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A retrospective study on machine learning-assisted stroke
recognition for medical helpline calls
Jonathan Wenstrup 1,2,11, Jakob Drachmann Havtorn 3,4,11, Lasse Borgholt 3,5,6,11, Stig Nikolaj Blomberg7, Lars Maaloe 3,4,
Michael R. Sayre 8, Hanne Christensen 9,10, Christina Kruuse1,10,12 and Helle Collatz Christensen 7,10,12✉

Advanced stroke treatment is time-dependent and, therefore, relies on recognition by call-takers at prehospital telehealth services
to ensure fast hospitalisation. This study aims to develop and assess the potential of machine learning in improving prehospital
stroke recognition during medical helpline calls. We used calls from 1 January 2015 to 31 December 2020 in Copenhagen to
develop a machine learning-based classification pipeline. Calls from 2021 are used for testing. Calls are first transcribed using an
automatic speech recognition model and then categorised as stroke or non-stroke using a text classification model. Call-takers
achieve a sensitivity of 52.7% (95% confidence interval 49.2–56.4%) with a positive predictive value (PPV) of 17.1% (15.5–18.6%).
The machine learning framework performs significantly better (p < 0.0001) with a sensitivity of 63.0% (62.0–64.1%) and a PPV of
24.9% (24.3–25.5%). Thus, a machine learning framework for recognising stroke in prehospital medical helpline calls may become a
supportive tool for call-takers, aiding in early and accurate stroke recognition.
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INTRODUCTION
Stroke is a leading cause of disability and death worldwide1–3.
Effective treatment is time-sensitive, and an optimal outcome is
more likely when treatment is administered within the first four
and a half hours from stroke onset4,5. The gateway to ambulance
transport and hospital admittance is through prehospital tele-
health services, including emergency medical call centres, nurse
advice call lines, and out-of-hours health services. In the
prehospital setting, the use of mobile stroke units has made it
possible to deliver advanced treatment faster6,7. As the mobile
stroke unit is only dispatched to patients with a suspected stroke,
the impact of the mobile stroke unit is directly influenced by
accurate call-taker recognition of stroke6,7. Call-takers who can
rapidly and accurately recognise stroke are therefore crucial in
facilitating prompt care in both prehospital and in-hospital
settings.
Despite initiatives to improve stroke recognition8,9, approxi-

mately half of all patients with stroke do not receive the correct
triage for their condition from call-takers10–12. Most initiatives aim
to improve stroke recognition by call-takers via introducing more
specific assessment tools8,9 or providing specialised training13.
Recent advances in machine learning technology might be
applied to improve stroke recognition without requiring changes
to the triaging approach, and machine learning-aided identifica-
tion of stroke has been suggested as a means of improving mobile
stroke unit effectiveness7. Real-time feedback from a machine
learning model can improve the recognition of out-of-hospital
cardiac arrest14,15. Therefore, this study aimed to develop and
assess the potential of machine learning in improving prehospital
stroke recognition during medical helpline calls.

In this study, we use call recordings and registry data from the
Copenhagen Emergency Medical Services (CEMS) and the Danish
Stroke Registry (DanStroke) from 2015 to 2020. We obtained call
recordings from two call lines: the 1-1-2 emergency line and the
medical helpline 1813 (MH-1813). We then fit a machine learning
framework to classify medical helpline calls as stroke or non-
stroke. Calls are first transcribed using an automatic speech
recognition model and then categorised by a text classification
model trained as an ensemble of five individual models. We
compare the performance of the model with that of call-takers
using MH-1813 data from 2021.

