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Prediction of atrial fibrillation from at-home single-lead ECG
signals without arrhythmias
Matteo Gadaleta 1, Patrick Harrington2, Eric Barnhill2, Evangelos Hytopoulos2, Mintu P. Turakhia2,3, Steven R. Steinhubl 1,4 and
Giorgio Quer 1✉

Early identification of atrial fibrillation (AF) can reduce the risk of stroke, heart failure, and other serious cardiovascular outcomes.
However, paroxysmal AF may not be detected even after a two-week continuous monitoring period. We developed a model to
quantify the risk of near-term AF in a two-week period, based on AF-free ECG intervals of up to 24 h from 459,889 patch-based
ambulatory single-lead ECG (modified lead II) recordings of up to 14 days. A deep learning model was used to integrate ECG
morphology data with demographic and heart rhythm features toward AF prediction. Observing a 1-day AF-free ECG recording, the
model with deep learning features produced the most accurate prediction of near-term AF with an area under the curve
AUC= 0.80 (95% confidence interval, CI= 0.79–0.81), significantly improving discrimination compared to demographic metrics
alone (AUC 0.67; CI= 0.66–0.68). Our model was able to predict incident AF over a two-week time frame with high discrimination,
based on AF-free single-lead ECG recordings of various lengths. Application of the model may enable a digital strategy for
improving diagnostic capture of AF by risk stratifying individuals with AF-negative ambulatory monitoring for prolonged or
recurrent monitoring, potentially leading to more rapid initiation of treatment.
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INTRODUCTION
Atrial fibrillation (AF) is the world’s most common sustained
arrythmia, associated with a 5-fold increased risk of stroke1–3, but
remains undiagnosed in about 10–20% of affected individuals4,5.
Once identified, the likelihood of stroke for AF patients can be
reduced with treatments such as oral anticoagulants6. However,
despite a lifetime risk of developing AF of almost 25% for adults
over age 40, the evidence of overall benefit for systematic
screening relative to opportunistic in-clinic screening has been
limited to date, leading to conflicting recommendations7–9. To
alleviate the cost of non-targeted screening, risk stratification of
individuals most likely to benefit from long-term monitoring
would be of great clinical benefit10. One method of risk
stratification can be enabled by future AF prediction from findings
in a non-AF ECG signal, as shown with 10-s, in-clinic 12-lead ECGs
in retrospective11–13 and prospective14 trials, or using single-lead
24-hour, non-AF ECG recordings to predict AF in the next
14 days15.
Predicting the risk of AF presence from an ECG signal that does

not contain AF would allow the identification of the fraction of the
population that may have paroxysmal AF but that was not
detected with the initial ECG. Identification of increased risk could
then enable a more targeted screening strategy to identify
individuals who can benefit the most from prolonged ECG
monitoring.
The goal of the current work is to develop a model to identify

near-term AF in a two-week window based on findings in non-AF
single-lead ECG intervals of lengths from 10min to 24 h. (Fig. 1)
We found that a single-lead ECG signal significantly improves the
prediction of future AF occurrence relative to the model not
including ECG signal data.

RESULTS
Using 459,889 single-lead ECG recordings of length up to two
weeks, we developed a model to estimate the risk of presenting
AF in a two-week observation period by analyzing only non-AF
ECG intervals of various length. In this context, AF risk is defined as
the predicted probability of the occurrence of an AF event, as
informed by the ECG data. The model works with different inputs,
adaptable to different scenarios, while its output is always the risk
of presenting AF (Fig. 2).
We refer to the same model with different names depending on

the specific input considered. In particular, we consider the model
with input age and gender (AG model), demographic and HRV
features (AG+ HRV model), deep learning features automatically
extracted (DL Only model), manually extracted features excluding
deep learning features (AG+ HRV+Ectopic+Rhythm model), and
all features including deep learning ones (All Features model;
Table 1).

AF prediction performance for all individuals
When including all individuals in the cohort (AF prevalence 4.3%),
the AUC was 0.67 (confidence interval, CI: 0.66–0.68) for the AG
model; 0.74 (CI: 0.72–0.75) for the AG+ HRV model; and 0.80 (CI:
0.79–0.81) for the All Features model. The p-value was <0.01 when
comparing the performance of the AG model with the AG+ HRV
model, and <0.01 when comparing the AG+ HRV model with the
All Features model. With respect to the AG model, the All Features
model shows an improvement in AUC of 0.12 (CI: 0.11–0.14), with
a p-value < 0.01. Specificity, precision (PPV), and F1 score
evaluated at a sensitivity of 0.80 are reported (Table 2).
The performance of the DL Only model, which received input of

deep learning features derived from the ECG, was superior to the
performance of the model receiving any input but deep learning
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features (AG+ HRV+Ectopic+ Rhythm). The DL Only model
performed almost on par with the All Features model, with a
minimal difference in AUC (CI: 0.00–0.01, p-value= 0.02; Fig. 3).

