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Classifying and clustering mood disorder patients using
smartphone data from a feasibility study
Carsten Langholm 1, Scott Breitinger2, Lucy Gray 1, Fernando Goes 3, Alex Walker3, Ashley Xiong2, Cindy Stopel2, Peter Zandi3,
Mark A. Frye 2 and John Torous 1✉

Differentiating between bipolar disorder and major depressive disorder can be challenging for clinicians. The diagnostic process
might benefit from new ways of monitoring the phenotypes of these disorders. Smartphone data might offer insight in this regard.
Today, smartphones collect dense, multimodal data from which behavioral metrics can be derived. Distinct patterns in these
metrics have the potential to differentiate the two conditions. To examine the feasibility of smartphone-based phenotyping, two
study sites (Mayo Clinic, Johns Hopkins University) recruited patients with bipolar I disorder (BPI), bipolar II disorder (BPII), major
depressive disorder (MDD), and undiagnosed controls for a 12-week observational study. On their smartphones, study participants
used a digital phenotyping app (mindLAMP) for data collection. While in use, mindLAMP gathered real-time geolocation,
accelerometer, and screen-state (on/off) data. mindLAMP was also used for EMA delivery. MindLAMP data was then used as input
variables in binary classification, three-group k-nearest neighbors (KNN) classification, and k-means clustering. The best-performing
binary classification model was able to classify patients as control or non-control with an AUC of 0.91 (random forest). The model
that performed best at classifying patients as having MDD or bipolar I/II had an AUC of 0.62 (logistic regression). The k-means
clustering model had a silhouette score of 0.46 and an ARI of 0.27. Results support the potential for digital phenotyping methods to
cluster depression, bipolar disorder, and healthy controls. However, due to inconsistencies in accuracy, more data streams are
required before these methods can be applied to clinical practice.
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INTRODUCTION
Clinical overlap in symptoms between bipolar disorder and
depressive disorder complicates accurate diagnosis and personalized
treatment. Cross-sectionally, unipolar depressive symptoms may
often be difficult to distinguish from bipolar depressive symptoms1.
For patients presenting with a first-episode mood diagnosis, ruling
out bipolar disorder can be difficult, and recent research suggests
that up to 20% of those diagnosed with a depressive disorder may
have an underlying bipolar disorder2. The diagnostic distinction
between unipolar and bipolar depression has clinical implications
because first-line treatments (antidepressants, mood stabilizers) are
fundamentally different3.
With current capabilities, distinguishing unipolar depression from

bipolar depression requires careful longitudinal observation. These
diagnostic efforts can be burdensome. Therefore, research efforts
have emerged with the goal of discovering earlier clinical biomarkers.
However, these clinical biomarkers have had limited success in the
diagnostic separation of bipolar disorder and major depression4,5. In
response, there have been numerous calls for new “neurocognitive
models of mental illness … that can deliver on substantially richer,
multivariate data sets and larger samples than are feasible in the
traditional small, single-site studies that dominate the field6”.
There has been rising interest in digital biomarkers, especially

those involving smartphone data. Smartphone data, because of
low costs to implementation and widespread use, has scalable
potential. Prior research, described as “digital phenotyping,”
involves smartphone-derived markers of human behavior. These
markers include sleep duration, screen usage time, geolocation
activity patterns, social interactions, and many others. Digital

phenotyping has shown feasibility in characterizing both depres-
sion and bipolar disorder. For example, recent work has shown
that smartphone self-monitored mood is positively correlated with
smartphone-measured step count. In addition, the number of
smartphone-measured outgoing phone calls is positively corre-
lated with the Young Mania Rating Scales (YMRS) in people with
bipolar disorder7,8. Other papers have used different smartphone
signals, such as geolocation and mobility patterns to predict both
the Hamilton Depression Rating Scale (HAM-D) and the YMRS6. A
2022 review found 118 articles showing associations between
digital phenotyping and depression severity, negative affect,
physical activity, social functioning, and sleep quality variability9.
Despite the potential for digital methods to phenotype unipolar

depression and bipolar disorder, many studies lack of reproduci-
bility or report contradictory results10,11. A lack of comparative
studies for digital phenotyping in these disorders has been cited
as the chief challenge for assessing the validity and reliability of
this approach. In addition, to our knowledge, no study has focused
on using this method specifically to distinguish between or stratify
unipolar depression and bipolar disorder.
Thus, in this paper, we present the results of a digital

phenotyping study designed to stratify the digital traces of
patients with either unipolar depression, bipolar disorder, or
neither. We asked patients to collect smartphone data and answer
surveys on a regular basis. Later, we attempt to classify and cluster
patients according to their digital data. In our study design, we
emphasize reproducibility. To that end, we use an open-source
digital phenotyping platform currently employed in the interna-
tional NIH’s Accelerating Medicine Partnership Schizophrenia
Study12. We also provide the code used to perform all analyses.
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To improve reliability, we run the protocol at two unique sites
serving patients with differing severity of illness.