RESULTS
Population characteristics
Calls to the MH-1813 were divided into training, validation, and
test subsets, and calls to the emergency line 1-1-2 were only used
as supplementary training data (Table 1). Calls from the test year
(2021) that were not associated with a diagnostic category code,
which we used to evaluate call-taker performance, were separated
from our primary test set, but still included to assess potential bias
in this group of calls (2021 w/o category, Table 1). The 1-1-2
training data differed from the MH-1813 data regarding age, male/
female ratio, and stroke prevalence (Table 1). Therefore, we
performed an ablation study where 1-1-2 data were not used for
training to assess whether this difference negatively impacted
model performance. The training, validation, and test subsets of
the MH-1813 data had similar characteristics, whereas the 2021
data without diagnostic categories differed in age and sex.
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Main results
The classification model outperformed the call-takers (Table 2), with
significant differences in all metrics (p < 0.0001, paired approximate
permutation test). Excluding the 1-1-2 call line training data
significantly degraded the model’s performance (p < 0.0001, paired
approximate permutation test), despite the domain mismatch with
the MH-1813 call line test data. The performance on the 2021 calls
without a diagnostic category was significantly worse than that of

the test set regarding F1-score, sensitivity, false positive rate (FPR),
and false omission rate (FOR) (p < 0.0001, independent approx-
imate permutation test). The difference in positive predictive value
(PPV) was not significant (p= 0.298, independent approximate
permutation test).
The receiver operating characteristic (ROC) curve (Fig. 1, left)

illustrates the potential to increase the sensitivity while maintain-
ing an FPR lower than or equal to that of the call-takers. Similarly,
the PPV-sensitivity curve (Fig. 1, right) demonstrates that

Table 1. Population characteristics for each data subset.

Training (1-1-2) Training (MH-1813) Validation Test 2021 w/o category

All calls

Num. calls 155,696 1,391,301 155,825 344,030 231,009

Female 74,640 (47.94%) 792,783 (56.98%) 86,959 (55.81%) 190,974 (55.51%) 134,324 (58.14%)

Male 79,564 (51.10%) 596,760 (42.89%) 68,866 (44.19%) 153,050 (44.49%) 96,258 (41.67%)

65+ years 72,930 (46.84%) 335,146 (24.09%) 30,313 (19.45%) 65,652 (19.08%) 81,488 (35.27%)

Age (mean ± std.) 59.47 ± 21.24 47.12 ± 21.38 44.63 ± 20.08 44.31 ± 20.10 50.36 ± 22.77

Stroke calls

Num. calls 3899 3471 360 757 679

Female 1784 (45.76%) 1654 (47.65%) 161 (44.72%) 349 (46.10%) 366 (53.90%)

Male 2115 (54.24%) 1815 (52.29%) 199 (55.28%) 408 (53.90%) 313 (46.10%)

65+ years 2968 (76.12%) 2421 (69.75%) 250 (69.44%) 555 (73.32%) 567 (83.51%)

Age (mean ± std.) 72.91 ± 12.77 70.68 ± 13.85 70.93 ± 13.83 71.51 ± 13.41 73.41 ± 14.11

Non-stroke calls

Num. calls 151,797 1,387,830 155,465 343,273 230,330

Female 72,856 (48.00%) 791,129 (57.00%) 86,798 (55.83%) 190,625 (55.53%) 133,958 (58.16%)

Male 77,449 (51.02%) 594,945 (42.87%) 68,667 (44.17%) 152,642 (44.47%) 95,945 (41.66%)

65+ years 69,962 (46.09%) 332,725 (23.97%) 30,063 (19.34%) 65,097 (18.96%) 80,921 (35.13%)

Age (mean ± std.) 59.12 ± 21.30 47.06 ± 21.36 44.57 ± 20.05 44.25 ± 20.08 50.29 ± 22.76

Table 2. Overall performance on MH-1813 test data, performance without 1-1-2 training data, and performance on data from 2021 without
diagnostic categories, as well as performance on MH-1813 based on demographic subgroups (age/sex) [mean (95% CI)].