AF prediction performance stratified by age
The probability of having at least one AF episode during two
weeks of monitoring was strongly dependent on the age of the
individual, with prevalence of 2.2% and 6.5% for individuals
younger or older than 65 years old, respectively. The area under
the curve (AUC) of the receiver operating characteristic curve
(ROC) for the All Features model was 0.86 (CI: 0.83–0.88) for those
younger than 65 years and 0.72 (CI: 0.70–0.74) for those older than
65 years old. In comparison, the AUC for the AG model was 0.75
(CI: 0.73–0.78) and 0.53 (CI: 0.51–0.55) for younger or older than 65
years old (Fig. 3).

AF prediction performance based on monitoring length
A longer monitoring window used as input provided a more
accurate prediction. Increasing the length of the single-lead ECG
signal window used as input had a significant positive effect on its
accuracy, both in terms of AUC and average precision. The All
Features model attained an AUC of 0.77 (CI: 0.76–0.78) and 0.80
(CI: 0.79–0.81), p-value < 0.01, for acquisition lengths of 10 min and
24 h, respectively. The corresponding average precisions were 0.13
(CI: 0.12–0.15) and 0.16 (CI: 0.14–0.18), p-value < 0.01. As expected,
the AG model was not affected by the acquisition length (Fig. 4).

AF prediction performance based on AF burden
For each individual with AF, the AF burden was estimated using
the entire acquisition period, and the population divided into 3
ranges: low (<1%), medium (from 1 to 10%), and high (>10%) AF
burden. The AUC for the All Features model improved with

increasing burden; 0.76 (CI: 0.74–0.78), 0.80 (CI: 0.78–0.81), and
0.90 (CI: 0.87–0.92) for individuals with low, medium, and high AF
burden. In comparison, the AG model obtained an AUC of 0.66 (CI:
0.64–0.68, p-value < 0.01), 0.69 (CI: 0.67–0.70, p-value < 0.01), and
0.71 (CI: 0.68–0.74, p-value < 0.01) for individuals with low,
medium, and high AF burden. For each burden range, the use
of DL features allowed for improved prediction. This was
particularly relevant in the medium (1–10%) AF burden range,
where the All Features model achieved an AUC (0.80) that was
0.11 higher with respect to the AUC of the AG model (0.69),
suggesting an improvement in separation of disease status for
patients with potentially clinically relevant AF events not easily
detected during a 1-day monitoring session (Fig. 4).

DISCUSSION
Our results show that it is possible to predict the occurrence of AF
by analyzing a single-lead ECG obtained from a chest patch that
does not contain any AF. While known parameters, including
demographic characteristics (age and gender), HRV metrics, and
ectopic beat frequency contribute to that prediction, it was only
with the inclusion of morphologic analysis of the single-lead ECG
with a deep learning approach that it was possible to obtain the
most accurate prediction. These results were achieved by
developing a framework for incorporating deep learning features
extracted from single-lead ECG signal, along with demographic
and phenotypic variables to predict occurrence of AF. The
contribution of each feature category was assessed by analyzing
different input configurations of the model, where the corre-
sponding features were either included or excluded. This frame-
work can predict the presence of AF within a 14-day period by
observing a short window, from 10-min to 1-day, without AF. The
results showed that a longer monitoring period improves the
prediction, supporting the hypothesis that some features related

Fig. 1 An example of application of the AF prediction model. The figure illustrates the possible outcomes of the AF prediction model when
AF is not detected: it can predict low or high risk for future AF development. In the second part of the figure, we present an example of a
potential application. Alice was advised to wear an ECG patch to monitor potential AF, and although no AF was detected, the model predicted
a high risk of AF. Consequently, she was advised to wear a second ECG patch, which ultimately detected AF, allowing her to discuss
appropriate treatment with her clinician.
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to the presence of AF may not always be present in the signal and
can be observed only with a longer monitoring window.
This work builds on our earlier work on the detection of AF from

single-lead ECG signals16 and on the explanation of the deep
learning features used17. Screening for AF has been demonstrated
in multiple studies to substantially improve the detection of silent
AF18–23, with some evidence of a reduction in long-term adverse
outcomes22,24. Several groups have developed models to predict
the future clinical diagnosis of AF using 10-s 12-lead ECGs
performed in the clinic11,13,25, but their performance in detecting
individuals with asymptomatic and low-burdens of AF requires
further clarification as these individuals are unlikely to be detected
with short and intermittent ECG follow-up26,27. The value of AF

