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Dissecting the heterogeneity of “in the wild” stress from
multimodal sensor data
Sujay Nagaraj 1,2,3✉, Sarah Goodday4,5, Thomas Hartvigsen 6, Adrien Boch7, Kopal Garg1,2,3, Sindhu Gowda1,2, Luca Foschini 8,
Marzyeh Ghassemi2,9,10, Stephen Friend4 and Anna Goldenberg1,2,3,11,12

Stress is associated with numerous chronic health conditions, both mental and physical. However, the heterogeneity of these
associations at the individual level is poorly understood. While data generated from individuals in their day-to-day lives “in the wild”
may best represent the heterogeneity of stress, gathering these data and separating signals from noise is challenging. In this work,
we report findings from a major data collection effort using Digital Health Technologies (DHTs) and frontline healthcare workers.
We provide insights into stress “in the wild”, by using robust methods for its identification from multimodal data and quantifying its
heterogeneity. Here we analyze data from the Stress and Recovery in Frontline COVID-19 Workers study following 365 frontline
healthcare workers for 4–6 months using wearable devices and smartphone app-based measures. Causal discovery is used to learn
how the causal structure governing an individual’s self-reported symptoms and physiological features from DHTs differs between
non-stress and potential stress states. Our methods uncover robust representations of potential stress states across a population of
frontline healthcare workers. These representations reveal high levels of inter- and intra-individual heterogeneity in stress. We
leverage multiple stress definitions that span different modalities (from subjective to physiological) to obtain a comprehensive view
of stress, as these differing definitions rarely align in time. We show that these different stress definitions can be robustly
represented as changes in the underlying causal structure on and off stress for individuals. This study is an important step toward
better understanding potential underlying processes generating stress in individuals.
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INTRODUCTION
Stress is complex and prone to various interpretations, often
focusing on physiological, biological, and psychological responses
to stressors within an environment. Many mental and physical
health conditions are known to be stress-related. Unifying and
characterizing clear notions of stress is essential to detecting and
mitigating its detrimental effects1. Anecdotally, stress is highly
heterogeneous both within and between individuals. To date,
however, this observation has yet to be sufficiently characterized.
While categorizing subjective experiences like stress is challen-
ging, the emerging field of precision medicine has uncovered
such inter- and intra-individual heterogeneity of many other
disease processes2,3. One challenge in studying stress is capturing
its nature “in the wild”. Stress occurs at variable frequencies and
severity over the lifecourse of an individual, while individual
characteristics likely modify an individual’s response to stress in
highly varied ways1. With the ubiquity and capabilities of Digital
Health Tools (DHTs) such as wearable devices, real-time measure-
ment of stress “in the wild” at the individual-level context may be
an achievable target. DHTs are capable of assessing both
physiological metrics (such as heart rate, heart rate variability,
and respiratory rate) as well as potential signs and consequences
of stress (changes in sleep quality, mood, and cognition)4. Analysis
of data from DHTs may help describe and understand the
heterogeneity of stress that could lead to more accurate ways of
measuring this complex state and in turn, understand how it
contributes to chronic conditions1.

A major methodological challenge when working with observa-
tional sensor data is the low signal-to-noise ratio. In addition, prior
approaches leveraging traditional statistical approaches or
machine learning to stress detection lack the ability to model
the complexity of stress5–7, while assuming that stress exists as a
singular, universal phenomenon8. We need to leverage methods
that can accommodate for this complexity (i.e., stress may be
different within and between individuals) and also leverage the
rich information from DHTs to help characterize it.
We use the PC causal discovery algorithm (named after authors

Peter and Clark)9 to explore how the causal structure governing an
individual’s observations (self-reported symptoms and physiolo-
gical features from DHTs) change during various potential stress
states. Prior studies have examined the connection between
sensor data and mental health via predictive modeling with
modest results that improve when combining sensor and survey
data5,10. In contrast, the focus of this analysis is on understanding
the underlying process as explained by changes in the causal
structure governing observations: how do stressful periods in an
individual’s life differ from non-stressful periods?

RESULTS
Cohort description
The Stress and Recovery cohort consisted of frontline healthcare
workers working with COVID-19 patients from March to December
2020. The cohort was largely middle-aged, female, and Caucasian.
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A total of 59% of individuals reported that they were diagnosed
with a mental health condition (any sleep, anxiety, or mood
disorders) (Supplementary Table 2).