F1-score [%] ↑ Sensitivity [%] ↑ PPV [%] ↑ FOR [%] ↓ (1 - NPV) FPR [%] ↓ (1 - specificity)

Overall

Call-takers 25.8 (23.7–27.9) 52.7 (49.2–56.4) 17.1 (15.5–18.6) 0.105 (0.094–0.116) 0.565 (0.539–0.590)

Model 35.7 (35.0–36.4) 63.0 (62.0–64.1) 24.9 (24.3–25.5) 0.082 (0.079–0.085) 0.419 (0.413–0.426)

w/o 1-1-2 training data

Model 32.4 (31.8–33.1) 60.4 (59.3–61.4) 22.2 (21.6–22.7) 0.088 (0.085–0.091) 0.467 (0.460–0.474)

2021 test data w/o category

Model 32.6 (31.9–33.4) 48.3 (47.2–49.4) 24.7 (23.9–25.3) 0.153 (0.148–0.158) 0.435 (0.427–0.443)

8–64 years

Call-takers 15.9 (13.1–18.5) 50.5 (43.6–57.2) 9.40 (7.61–11.18) 0.036 (0.028–0.043) 0.353 (0.331–0.375)

Model 22.9 (21.8–24.0) 54.1 (52.1–56.3) 14.5 (13.8–15.3) 0.033 (0.031–0.035) 0.231 (0.226–0.236)

65+ years

Call-takers 32.9 (30.1–35.7) 53.5 (49.4–57.6) 23.7 (21.4–26.0) 0.401 (0.352–0.449) 1.467 (1.373–1.560)

Model 42.8 (41.9–43.7) 66.3 (65.1–67.5) 31.6 (30.8–32.4) 0.290 (0.278–0.303) 1.224 (1.198–1.249)

Male

Call-takers 30.2 (27.2–33.3) 53.9 (49.1–58.9) 21.0 (18.5–23.5) 0.124 (0.105–0.141) 0.542 (0.506–0.580)

Model 39.0 (38.0–40.1) 63.7 (62.3–65.2) 28.1 (27.3–29.0) 0.097 (0.093–0.102) 0.435 (0.425–0.445)

Female

Call-takers 21.9 (19.1–24.6) 51.3 (46.0–56.6) 13.9 (12.0–15.8) 0.090 (0.076–0.103) 0.582 (0.547–0.616)

Model 32.4 (31.4–33.4) 62.3 (60.7–63.8) 21.9 (21.1–22.7) 0.069 (0.066–0.073) 0.407 (0.399–0.416)

NPV negative predictive value, PPV positive predictive value, FOR false omission rate, FPR false positive rate, CI confidence interval.
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sensitivity can be improved while retaining a PPV higher than that
of the call-takers. The framework can thus be tuned to a sensitivity
of around 73%, while still having a higher positive predictive value
than the human call-taker (Fig. 1, right). The ensemble model
outperformed the individual models regardless of the threshold,
except for one that exhibited a slightly better sensitivity at a high
FPR exceeding 1.5%. The confusion matrices (Fig. 2) illustrate the
performance differences in absolute numbers, with the model
exhibiting more true positives and fewer false positives than the
call-takers.

Sex and age
The model and call-takers exhibited significantly higher PPV and
F1 score in men than in women (p < 0.0001, independent
approximate permutation test) (Table 2). The model significantly
outperformed the call-takers on all metrics for each sex
(p < 0.0001, paired approximate permutation test).
The model performed significantly better in the 65+ group than

in the 18–64 year group regarding sensitivity, PPV, and F1-score
(p < 0.0001, independent approximate permutation test). Similarly,
the call-takers performed significantly better in the 65+ group
than in the 18–64 group regarding PPV and F1 score (p < 0.0001,
independent approximate permutation test). Finally, the model

significantly outperformed the call-takers on all metrics in both
age groups (p < 0.0001, paired approximate permutation test).

Model explainability
We performed an occlusion analysis to evaluate the importance of
individual words for both positive and negative classifier
predictions (Table 3). Among the words with a positive rank
score, several words are synonymous with stroke, such as ‘blood
clot’, ‘haemorrhagic stroke’, and ‘stroke’. Ambulances are rarely
dispatched because the MH-1813 is not intended for emergencies.
Therefore, a word like ‘ambulance’ may also be a strong indicator
of call-taker recognition, which the model has learned to mimic.
Additionally, most of the remaining words can be linked to stroke-
related symptoms such as ‘double vision’, ‘difficulties speaking’,
and ‘hangs’. Particularly, words describing the side of the body
where symptoms occur ranked high (such as ‘left’, ‘right’, and
‘side’). Finally, some words were also related to the sudden onset
of symptoms (including ‘suddenly’ and ‘minutes’).
Among the words with a negative rank score, most were strong

indicators for specific conditions, symptoms, or body parts that are
unrelated to stroke (such as ‘tetanus’, ‘pregnant’, ‘swollen’, ‘fever’,
and ‘the knee’). Another group of words used to describe aspects
of treatment that are unlikely to be addressed in a stroke call