RESULTS
Binary classification
For each classification performed in this study, multiple models were
implemented. We tested and tuned all models three separate times,
using different subsets of input variables (active data only, passive
data only, or all data). The performances of every best-performing
model (highest accuracy on the validation set) for binary classifica-
tions were compiled and reported in Table 1.
AUC was strong (AUC > 0.9) when using all data or only active

data to classify patients as control or non-control. Using passive
data alone provided moderate predictive value (AUC= 0.65).
Classifying patients according to diagnosis among the non-control
samples was moderately successful when using all data or active
data, but passive data alone was not able to distinguish between
non-control groups (AUC= 0.52).

KNN classification
Three-group k-nearest neighbors classification was performed to
determine whether the data could predict to which of the three
diagnosis groups each participant belonged. Results were
quantified and compiled in Table 2.
The KNN model appears to classify participants into control or

non-control moderately accurately. Although using passive data
alone produced lower accuracy when classifying patients as control
or non-control, this accuracy still greatly outperformed random
guessing. There was lower accuracy associated with classifying
participants as part of the MDD or bipolar groups. Interestingly, when
using only active features (surveys) as predictor variables, the model
had the highest overall accuracy with high control accuracy.
However, the model appeared to classify nearly all non-control
participants as belonging to the bipolar group, explaining the zero
MDD accuracy. On the contrary, when using only passive data the
model displayed a lower overall accuracy but managed to distinguish
some participants between non-control groups.

Clustering
K-means clustering was performed on all data using mean
imputation. Clustering results, broken into principal components,
were compiled into Fig. 1.
Performing k-means clustering yielded a silhouette score of 0.46

and an ARI of 0.27 (Fig. 1).

DISCUSSION
This study investigated using passively collected smartphone
digital phenotyping data to predict the diagnosis of mood
disorder patients. We found the best-performing binary classifica-
tion models to have moderate to high success. We also showed
that k-means clustering algorithms using K= 4 had some success
stratifying patients according to silhouette scores. These results
suggest that this approach is feasible for the stratification of MDD
and bipolar disorder, though inconsistent classification accuracy
warrants further investigation with larger sample sizes and more
data streams.
Digital phenotyping methods involve both active assessments,

via surveys, and passive assessments, via sensors. Using passive
data alone as a predictor variable had moderate success (AUC=
0.65) when classifying participants as control or non-control.
Although the ability to determine whether a participant can be
classified as control or non-control has value in showcasing how
smartphone data can produce a digital biomarker of clinical
conditions, the true potential of classification comes in classifying
patients according to their non-control clinical diagnosis. Doing so
not only has clinical utility as a diagnostic tool but can also help
elucidate the relationships between diagnosis, symptoms, and the
features comprising a digital phenotype. However, classifying
patients according to their non-control diagnosis had less success
using passive data alone (AUC= 0.52). When introducing survey
data, AUC improved only slightly (AUC= 0.62).
Although passive data alone cannot be relied upon to drive

predictive methods in clinical care at this time, these results show
promise nonetheless. The ease, lack of bias, and scalability of
smartphone data collection means it can be broadly implemented
with little cost. Because of this convenience, any AUC score showing
it has moderate predictive value on its own shows great potential.
These results warrant additional investigation with additional data
streams and larger sample populations to further evaluate and
improve upon the value of smartphone-based passive data.
Clustering patient data has perhaps even more potential than

classification. Silhouette scores show the ability to stratify patients
into partially distinct classes according to their digital data. Low
ARI scores, however, suggest the stratification between these
clusters does not consistently agree with clinical diagnoses.
Although this could be a product of inconsistent data, this finding
could also be explained by imprecise symptomatic labeling.
These results have a strength in reproducibility, transparency,

and feasibility. While clustering and classification studies are
increasingly common today, they are often difficult to scale and
challenging to replicate. On the contrary, our approach is
designed for replication. None of the features used as input

Table 1. Binary classification results.

Classification type Best model Validation accuracy Test accuracy Test AUC Features

Control vs non-control Random Forest 88.9 84.6 0.91 All

Bipolar vs unipolar SVM 59.1 57.1 0.61 All

Control vs non-control Naive Bayes 79.3 84.6 0.93 Active

Bipolar vs unipolar Logistic Regression 66.7 64.3 0.62 Active

Control vs non-control Random Forest 72.6 69.2 0.65 Passive

Bipolar vs unipolar Decision Trees 66.7 50 0.52 Passive

Table 2. Three-group KNN classification results presented as the
percent of participants in each diagnosis group who were correctly
identified by the model.