Data completeness
Oura Ring data were quite complete. On average, there were 76
(±32, SD) days of complete observations per individual, spanning a
duration of 92 (±31, SD) days of observations including missing
days. Survey measures also showed high levels of completeness,
which varied across daily, weekly, biweekly, and monthly
measures. Completeness tended to decrease with increasing
frequency (Supplementary Table 3).

Periodicity in sensor data
While the periodicity in DHT data may provide meaningful insight
into health states, it also poses challenges in isolating other
signals, such as stress, especially when certain periodic signals
dominate others. We observed strong periodicity in Oura Ring-
derived data across individuals. Many individuals have strong 30-
day periods of cycling in their data (Supplementary Fig. 3).
Particularly for temperature, heart rate, and breath average
(respiratory rate) data, this is a largely sex-dependent effect,
suggesting that we are observing menstrual cycles. Large-scale
studies have also corroborated that these are strong signals that
would be observed in a female population11. We applied the same
Fourier analysis on our encoded stress labels as well. Though
Pierson et al. observed menstrual-related periodicity in self-
reported measures, we were unable to observe these in our
cohort (Supplementary Fig. 4). These findings highlight why
applying change point detection approaches would likely be
confounded by the rises and falls of physiological cycles and not
stress states (results not shown).

Heterogeneity of stress labels
Across all pairs of stress labels we used in our analysis, we found
poor alignment as represented by low Jaccard scores (Fig. 1),
suggesting that potential stress states (according to each label)
rarely overlap with each other in time. Interestingly, we found the
highest disagreement (lowest Jaccard scores) when comparing
HRV Binary to other stress labels. Despite their overall low Jaccard
scores, pairs of self-reported stress labels are more likely to overlap
(i.e., Daily Stressed and Shift Stress) than two stress labels
comparing Oura Ring data and self-reported data (i.e., HRV Binary
and Daily Stressed).

Robustness of stress representations
We learned causal graphs that represent stress and non-stress
periods of an individual’s trajectory spanning four different stress
labels. From Table 1, we can see that the vast majority of
individuals in our cohort had a significant change in the structure
of causal graphs during all stress labels compared to a reference
distribution of random sampling. Missingness rates, as defined by
the overall number of missing values at each time step for each
individual, were compared using a two-sample t-test to identify
the number of individuals who had a significant difference in
missingness rates when comparing stress and non-stress time
step. Overall, we found few individuals across each stress label
(daily stressed: 13, daily shifts: 9, shift stress: 2, HRV binary: 0) who
had a significant difference (p < 0.05, two-sample t-test, one-tailed)
in missingness rates, suggesting that missingness rates on and off
stress are not driving our results.
The various graph similarity measures we utilized (Methods)

show significant changes in the connectivity structure across all
stress labels across the population (Table 1). Not only did
connectivity structure change (representative of the total number
of edges), but the set of edges represented during stress periods
was also different as evidenced by changes in Intersection/Union
as well as the number of specific edge categories (i.e., between
Oura connections) that changed.

Fig. 1 Distributions of pairwise Jaccard similarity scores for each pair of binary stress labels across all individuals. Histograms are
normalized to encode a valid probability distribution. Note not all pairs are shown as the measure is symmetric.
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Inter- and intra-individual heterogeneity in stress
We qualitatively analyzed the causal networks during stress across
the different stress labels. We found high levels of inter- and intra-
individual heterogeneity in causal graph structure on and off
stress (Fig. 2). From two random individuals and across four stress
labels, causal graphs are highly heterogeneous across different
stress labels for the same individual (intra-individual heterogene-
ity). In addition, comparing two random individuals across the
same stress label, we see differences in causal graph structure
(inter-individual heterogeneity). Edges also tended to occur within
modality types (i.e., Oura Ring to Oura Ring or Survey to Survey),
suggesting a high correlation between values from a given type
(Table 2).
In order to query possible explanations for these changes in

causal structure, we looked at the overall enrichment in time-
invariant features (i.e., gender, past mental health history, etc.;
Supplementary Table 4) between groups of individuals who either
gain or lose connectivity or between modality edges. After
adjustment for multiple hypothesis testing, we found no
significant differences between the groups (Supplementary
Table 5). A more detailed description of methods and results
can be found in the Supplemental Methods.