Fig. 1 Receiver operator characteristic (ROC) curve and PPV-sensitivity curve. Left is the ROC curve, and right is the PPV-sensitivity curve
(precision-recall curve). Models 1–5 are the individual models that make up the ensemble model.
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Fig. 2 Prediction confusion matrices. Confusion matrices of predictions for call-takers and the model on the test set. Numbers for the model
are given as the rounded mean over eleven runs.
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included ‘prescription’, ‘bandage’, and ‘OTC’. Finally, a small group
of words described institutions that are not commonly involved in
stroke treatment (such as ‘psychiatric’, ‘the emergency room’, and
‘the police’).

DISCUSSION
Our results showed that a machine learning framework could
substantially improve stroke recognition in medical helpline calls
compared to solely relying on human call-takers. This improve-
ment was observed across all performance metrics and for basic
patient demographics (age and sex). Our occlusion analysis
revealed that the model relied on the relevant predictive features
associated with call-taker triaging, patient symptoms, and
treatment.
This study does not imply that a machine-learning model can

replace medical call-takers. The effectiveness of the model is fully
reliant on the conversation between the call-taker and caller and
the call-taker’s ability to skillfully triage the patient. Instead, the
model should be used as a supportive tool for call-takers in the
decision-making process, contributing to a higher recognition of
patients with stroke and potentially boosting the confidence of
call-takers in their decisions. A similar machine learning model

designed to predict cardiac arrest was tested in a randomised
controlled trial (RCT) at CEMS15. The results highlighted the
necessity of incorporating input from call-takers. The machine
learning model for cardiac arrest has subsequently been
implemented in daily practice at CEMS, in a setup similar to the
one presented in our study. However, the implementation of our
framework requires further investigation. The relative performance
gap between call-takers and the model was larger in our study
than in the cardiac arrest study15, which may affect the results of a
potential RCT.
To support future work and discussions beyond the scope of

this study, the supplementary material includes the results of a
simulation of a live implementation where call-takers are assumed
to follow a set of fixed rules based on the output of the machine
learning framework (Supplementary Table 9). For instance, in one
simulation call-takers are assumed to change any stroke negative
to a positive, if the model predicts a positive. While the results of
the simulation are encouraging, it is important to stress that it is
not practically feasible to use a fixed rule set to overrule the call-
taker. These results should only be seen as a preliminary indicator
of a potential RCT. In practice, a nuanced set of guidelines should
be developed over several iterations of implementation and
testing.

Table 3. English translation of words with the largest positive and negative ranking score in calls predicted as stroke and non-stroke, respectively.

Stroke predictions D= 1897 Non-stroke predictions D= 342,133

Word, w (translated) Occurrences, D(w) Word, w (translated) Occurrences, D(w)