Diagnosis group All features Active features Passive features

Control accuracy 91% 91% 55%

MDD accuracy 30% 0% 50%

Bipolar accuracy 50% 83% 39%

Overall accuracy 56% 64% 46%
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variables require additional equipment like wearable devices.
Costs are minimal to research groups, allowing for easy validation.
These results suggest there is potential for new research

exploring this approach with larger samples across more sites. But
these results also offer practical implications today. Digital
phenotyping data, although today unable to drive care alone,
can be used to augment clinical care for patients with mood
disorders and help people better understand the relationships
between their own behaviors and symptoms13.
Limitations in this study suggest possibilities for future research.

We only explored a small number of measurable data vectors, and
given the proliferation of biometric sensors, there remain further
opportunities to engage with higher dimensional data collection.
Future research could not only validate these results but also have
greater success by including more features and implementing
protocols to reduce missingness. The reliability of these classification
models in real life is limited by the reliability of the gold-standard
(clinician diagnosis). However, this only emphasizes the importance
of new diagnostic methods. Other limitations include combining
Bipolar I and Bipolar II patients into one group and performing data
imputation. If clustering methods continue to improve and can
potentially stratify patients with more precision than symptom-based
clinical diagnosis, future research should be centered around the
potential for whether digital phenotyping clusters can better predict
medication response and whether clusters or biotypes align across
new predictor variables and study sites14. Lastly, these results should

be validated in future studies with larger sample sizes to determine
the degree of overfitting associated with these results.
Overall, this study showed the potential for digital phenotyping

in classifying patients according to their diagnosis, although
results are at risk of overfitting due to the small sample size.
Results could be weakened by overlap between clinical diagnoses,
suggesting unsupervised clustering could have greater potential
in labeling patients. The ability to precisely cluster patients could
lead to greater precision in labeling patients and therefore could
be useful in medication assignment. These results should be
replicated and validated, which can be easily accomplished due to
the open-source nature of the tools used and the analysis pipeline.

METHODS
Recruitment and protocol
Each of the study sites received approval by its institutional review
board (Mayo Clinic: IRB 20-008773, Johns Hopkins University: IRB
00285631), and every participant provided written informed
consent. The study protocol, not previously reported, is described
in a separate paper currently in review. Study recruitment and
protocol were identical between both study sites in terms of
smartphone data collection. Participant demographics are sum-
marized in Table 3.

Fig. 1 K-means clustering results. Distinct clusters are represented by the blue, orange, magenta, and turquoise colors. Patient diagnosis
labels are represented by circle, square, triangle, and plus symbols.
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Diagnostic criteria
Participants had their diagnosis confirmed using the Mini
International Neuropsychiatric Interview. Depressive symptom
severity was assessed using the Quick Inventory of Depressive
Symptomatology—Clinician Rating. The degree of hypomania/
mania was assessed using the Young Mania Rating Scale. Rating of
videotaped patient interviews, according to the QIDS and YMRS,
was performed by six raters, including two psychiatrists. Inter-rater
reliability was found to be 0.92 (QIDS) and 0.96 (YMRS).

Surveys
Participants responded to surveys using mindLAMP, an open-
source mental health intervention and monitoring application15

over the course of 12 weeks in 2021-2023, depending on the
participant’s start date. mindLAMP sent notifications three times
per week to participants, prompting them to respond to in-app
surveys measuring self-reported depression (PHQ-2)16 and anxiety
(GAD-2)17. Survey scores were mapped to integer values (0-6).
Participants responded to a mean of 33 total surveys each.

Sensor data
Mobile devices contain sensors which passively record informa-
tion about user activity, including but not limited to geolocation,
motion, exercise, device rotation, and many others. While
participants had mindLAMP installed on their devices, mindLAMP
passively collected smartphone sensor data and sent this data to
secure servers. This sensor data (“passive data”) was then
processed into more meaningful metrics for analysis. To collect
passive data, participants had to enable data collection permis-
sions for mindLAMP in iOS or Android settings.