Inter- and intra-individual heterogeneity in edge structure
during stress
We also looked at the specific edges between features that were
gained or lost during stress. Figure 3 shows the population-level
frequency of edges gained and lost during stress across all stress
labels. Across all survey-derived stress labels (Daily Stressed, Shift
Stress, Daily Shifts), edges between survey-derived features were
more likely to be gained during stress than lost. For Daily Stressed
and Shift Stress in particular, there were no survey-survey edges
lost during stress. With the exception of HRV Binary, edges
between HRV and HR (lowest or average) were more likely to be
lost during stress than non-stress. However, it is important to note
that though the changed edges in Fig. 3 were the most commonly
observed in the population, there were no edges that were
consistently gained or lost in all individuals (or even at 10% of
individuals)—this suggests a high degree of inter-individual
variability in edge changes.

DISCUSSION
Using causal discovery, we uncovered representations of stress as
defined by the relatedness between features in causal graphs.
Over 80% of our cohort showed significant changes in their graph
structure on and off stress. This indicates a possible new method
for evaluating states of stress in individuals by leveraging data
from DHTs while still accounting for heterogeneity within and
between individuals.
Our findings indicate that combining multiple stress definitions

can lead to a more comprehensive understanding of stress. While

prior works have explored stress using DHT data12, they rely on
single “gold-standard” labels indicating when people are stressed.
Such labels are typically derived from subjective self-reported
measures. Unfortunately, other recent works have shown that
such one-size-fits-all approaches to stress indication are insuffi-
cient8. Swain et al. note the clear differences between underlying
latent mental states and actual observable measures, indicating
the need for broader measures of complex states like stress. We
therefore deliberately considered multiple definitions of stress,
measured using different modalities. Our experiments then bolster
the need for such heterogeneous stress definitions, as each
definition we consider substantially differs from the others. Not
only do we provide significant external validation of this prior
work using innovative methods, we also describe the time-
dependent correlation (or lack thereof) across these measures and
how this varies between individuals. This characterization of the
inter-individual heterogeneity of multiple time-varying labels
indicates that future studies of stress will benefit from expanding
their definitions of stress.
A core component of our work is embracing the individuality of

stress; no two people experience stress exactly the same way. As
we work with mental health constructs representing stress, prior
work has shown that these measures can be highly hetero-
geneous between individuals13,14. However, most prior studies in
digital health rely on population-level models, often training
machine learning models to predict stress10,15,16. While such
predictive models are surely useful in many cases, we pose that
personalized understanding of stress is a key step toward better
supporting individuals with stress and in better understanding
stress in general. Though work in personalized modeling is not
new, our results showcase a robust explanation for why
population-level models fail (Supplementary Fig. 5). By learning
robust individual causal graphs that represent the observed data,
we are reconstructing the underlying data-generating process.
Showcasing the inter- and intra-individual heterogeneity of these
data-generating processes indicates that population-level models,
which typically assume a single data-generating process, may fail.
Our results demonstrate the multimodal nature of stress; signals

of stress derived from multiple sensors. In wearable data, this
indicates some physiological coupling between signals (e.g., HR
and HRV are expected to have an inverse relationship)17. In survey
data, this may indicate consistency bias in self-reported measures
along with associations between psychological factors18. For
example, a negative answer to a survey question may propagate
to their other answers and some measures are expected to be
highly correlated, like depression and anxiety. In addition, the lack
of connections between wearable and survey data indicates poor
concordance between physiological and subjective measures. This
suggests that stress requires multimodal assessments to capture
its breadth. In particular, it is likely that the Oura Ring and Surveys
are measuring different aspects of stress, with some overlap
within the sensor type. Lastly, we were unable to identify clinically
relevant insights explaining the graph changes occurring on and

Table 1. Significant changes in graph similarity measures across the population.