1. Ambulance 1680 Tetanus 4378

2. Blood clot 895 Pregnant 8749

3. Left 1108 Cut 7592

4. Right 1050 Bandage 4561

5. Double vision 84 Amager (a location) 23,776

6. The words 344 O’clock 94,436

7. Suddenly 783 The emergency room 42,809

8. Arm 709 The police 2903

9. Side 1,139 Swollen 60,559

10. Stroke 117 Over-the-counter (OTC) 4641

11. Double 113 The neck 30,151

12. Control 134 Fever 112,586

13. Call 39 Prescription 5450

14. Numb 94 Centimetre 12,026

15. Minutes 763 The knee 8875

16. Difficulties speaking 44 The pharmacy 10,085

17. Haemorrhagic stroke 133 The stomach 42,105

18. Hand 297 Psychiatric 3688

19. The ambulance 521 Pneumonia 7597

20. Slurred speech 58 Stomach pain 10,551

21. Blood clots 224 Stool 19,155

22. Fast 663 The ribs 3928

23. Express 44 Bleed 10,501

24. Blood thinner 259 Bleeding 24,313

25. Incoherent 15 Ribs 2941

26. Lopsided 211 Broken 19,415

27. Reduced 528 Inflammation 10,050

28. Hangs 628 Common cold 8127

29. Transient 48 Morning or morrow 78,558

30. Not making sense 14 Swelling 17,762

For this analysis, we used the model with the median F1-score out of 11 randomly seeded runs.
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The performance gap between the model and call-takers could
be explained by the rarity of stroke calls to MH-1813 (0.250% of all
calls in 2021), which might affect call-taker awareness of stroke as a
possible cause of certain symptoms. Additionally, certain stroke
symptoms are so rare that some call-takers may never encounter
them, increasing the risk of false negatives. The model was trained
on more calls than any single call-taker would handle in a lifetime,
enabling it to recognise even rare descriptors of stroke. The model is
specifically trained to recognise strokes and exclusively learns from
actual stroke descriptions, unlike call-takers, who are trained with
generalised teaching materials to triage many different conditions.
Therefore, call-takers may not have received specific training for
patients with stroke and may never have encountered them.
The model performed significantly better on men than on

women. This could be attributed to several factors. First, the model
may have learned to mimic call-takers with the same bias. Second,
women may experience different and more challenging-to-
identify symptoms than men16,17. Third, a higher prevalence of
male patients with stroke was observed in the training data.
Despite these potential sources of bias, the model exhibited less
bias than call-takers did. That is, the relative performance
improvements were higher for women than for men. This bias
could be further reduced using advanced data augmentation and
balanced data when training a machine learning model. However,
such measures may degrade overall performance.
The improved sensitivity and PPV in the 65+ years group may

be explained by a higher prior probability of stroke for older
patients and stronger evidence from the patient’s medical history.
The relatively high FOR and FPR for the 65+ group is likely to be a
result of the much higher prevalence of stroke cases compared to
the 18–64-year-olds (0.85% vs. 0.07%). We did not have data to
estimate potential bias related to race, ethnicity, language, accent,
or dialects. Previous studies on speech recognition for call centres
have indeed found that non-native speakers had a higher rate of
transcription errors18. Since our model was trained on a
representative—and therefore unbalanced—sample, we expect
it to behave similarly. Future research should look to address these
shortcomings, for example, by utilising self-supervised learning on
massive amounts of diverse, unlabelled data covering multiple
languages, accents, and dialects.
Due to European data regulations (GDPR), it was not possible to

manually transcribe MH-1813 calls to train a new speech
recognition model, so we had to rely on an existing solution. This
also meant that we could not evaluate the word error rate (WER) of
the model. Instead, we used the downstream performance of the
text classification model when trained in combination with different
speech recognition models to choose the best option. Since the
focus of this study is the ability to correctly recognise stroke, and
not the performance of the speech recognition model alone, this
approach is better suited. Indeed, the WER might be misleading
when choosing a speech recognition model for a specific task. For
instance, one model might fail to predict redundant minimal
response words (e.g., “uh” and “uhm”) and make small inflection
errors (e.g., “clot” instead of “clots”), which results in a relatively high
WER, while another model only fails to predict rare, specialised
words that are highly indicative of stroke (e.g., “haemorrhage” and
“thrombolysis”), which results in a relatively low WER.
Although we believe that the proposed machine learning

framework can be further improved, several alternatives have
already been explored in the preliminary experimental phase. The
speech recognition model we used was trained on 1-1-2 calls for a
previous project14, and so, was specialised to a domain very
similar to that of MH-1813. We also tested an open-source,
multilingual model from OpenAI called Whisper19, but found that
performance degraded slightly compared to the model trained on
1-1-2. We hypothesise that this is due to Whisper’s inability to
handle the specific noise conditions and recognise words from a
specialised medical vocabulary.