Data processing
mindLAMP participant data was stored in secure AWS servers and
obtained for analysis using the HIPAA-compliant LAMP API15. Raw
passive data was processed and converted to more interpretable
metrics (“features”) using the LAMP-cortex data analysis Python
package developed by the Division of Digital Psychiatry at Beth
Israel Deaconess Medical Center (BIDMC)15. For this study, sensor
data was processed into the following features: home time (time
spent at home), entropy (a quantified measure of how often a

patient changed their location), sleep duration, and screen
duration (time spent using device). Sleep duration was estimated
from periods of smartphone inactivity and was processed from
device acceleration and screen usage data.
For each participant, all data was split into 24-h intervals

starting from the timestamp of the first survey taken to the
timestamp of the last survey taken. Survey results for each
participant were averaged over each interval (e.g., if two mood
surveys were taken during the same 24-h period, their scores were
averaged) and the derived features for each participant were
summed over the interval (e.g., we summed the total number of
hours the participant spent at home over each 24-h period).
For every 24-h bin, we also calculated passive data quality. We

define data quality as the percent of 1-h bins that contain at least
one GPS data point. We temporally aligned per-interval data
quality with all other data streams and filtered for data frequency,
excluding bins with data quality below 0.8, under the assumption
that low-quality bins would produce biased results. Afterward, the
means and sample standard deviations of all survey scores and
features were calculated over all high-quality 24-h bins per
participant. These means and variances were later used as
predictor variables in regression models.
A number of participants failed to obtain a sufficient number of

samples for calculating mean and variance of their survey and
feature data, producing missing data. A summary of the amount of
missing data (after filtering for data quality) is provided in Table 4.
Because of the number of input variables used in the regression
models, excluding participants with any amount of missing data
would drastically reduce the number of participants with
applicable data. Instead, we imputed missing values using mean
feature values.

Classification
Participants were classified in three ways using the scikit-learn
package (Python 3). Due to low sample size, for the purpose of
these predictions, we combined the participants diagnosed with
BPI or BPII into the same group (“bipolar group”). First, we used
standard predictive methods to determine whether the available
data was sufficient to predict if participants belonged to the
control group or to one of the non-control groups (MDD, bipolar
group). Second, we predicted whether non-control patients
belonged to the MDD group or the bipolar group. Third, we used
a three-group KNN classification model to predict to which group
each participant belonged (control, MDD, or bipolar group). For
binary classification, a variety of model types were tested: Logistic
Regression (LR), Support Vector Machines (SVM), Decision Trees
(DT), Random Forest (RF), Naive Bayes (NB), and K-Nearest
Neighbors (KNN). All tested binary models were tuned for
hyperparameters via k-fold (k= 5) cross-validation using the
GridSearchCV module from the scikit-learn package to maximize
the accuracy of each model. The data was split into a training set
(50%) and testing set (50%). After hyperparameter tuning on the
training set, the model was trained using best-performing
hyperparameters on the entire training set and tested on the
independent testing set. The three classification types are
summarized in Table 5. In this paper, for each of the three

Table 4. Percent missing data by feature variable type.

Features Percent of data missing

All 13.80%

Active only 11.20%

Passive only 14.90%

Table 3. Participant demographics summary.

Gender Number Percent

F 84 72

M 32 28

Diagnosis

Control 35 30

MDD 53 46

Bipolar I 13 13

Bipolar II 15 11

Race

White 81 70

Asian 15 13

Black 11 9

Hispanic 2 2

Asian/White 2 2

Black/White 1 1

American Indian 1 1

Other 3 2
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classification types listed, we present the testing set AUC/accuracy
of the model with the best validation set accuracy.
We also sought to ascertain the relative contribution of the

different categories of predictor variables (active data vs passive
data). Therefore, we performed each binary classification three
times: using only active data as input variables, using only passive
data as input variables, and using all data as input variables.

Clustering
K-means clustering (K= 4) was performed using the K-Means
module in the scikit-learn package. Data was scaled using the
StandardScaler module and principal component analysis was
performed using the PCA module to reduce the dimensionality of
the predictors. There was no hyperparameter tuning; default
sklearn parameters were used (scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html). Clustering results were
quantified using silhouette scores and adjusted rand index (ARI)
scores.

DATA AVAILABILITY
The data used in this study contains sensitive patient information and cannot be
shared publicly but may be made available upon request.

CODE AVAILABILITY
The code used to produce this analysis is provided at: github.com/BIDMCDigitalP-
sychiatry/Cluster-Study.
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Table 5. Classification type overview.

Comparison groups Model Cross-validation Evaluation criteria

Control vs non-control LR, SVM, DT, RF, NB,
KNN

Repeated (n= 3) Stratified K-fold
(k= 5)

Testing set AUC

Bipolar depression vs unipolar depression LR, SVM, DT, RF, NB,
KNN

Repeated (n= 3) Stratified K-fold
(k= 5)

Testing set AUC

Control vs bipolar depression vs unipolar
depression

KNN (K= 3) Repeated (n= 3) Stratified K-fold
(k= 5)

Overall accuracy (percent correct)
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