Graph Similarity Measure

Stress Label Connectivity Intersection/Union Between Modality Edges

Daily Stressed (n= 202) 86.1% 72.8% 74.8%

Daily Shifts (n= 294) 86.4% 72.8% 68.4%

Shift Stress (n= 72) 91.7% 88.9% 84.7%

HRV Binary (n= 292) 84.6% 88.4% 74.3%

Proportion of population showing statistically significant changes in various graph similarity measures on stress compared to a reference distribution of
random sampling. Where n represents the total number of individuals included in analysis. For graph similarity measure definitions, please see Methods.
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Fig. 2 Chord diagrams showing undirected graphs during stress for two different individuals across four different labels. Nodes (features)
are on the outer ring, and colored chords represent undirected edges between nodes. Nodes and chords are colored according to the
modality they are derived from (blue: Oura Ring, purple: Survey), chords spanning modalities are multicolored. Abbreviations for each feature/
node can be found in Supplementary Table 1, along with a complete description of each feature.
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off stress. This may be the result of individuals not being
inherently clusterable and rather existing on a continuous
spectrum of stress representations or perhaps the variables
explaining graph changes are simply not collected in our dataset.
We leave this as an extension for future researchers.
Our dataset is unique and rich; however, it does present some

limitations that are worth considering. Our data represent a
unique population: frontline healthcare workers during the COVID-
19 pandemic. As a result, our findings may not generalize to other
populations. In addition, there are likely confounders. First,
individual-level confounding may have a strong impact on the
self-reported stress labels, and therefore the causal graphs we
learned. Such confounding may occur due to past stress history,
cultural-perceptions of stress, or the presence or absence of stress-
reducing interventions. Second, the PC algorithm ignores unob-
served confounding (i.e., features that are relevant in the causal
structure but not measured). Such confounding is a major
challenge in any causal discovery setting or observational study
as it is infeasible to capture all relevant features.
Limitations also arose from the sensors used in the study. Our

Oura Ring data were collected at night. This was because the Oura
Ring in 2020 only captured nightly measures, and daytime sensors
were not worn during shifts due to infection control reasons.
Nighttime data may limit access to stress signals found in daytime
data. However, having many nights of data over many individuals
may efficiently control for the confounders present during the
day. Further, Oura Ring data may also not be a complete set of
physiologically relevant variables for stress. For example, electro-
dermal activity (EDA) is a widely recognized measure of acute
stress, but is not captured by the Oura Ring. Another limitation is
the different sampling frequencies of our different features. The
surveys were designed to limit survey burden each day, so many
surveys were only administered weekly, biweekly, or monthly.
Since the sensor data was at the daily level, we imputed the lower-
frequency measures. Such imputation may introduce bias into our
results, though we describe ways that we worked to mitigate
these biases in our results. As we ensured that missingness rates
were no different during and off stress in the vast majority of
individuals, we do not believe that missingness is a major driver of
these results. Regardless of the difficulties in modeling multimodal
data collected at varying frequencies, we believe that the diversity
of measures we used in our study served to better capture latent
representations of stress. Having a set of poorly correlated
modalities reinforces the need for multimodal stress definitions
spanning both subjective and objective measures.
In conclusion, our work provides valuable insights into how

stress is an altered state using multimodal DHT data. This is a
major step in understanding the complexity of stress representa-
tion in wearable data. For future work in this area, we showcase
the difficulty in quantifying stress, owing to individual-level
heterogeneity as well as poor ground-truth labels. To summarize,
multiple stress labels are essential in capturing the heterogeneity
of stress; multiple modalities (wearables, surveys, etc.) are required

to learn robust representations of stress; and individualized
modeling is required to capture the vast inter- and intra-
individual heterogeneity in stress. As wearable devices become
a part of routine clinical care, our robust characterization of inter-
and intra-individual heterogeneity suggests that the metrics that
clinicians might use to assess and treat stress should reflect this
heterogeneity.

METHODS
Study design
We used data from the Stress and Recovery in Frontline COVID-19
Healthcare Workers Study (Clinical Trial Registration:
NCT04713111)4. The study followed 365 nurses for 4–6 months
between March and December 2020, using active data from a
smartphone app and passive data from an Oura Ring. Individuals
also annotated when they worked, which we expected to coincide
with periods of high stress. In addition, this study took place
during the early stages of the COVID-19 pandemic, which likely
heightened workplace stress. Individuals provided written,
informed consent via the study app.