For text classification, we used an ensemble of multi-layer
perceptrons (MLPs). We also tested convolutional, recurrent, and
self-attention (i.e., Transformer) architectures. However, this did
not improve performance. In addition, we tested a pre-trained
self-supervised model. Although many of these models are freely
available to the public, they are primarily trained on English data.
Only relatively few options exist for the Danish language, none of
which are specialised in the medical domain. We used a
monolingual Danish BERT model, which has previously been
shown to outperform a multilingual alternative from Google for
Danish-named entity recognition20. However, this also did not
result in a significant performance improvement. We hypothesise
that the number of ground truth stroke positives was too small for
these advanced models to learn more complex patterns than the
MLP ensemble. In addition, a self-supervised model would likely
benefit from being pre-trained on speech or text data from the
target domain. Although training such large-scale foundation
models has the potential to improve the classification model
further, it is beyond the scope of this study. Thus, we chose the
simpler MLP ensemble. We have included references to reviews of
self-supervised learning for speech and text in the references21,22.
Notably, it is not uncommon for small, simple models to match or
outperform large, pre-trained models for text classification tasks23.
This study has some limitations. First, the mapping of call

recordings to electronic records was incomplete due to technical
limitations in the computer-aided dispatch (CAD) registry, which
limited the number of calls available to us. Of note, there was no
obvious pattern of bias related to the unmapped calls, and we
included all calls with matching audio files, regardless of
dispatcher performance. The results could potentially be
improved if more calls were available for analysis. Second, calls
without a call-taker-indicated diagnostic category were not
included in the validation and test data because the call-taker’s
performance could not be evaluated. Moreover, in exploratory
analyses, the model performed worse on these calls, which might
be attributed to differences in population characteristics (Table 1).
Finally, the ground truth stroke labelling relied on the patient-
reported time of onset being exact; however, estimating the
accuracy of the timestamps in DanStroke was impossible.
In conclusion, using the largest collection of audio calls from

patients with stroke to date, we developed a machine-learning
framework that significantly outperformed human call-takers in
stroke recognition in medical helpline calls. The framework can
assist human call-takers during medical helpline calls. Ideally, this
would enable a higher recognition of patients with stroke in the
prehospital setting, benefiting both patient outcomes and health
service resource allocation.

METHODS
Data sources
Copenhagen emergency medical services (CEMS). The CEMS is
responsible for providing prehospital telehealth services in the
Capital Region of Denmark, with a catchment area of 1.9 million24.
CEMS operates two call lines: the 1-1-2 emergency line, similar to
9-1-1 in the United States, intended for acute conditions. The
other is the medical helpline 1813 (MH-1813, pronounced ‘18-13’)
intended for non-life-threatening conditions that cannot wait until
a general practitioner is available25.
Call-takers for both lines, who are nurses, paramedics, or

physicians, can dispatch ambulances. The condition suspected by
the call-taker is categorised based on a predefined diagnostic
index and stored in an electronic record using a CAD system. The
CAD records are associated with the Danish civil registration
number (CPR number)26 of the patient. The CPR number is a
unique identification assigned to all Danish residents. It is used for
interactions with health services and registries, enabling cross-
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referencing of the data sources used in this study. The call audio is
recorded and stored separately from the CAD recordings using a
telephone system.

Danish Stroke Registry (DanStroke). All patients with a final
diagnosis of stroke or transient ischaemic attack admitted to a
Danish hospital within 5 days of symptom onset are recorded in
the Danish Stroke Registry27, also known as DanStroke. This record
includes the patient-reported time of onset, stroke type (haemor-
rhagic, ischaemic, or transient ischaemic attack), and CPR number
of the patient. The diagnosis is obtained according to the national
guidelines28, which includes cerebral imaging and full diagnostic
workup by neurologists. The validity of the Danish stroke registry
has been shown to be high29, and the number of stroke mimics is
therefore minimised in our dataset.

