utilizing the latest LLMs, including the recently launched 70-billion-
parameter LLaMA-2 model with a maximum context length of 4096
tokens26, should be considered. Finally, a crucial area for exploration
concerns the practical implications of such DRG prediction,
particularly when integrated into existing hospital coding workflows.

METHODS
Dataset and preprocessing
We conducted a study using the publicly available MIMIC-IV
dataset, which comprises 431,231 unique hospital admissions
from 299,712 patients admitted to an ICU or the ED of the Beth
Israel Deaconess Medical Center in Boston, Massachusetts27. The
dataset covers the period from 2008 to 2019. We used regular
expressions to extract the “brief hospital course” section from the
discharge summary as input text. We then filtered the discharge
summaries that were of low quality, identified by either duplicated
content or containing less than 40 words.
Our focus was on hospitalizations with MS-DRGs. We con-

solidated all MS-DRG codes to version 34.0, published in 2016
(detailed in the subsequent section)8. This version comprises a
total of 757 DRG codes, with 738 being represented in our dataset.
We allocated 90% of the data to the training set and the
remaining 10% to the testing set, stratified by DRG codes.

Process to address different DRG versions
Centers for Medicare & Medicaid Service adjusts MS-DRG
regulations annually, resulting in varying DRG assignments for
identical conditions over time within the MIMIC-IV dataset28. To
address this discrepancy, we designed an algorithm based on
clinical knowledge to harmonize MS-DRG codes across different
time points to a unified version—specifically, MS-DRG version
34.08. The process include:

1. Standardize use of abbreviations and capitalization within
DRGs. For example, we replaced all “W/O” to “WITHOUT”,
“CATH” to “CATHETERIZATION” and “PROC” to “PROCE-
DURES”.

2. Using a fuzzy string match algorithm (TheFuzz: https://
github.com/seatgeek/thefuzz) to find those DRGs not
matching to any MS-DRG v.34 codes.
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3. An internal medicine physician manually reviewed all DRG
codes from step 2, and assigned these codes to the most
appropriate MS-DRG v.34.0 codes if applicable. Subse-
quently, a domain expert specializing in inpatient Clinical
Documentation Integrity (CDI) assessed the conversion table
and independently verified the accuracy of the code
assignments.

4. Of note, after above steps there are several historical DRGs
left without appropriate DRG v.34 codes assignment. For
example, “URINARY STONES W MCC” and “NASAL TRAUMA
AND DEFORMITY WITH CC”. These hospitalizations were
excluded from the cohort.

5. Lastly, we filtered out rare DRGs with less than 2 occurrences
in our cohort.

Model development
We performed fine-tuning of the LLaMA model using discharge
summaries and DRG codes within the context of a classification
task. Our approach includes two distinctive strategies (also shown
in Fig. 3).

Single label approach. In this approach, the model generates a
single-label multi-class prediction for the DRG code from a training
set of natural text discharge summaries TSUM and labels containing
ðTSUM;i ; yiÞ 2 D. We omit the index notation i for the rest of the
descriptions without loss of generality. First, let us tokenize TSUM
based on the LLaMA Tokenizer into K= tokenize(TSUM). K is a list of
indices that index into learnable embedding weights. Let LLM() be
a function that outputs the embedding for each token after
running the transformer model. Finally, the raw logits are
calculated as

ŷ ¼ LLMðKÞ�1 (1)

where we use the last token embedding of LLM(K) as the
predicted raw logit score of each DRG code ŷ 2 R738. Note that
this logit score is the raw, unnormalized output of the last layer of
the LLM. Before applying the activation function like the softmax
function, which converts these scores to probabilities, the values
produced by the network are referred to as logits.
The conventional categorical cross-entropy loss function for

multi-class classification is used. i.e., a classic multi-class problem
with loss: the target DRG y is an integer between 0 and 737 (note

that we use an integer representing a specific DRG code for
simplicity).

ℓðŷ; yÞ ¼ � log
expðŷyÞ

PC
c¼1 expðŷcÞ

(2)

Where y∈ {0, 1,…, 737} is the target DRG, and ŷc is the cth index
of ŷ.