Study measures and data preprocessing
Our data included physiological measures such as heart rate (HR),
heart rate variability (HRV), relative body temperature, and sleep
quality metrics from an Oura Ring worn nightly by individuals.
Self-reported surveys and active task measures were collected
daily, weekly, biweekly, and monthly from a smartphone app.
These active tasks measured various components of stress, mental
health, physical health and each individual’s psychosocial context.
Together, these data represent a multivariate, multimodal time
series for each individual. A full list of measures and their
descriptions can be found in Supplementary Table 1. A more
detailed dataset description including specific survey questions
can be found at https://www.synapse.org/#!
Synapse:syn24994804/wiki/.
To characterize periods of stress, we need labels from the data to

indicate when a participant is stressed. However, stress can be
subjective, so relying solely on participant’s self-reported periods of
stress is prone to biases8. Therefore, we considered multiple
definitions, aiming to capture a broader picture of stress with four
measures: “Daily Stress” (a self-reported daily binary indicator of
stress), “Daily Shifts” (a self-reported daily binary indicator of clinical
shifts worked), “Shift Stress” (a self-reported daily binary indicator of
stressful shifts worked), and “HRV Binary” (where stress is defined as
the bottom quartile of an individual’s HRV distribution, and non-stress
is defined as the top quartile). We then constructed a binary label
(“Stress” vs. “Non-Stress”) according to the four definitions above at
each day in each participant’s time series. By using multiple labels that
span both subjective and objective measures of stress, our work takes
a big step toward understanding the complex and latent nature of
stress.

Table 2. Types of edges changing on and off stress.

Within Modality Between Modality

Stress label Stress Non-stress Stress Non-stress

Daily Stressed 91.5% ± 12.0% 91.1% ± 12.1% 8.0% ± 12.0% 8.9% ± 12.1%

Daily Shifts 92.4% ± 11.2% 92.2% ± 11.1% 7.6% ± 11.2% 7.8% ± 11.1%

Shift Stress 86.1% ± 15.6% 89.5% ± 14.2% 13.9% ± 15.6% 10.5% ± 14.2%

HRV Binary 92.0% ± 12.0% 90.4% ± 13.3% 8.0% ± 12.0% 9.6% ± 13.3%

Percentage of within sensor edges (edges to and from Oura or to and from Survey) and between sensor edges (edges between Oura and Survey) over total
number of edges across different stress labels. ± represent standard deviation across individuals.
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Fig. 3 Chord diagrams representing edges frequently gained and lost at the population level across four different labels. Nodes (features)
are on the outer ring, and colored chords represent edges that are frequently gained (green) and lost (orange) across the population, chord
thickness is proportional to the frequency of the population where that respective edge is gained or lost. Nodes are colored according to the
modality they are derived from (blue: Oura Ring, purple: Survey). Abbreviations for each feature/node can be found in Supplementary Table 1,
along with a complete description of each feature.

S. Nagaraj et al.

6

npj Digital Medicine (2023)   237 Published in partnership with Seoul National University Bundang Hospital



Analysis
Data preprocessing. We z-score normalized each individual’s time
series data. When data is missing for up to a week, we linearly
interpolate missing values, and fill remaining missing values with the
individual’s mean. No imputation was done for the stress labels.

Data exploration. Due to the variable measure frequencies across
the surveys, survey completion rates were calculated based on
their expected frequency (i.e., a monthly administered survey
should only have values once a month for each individual). We
also looked at missingness rates for the Oura Ring by determining
the number of days with values divided by the total number of
expected days of observation for each individual. Missingness and
survey incompleteness could be due to a variety of reasons: not
charging/wearing the smart ring, failing to complete a set of
surveys, or sensor issues.
In order to better inform the causal discovery approach we

took, we also examined the periodicity found within our time
series data. We used a Fast Fourier decomposition of each
individual’s physiological signals (e.g., HR, HRV, Temperature,

Respiratory Rate) to reveal the dominant periods. A distribution
of dominant periods stratified by individual sex was generated
across the measures (Supplementary Fig. 4). This allowed us to
identify weekly and monthly cycles that our data showed, as
well as to characterize the inter-individual heterogeneity in
these cycles, specifically how sex impacts these results.

Heterogeneity of stress labels. In order to demonstrate the
importance of multiple stress labels, we computed the overall
agreement between each pair of stress labels using the Jaccard
similarity score for each individual. The Jaccard score ranges from
0 (complete misalignment) to 1 (perfect alignment). For example,
if the Jaccard score across the two labels Daily Shifts and Daily
Stressed is 1, then the times representing stress are the same
across both measures.