Inclusion and ethics. The Danish Data Protection Agency (P-2021-
475) approved this study. Danish law did not require approval
from the Scientific Ethics Committee because the data were
registry-based. CEMS approved the transcription of all calls made
to 1-1-2 and MH-1813. All electronic records were anonymised
before analysis, and the researchers did not inspect the calls
manually.

Study scope
Stroke prevalence in calls made to the MH-1813 is lower than that
in calls made to 1-1-2. Patients with stroke may exhibit different
symptoms and symptom severity because MH-1813 is meant for
low-acuity incidents, leading to reduced recognition. In addition,
MH-1813 call-takers dispatch high-priority transport less fre-
quently, which may affect optimal treatment timing. Therefore,
we focused on MH-1813 in this study.

Stroke dataset
Cross-referencing data sources. From the CAD medical records,
we included all calls that could be matched to a corresponding
audio file for 1-1-2 and MH-1813 from 2015 to 2021 for patients
older than 18. The CAD records were matched with the telephone
call recordings based on the call start, call duration, and call-taker
identity. Due to data incompleteness, and the way the audio data
is stored, at CEMS, 2,730,199 contacts could not be matched to
their corresponding audio file, however, 2,361,178 contacts were
successfully matched. We found no obvious pattern in the
matched and unmatched calls and we included all calls with a
matching audio file. Next, a call was regarded as a case of ground
truth stroke positive when the CPR number in the CAD record
matched that of a DanStroke record, and the patient-reported
time of onset was close to the call start time. We allowed a
window of 72 hours before and 24 hours after the call starts to
account for uncertainty in recording stroke onset time. We
excluded calls involving subarachnoid haemorrhage cases. Finally,
we considered a call to be a call-taker stroke positive when the
call-taker selected the stroke diagnostic category during the call
and dispatched an ambulance with the appropriate level of
response30. To ensure that the effect of the machine learning
framework was not overestimated, we excluded calls where
diagnostic category had not been registered from the test set. We
still reported the population characteristics and model perfor-
mance of this group of calls to assess potential bias introduced by
excluding them. A data-flow diagram is included in the
supplementary material (Supplementary Fig. 1). The resulting
dataset is the largest dataset of audio files from stroke calls
collected to date.

Dataset splitting. We reserved all the MH-1813 calls from 2021 for
testing. We used stratified sampling to divide the MH-1813 calls
from 2015 to 2020 into validation and training subsets. The

training subset was further split into five folds, which were used
for ensemble training. The calls were stratified based on the
ground truth stroke label and the presence of a diagnostic
category. Calls without diagnostic categories were only included
in the training set. The 1-1-2 calls were used only for training;
however, calls from 2021 were discarded to avoid temporal
overlap with the test period.

Machine learning pipeline
We employed a two-step machine learning pipeline. First, a call
was transcribed using the speech recognition model. Second, the
transcript was used as input for the text classification model. The
final output score was used to classify whether the call concerned
a stroke. The pipeline is illustrated in the supplementary material
(Supplementary Fig. 2).

Speech recognition. The call recordings from the CEMS were
stored as 8-bit linear pulse-code modulated audio, sampled at
8 kHz. A call was converted into a log-Mel spectrogram before
being input into the speech recognition model. This conversion is
a commonly used input representation for speech-processing
tasks, which facilitates the identification of linguistic content in
audio signals. We used a speech recognition model with a neural
network architecture31, consisting of two-dimensional convolu-
tional layers32 and blocks of bidirectional long short-term memory
layers33. The output is a sequence of probability distributions over
characters of the Danish alphabet, which were then converted
into a human-readable transcript using a greedy decoder34.

Text classification. As input for the classification model, each
transcript was transformed into a fixed-size bag-of-words vector,
which encoded the occurrence of word and character (n-grams) in
a fixed vocabulary. The feature selection procedure is detailed in
the Supplementary Methods. The model was constructed as an
ensemble35 of five identical, independently trained models. Each
consists of a stack of neural network layers commonly referred to
as a multi-layer perceptron36. The final layer has a single scalar
output and applies a sigmoid nonlinearity to produce an output
score between zero and one.