Two-label approach. In contrast, the two-label approach entails the
model initially predicting the base DRG and the CC/MCC status as two
separate classification tasks. Subsequently, a mapping rule (detailed in
the subsequent section) is applied to derive DRG code. This approach
entailed a loss function configured as the cross-entropy loss of the
base DRG, plus half of the cross-entropy loss of the CC/MCC status.
More formally,

ℓðŷ; yÞ ¼ ℓDRG baseðŷDRG base; yDRG baseÞ þ λℓCCðŷCC ; yCCÞ (3)

Where ℓDRG baseðŷDRG base; yDRG baseÞ and ℓCCðŷCC; yCCÞ are also
categorical cross entropy losses. We chose λ ¼ 1

2 for our work. As
shown in Table 3, yDRG_base∈ {0, 1,…, 339} and yCC ∈ {0,…, 4},
representing the categories of ["without CC/MCC”, “with CC”, “with
MCC”, “without MCC”, and “not applicable”] respectively.
To enable ease of implementation, we used an output logit

dimension of ŷ 2 R340þ5 and indexed the first 340 dimensions for
ŷDRG base ¼ ŷ0;¼ ;339 and indexed the last 5 dimensions for
ŷCC ¼ ŷ340;¼ ;344. At inference time, we take the base DRG and
CC/MCC predictions as the argmax of their respective logits.

ŷDRG base ¼ argmaxŷDRG base
ðŷDRG baseÞ (4)

ŷCC ¼ argmaxŷCC ðŷCCÞ (5)

Subsequently, we apply the mapping rule, as detailed below, to
derive the final DRG prediction from base DRG and CC/MCC labels.

Process to dissect and derive DRGs to/from base DRGs and CC/
MCC. We first used regular expression to obtain principal
diagnosis/procedures in MS-DRG v.34.0, by extracting strings prior
to the description of CC/MCC. For example, in DRG 11 of
“tacheostomy for face mouth and neck diagnoses with mcc”, the
principal diagnosis is “tacheostomy for face mouth and neck
diagnoses”. After this step, 340 principal diagnosis/procedures are
identified as base DRGs.
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Fig. 3 An illustration of both approaches we tested. Single Label Prediction–which directly predicts the DRG code from the text–as well as
Two Label Prediction–which breaks down the classification task into 2 tasks. The two predictions are then combined using filtering rules
(discovered from data for each DRG) at inference time for the final DRG prediction. LoRA training is used to train the LLM due to
computational constraints.
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We assigned CC/MCC status to one of the five labels: “without CC/
MCC,” “with CC,” “with MCC,” “without MCC,” and “not applicable”.
Of note, an important detail is that if a DRG code does not explicitly
describe CC/MCC status, we will assign a label of “not applicable”.
Such an example is DRG 69 “transient ischemia”. We realize such
classification might bring in noisy signals for models to learn (as a
patient with “transient ischemia” can indeed has CC/MCC), but
found it better than assigning to an alternative label such as
“without CC/MCC” which would be more erroneous.
When inferencing DRGs from base DRGs and CC/MCC, we

developed a rule based on logic and clinical knowledge. First, we
evaluate whether predicted principal diagnosis/procedure matches
target base DRG. Second, if the predicted CC/MCC label is in the CC/
MCC set of the target base DRG, we make comparison directly.
Third, for those predicted CC/MCC labels not in the CC/MCC set of
the target base DRG, we apply a mapping procedure based on
different MS-DRG splits as listed in Supplementary Note 1. For
example, if a MS-DRG code has no split, such as DRG 69 “transient
ischemia”, then any CC/MCC predictions can be mapped to the
correct DRG (as long as the base DRG matches). Another example
would be MS-DRG 56 and 57, where there are two splits of CC/MCC
status ("with MCC” and “without MCC”). In this case we will map
predictions of “without CC/MCC”, “with CC” and “not applicable” all
to the label of “without MCC” for final inference.