Robust causal discovery. We used graph-based causal discovery
in order to construct representations of potential stress states
using multivariate data. These methods are inherently interpre-
table and allow us to model the data in a simple, graph-based
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PC PC
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Compute graph similarity difference 
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Fig. 4 Visual description of sampling method and generation of reference distributions for connectivity differences. Multivariate time
series features (multicolors: temperature, HR, HRV, etc…) change over time and a binary stress label is shown underneath (red: stress, blue:
non-stress). Bootstrap sampling is used to generate iid observations from the time series data, samples are taken from Stress and Non-stress as
well as at random (agnostic to stress label), in order to compare stress to a random sampling. Causal graphs representing the causal structure
underlying the observations (blue circles: Oura Ring features, purple circles: Survey features) are then generated across the 100 bootstrap
iterations, which are then compared using a graph similarity measure. Graph similarity refers to a series of metrics we used to compare graphs
during Stress and Non-stress (see Methods).
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representation. The graphs represented the relatedness of
features across different stress states, which allowed us to help
answer our scientific objectives—which features are highly related
during stress compared to non-stress, and how this differs within
and between individuals?
We used the PC algorithm, a well-established method for causal

discovery (Supplementary Note 1)9. The algorithm uses indepen-
dent and identically distributed (iid) sampled observations to
generate a Directed Acyclic Graph (DAG), which represents the
causal Bayesian network explaining the observations. Each node
of the DAG represents a feature, while the edges are causal
relations. For example, an edge from HR to HRV suggests that HR
causes changes in HRV. However, the traditional PC algorithm
does not handle time series. To satisfy the iid-requirement of the
algorithm, we sampled discontinuous windows (Supplementary
Note 2). We also only used undirected graphs learned from the
algorithm, to focus on feature relationships as opposed to causal
directions, and as edge orientation can be inconsistent in low
sample sizes. This approach was done for each individual on and
off each stress label, yielding an undirected graph describing the
relationships between all features for each individual for each
stress state. This approach is bolstered by the fact that recent work
shows that using PC on samples from a time series can
consistently identify the underlying causal graph of multivariate
time series, when the time series is stationary and has strong
mixing properties19. Our analysis of the data reveals this
stationarity over several months of observation, and we assume
the underlying data-generating process has these strong mixing
properties.
The graphs obtained using PC could be highly influenced by

sample size, samples used to construct the graph, and on their
own lacked the ability to represent confidence via statistical
hypothesis testing. Therefore, we employed several techniques to
ensure the robustness of these graphs to these factors. To control
for sample size, we limited the number of samples used to
generate graphs on and off stress. We also used bootstrapping,
uniformly sampling time series windows with replacement 100
times, resulting in 100 pairs of stress and non-stress graphs per
participant. Lastly, to ensure that resultant differences between
graphs on and off stress were statistically significant, we
introduced a reference distribution to compare against. We
repeated the 100 iterations of bootstrap sampling without
considering stress labels. This creates two distributions of graph
pairs, one sampled according to a stress label (Stress/Non-stress)
and one sampled at random (reference), for each individual. We
then measured the similarity (Methods) between each pair of
graphs in the stress/non-stress and the reference distributions.
Finally, to identify significant differences on and off stress, we

employed a two-sample Kolmogorov–Smirnov (KS) test. We
identified individuals whose distributions of graph similarities for
stress/non-stress distribution are different from the reference
distribution. We adjusted the p values across individuals for
multiple hypothesis testing using the Benjamini–Hochberg
procedure to control the false discovery rate20. Overall, we
generated one graph per individual on and off stress (across four
stress labels) with confidence they were robust to sampling effects
and the ability to infer the statistical significance of these graphs
compared to random sampling. The complete analysis pipeline for
a single individual is visualized in Fig. 4.

Graph similarity metrics. We used three graph similarity measures
to compare stress and non-stress causal graphs:

● Connectivity: the logarithm of the average node connectivity
of all nodes in a graph. This metric is highest when the graph
is fully connected21.

● Intersection/Union: the number of edges that are identical in
each graph divided by the total number of unique edges. This

compares the specific edge changes between the two graphs
even if the connectivity does not change.

● Between Modality Edges: the number of edges connecting
different modalities (Oura Ring or Survey). This is another
measure that describes the types of edges that differ between
the graphs.

Ethics. The original Stress and Recovery study and this analysis
were approved by the Institutional Review Board Advarra
(4UCOVID1901, Pro00043205).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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help.synapse.org/docs/User-Account-Tiers.2007072795.html) and by meeting the
specific conditions of use that require submitting an intended data use statement
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