Threshold calibration and ensembling. For each model in the
ensemble, we selected the prediction threshold as the harmonic
mean of the two thresholds that ensure sensitivity and PPV equal
to those of the call-takers. This simplifies the comparison by
ensuring a trade-off between sensitivity and PPV, similar to that of
call-takers.
As the threshold differed for each model in the ensemble,

computing the ensemble output score as the average output
score of the individual models would not be meaningful. Instead,
we first subtracted the threshold from the output score in logit
space (before sigmoid nonlinearity) for each model to obtain the
same threshold (0.5). Subsequently, we defined the ensemble
output score as the average of the centred output scores. The
exact equations are provided in the supplementary material
[Supplementary Equations (1) and (2)].

Model training. The speech recognition model was trained on
3,811 manually transcribed random calls (173 h) from the CEMS as
part of a previous project14. These calls exclusively originated from
1-1-2 between 2015 and 2018, ensuring no overlap with the test
data used for the text classification model. The model was trained
using a connectionist temporal classification objective34.
We trained five models for the text classification ensemble

using binary cross-entropy after transcribing all calls in the dataset
using the speech recognition model. One training fold was used
for early stopping using the F1-score, whereas the remaining
fourfold and 1-1-2 data were used for training. Thus, each model
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in the ensemble was trained and validated using different
datasets. We ran a grid search with 96 different hyperparameter
configurations and selected the ensemble model with the best
F1 score for the validation set.

Model explainability
We performed an occlusion analysis to better understand the
predictions of the text classification model. This involved
removing all instances of a given word from the input transcript
to evaluate its impact on the model output. The word was
removed before vectorisation, such that all word and character
n-grams associated with the word were discarded. Specifically, let
z(n,d,w) be the logit output of model n in the ensemble for
transcript d when the word w is occluded. For transcript d, we
computed the word impact score i(d,w) as the mean difference
between the logit before and after occlusion.

iðd;wÞ ¼ 1
N

XN

n¼1

zðn;dÞ � z n;d;wð Þ (1)

We used the logit output to compute the impact score because
the difference in sigmoid-normalised output is biased towards
zero for values close to 0 or 1. To select words for inspection, we
computed a ranking score, r(w), as the sum of the signed squares of
the impact:

rðwÞ ¼
XD

d¼1

sgn iðd;wÞ
� �

iðd;wÞ
� �2

(2)

where sgn(·) represents the sign function. Squaring i(d, w) favours
rare features with a high impact over common features with a low
impact.

Statistical analysis
We report the F1-score, sensitivity, PPV, FOR (equal to 1−negative
predictive value), and FPR (equal to 1−specificity). Due to the
imbalanced nature of the dataset, the negative predictive value
and specificity were >99% for all cases. We reported FOR and FPR
instead because such large numerical values exhibit low relative
variance, thereby obfuscating comparisons. Finally, we report the
prediction confusion matrices, ROC curve, and PPV-sensitivity
curve, commonly known as the precision-recall curve. All results
are reported with up to three significant digits.
We present the results with and without 1-1-2 training data,

subgroup analyses based on age (18–64/65+) and sex (male/
female), and call-takers performance. We also report the model
performance on calls without a diagnostic category from the test
year 2021 to assess potential data bias. We tested our results for
statistical significance using approximate permutation tests. We
used one-sided paired approximate permutation tests for model-
to-model and model-to-call-taker comparisons when done on the
same subset. For comparisons across different subsets (e.g., male
vs. female), we used one-sided independent approximate
permutation tests. We computed 95% confidence intervals (CIs)
using bootstrapping37,38. In our assessment, we accounted for
random variation associated with model training by basing the
means, tests, and CIs on the predictions of 11 randomly initialised
training runs. Statistical significance was defined as a p value of
<0.05.
We used the model with the median F1-score out of the 11 runs

for the occlusion analysis. We listed the 30 words with the highest
positive ranking scores for calls classified as stroke and the 30
words with the highest negative ranking scores for calls classified
as non-stroke.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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