Addressing Computational Constraints via LoRA Training. Given
the constraints of available computational resources, an extensive
hyperparameter search was not viable. Instead, our focus
encompassed exploring the performance across diverse model
sizes and token lengths. We used LoRA during training, which
involves freezing the pre-trained model weights and incorporating
trainable rank decomposition matrices into each layer of the
transformer architecture29. Lora training of the attention mechan-
ism is shown in Fig. 3.
As a quick summary, let us assume that we have original weight

matrixW0 2 Rd ´ k . LoRA works by adding a low-rank matrix to the
original weight matrix: ΔW+W0, ΔW= BA where B 2 Rd ´ r and
A 2 Rr ´ k . Note that one should choose r � minðd; kÞ and only
adapt the attention weights to ensure constraints on the
dimensionality of the new weights and preserve original model
performance. Training is only performed on this ΔW, and original
model weights are kept the same. We also only tune the weights
of the attention mechanism for further cost savings while
preserving performance.

Training Details. Model training adopted standard Huggingface
training framework and the sequence classification module30.
Since LLaMA is a decoder-only (causal) model, we follow the
traditional approach of using the embedding of the last token to
do the classification, as other causal models (e.g. GPT-231) do.
Logits score of each DRG label was calculated from this linear
output layer, and probabilities of DRGs could be derived using a
softmax function.
We referenced the training protocol of Alpaca-Lora32. The

model was quantized to 8-bit integer using bitsandbytes library33.
Our model was trained using cross-entropy loss with the AdamW
optimizer (learning rate = 2 × 10−5 and weight decay = 0.01) for 3
epochs on all training data and batch size of 4. Lora parameters
were configured with r set to 8, an alpha value of 16, and a
dropout rate of 0.05. All attention blocks were included in the Lora
target modules. The training regimen for all DRG-LLaMA models
were executed on a singular Nvidia RTX A6000 GPU with 48GB of
graphics memory.

Baseline models
As baseline models for benchmarking, we selected CAML12,13 and
ClinicalBERT15. CAML is an adjusted convolutional neural network

(CNN). In CAML, clinical notes are tokenized and embedded with
pre-trained word embeddings to form input representations.
Subsequently, inputs are passed on to a neural network with one-
dimensional convolutions that pool CNN features using the
attention mechanism. In line with the approach detailed in13,
our training of CAML included early stop when there was no
improvement in micro-averaged F1 score for 10 consecutive
epochs, with a maximum epochs of 50. All default hyperpara-
meters were kept, except for max_seq_length which was set
to 512.
ClinicalBERT was built upon BioBERT, a domain-specific BERT

model pre-trained on PubMed abstracts and full-text articles
from PubMed Central16. ClinicalBERT performed further pre-
training of BioBERT using 2 million clinical notes from MIMIC-
III34. In our fine-tuning process of ClinicalBERT, we conducted
three training epochs, same as DRG-LLaMA. We set a learning
rate of 2 × 10−5 and a batch size of 16, consistent with previous
recommended practice for classification-oriented fine-tuning of
BERT19,35.

Statistical analysis
We used the implementation from13 to calculate AUC and F1-
score in both macro- and micro- approach for predictive models.
We also reported accuracy of DRG prediction at top one, five and
ten results. Standard deviations were calculated using a boot-
strapping procedure with 30 iterations. For each bootstrap
iteration, we randomly resampled the whole sample size from
the testing set with replacement. Smoothing spline fit in Fig. 2a
was performed using npreg package in R with generalized cross-
validation method and default parameters36.

Ethical concerns
MIMIC-IV is a free EHR dataset that is deidentified according to the
Health Insurance Portability and Accountability Act (HIPAA) Safe
Harbor provision27

Since we primarily used open source models such as LLaMA and
ClinicalBERT from Huggingface, an open source repository of
machine learning models30 as well as CAML from github, and
trained it on MIMIC, privacy risks are quite low. However, this risk
should not be counted out when working with LLMs, and it is
possible that LLaMA and ClinicalBERT may be trained on sensitive
data in their respective pretrainining stages.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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