prediction from a 12-lead ECG without AF occurrences has
recently been shown in a prospective study, with a specificity of
98% but a sensitivity of only 7.5% in the proposed operating
point14. A longer rhythm observation has been performed with
Holter monitors, showing the advantage of considering an interval
longer than the 10-s, 12-lead ECG in order to improve AF
prediction, with an AUC, a sensitivity, and specificity of 0.79, 76%,
and 69%15. While previous studies have explored AF prediction
using short 12-lead ECGs, our study complements these investiga-
tions by analyzing a single-lead ECG in a scenario with an
extended duration of monitoring, which allowed us to also detect
individuals with low AF burden that a brief 10-s 12-lead ECG
snapshot might miss. This emphasis on prolonged analysis offers a
more comprehensive view of an individual’s AF profile, filling in
the gaps left by shorter duration monitoring methods.
Throughout most of the 100+ year of ECGs being a standard

diagnostic test, its use has been primarily limited to clinical
setting. This is rapidly changing with multiple technologies
enabling anyone, at any time, to obtain at least a short single
lead ECG through their smartwatch or other smartphone
connected device28. In addition, with over 20% of the US adult
population already regularly using a smartwatch or activity tracker,
and several large manufacturers already incorporating regulatory-
approved irregular heart rhythm notifications based on photo-
plethysmography signals, a rapidly expanding proportion of the
population will require ECG confirmation of concerning self-
reported findings, which may take seconds, days, or weeks of ECG
monitoring29. As these technologies become ever more ubiqui-
tous, the diagnosis and management of cardiac arrhythmias will
likely change substantially relative to current systems of care and
will require more sophisticated tools to identify those who would
benefit the most from longer-term ECG monitoring. Since AF is the
most common sustained arrhythmia, although often not diag-
nosed until the occurrence of an irreversible event such as a stroke
or new heart failure30,31, identifying those at highest risk for AF
remains a large unmet need.
The clinical diagnosis of AF is often dependent on an in-clinic

10-s 12-lead ECG. While this is adequate for those with persistent
AF, for those with paroxysmal AF, estimated to be ~one-third of
the AF population, this brief snapshot of heart rhythm would be
unlikely to overlap with an AF episode. The use of Holter monitors
and ECG chest patches have opened the possibility of non-
invasive longer monitoring, allowing for an increased likelihood of
detection of paroxysmal AF that depends on the duration of
monitoring26. Indeed, especially for individuals with a low AF
burden, in case an AF episode was not detected during the
monitoring period, the risk of underlying paroxysmal AF remains
unknown. Recent work using 12-lead ECGs and this work, as well
as a prior studying analyzing prolonged single-lead ECGs, have
shown how it is possible to predict the occurrence of an AF event
and quantify the risk, based on the observed ECG signal, for
individuals that do not present AF.
In this work, we have demonstrated that while HRV metrics,

ectopic and rhythm-related features can provide an important
contribution towards the prediction of AF with respect to a
simple age and gender model, the analysis of the ECG
morphology improves this prediction. First, the identification of
the presence of ectopic beats, in particular premature atrial
contractions (PACs), provides a small but independent contribu-
tion to the prediction. Most importantly, it is only with an
automated extraction of representation learning features from
the single-lead ECG signal morphology with a deep learning
approach that we can obtain the best performance. We should
also note that the model with deep learning features alone is
capable of prediction almost on par with the case in which the
full set of features is provided as input, suggesting an effective
extraction of representative characteristics of the ECG during the
training phase of the model. Our model can complement

…

·

…

…

··

…

Fig. 2 AF prediction model. The figure shows the processing
pipeline from the raw input ECG to the final AF risk assessment. First,
the ECG is divided into 10min windows. Then, demographics, HRV,
ectopic and abnormal rhythm, and DL features from DL module A
are extracted from each of these windows. After cleaning and
normalization, DL module B assesses the risk score of the entire
input sample, which is adjusted by the calibration function.
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standard detection techniques, allowing the selection of the few
individuals at higher risk, that could benefit from a second
monitoring period in case no AF is detected during the first
monitoring period. This could potentially allow for a better use of
limited resources for AF detection and overall improved
sensitivity of screening programs.
This work reinforces the potential to accurately predict the

presence of paroxysmal AF in individuals with no findings of AF on
their ECG. While we proposed an approach able to integrate stable
characteristics (demographic) with HRV metrics and a continuous
single-lead ECG signal, it is likely that the best prediction
performance will be obtained only by collecting all available
information including genetic and electronic health record data of
the individual32, and integrating this information in a truly multi-
modal approach33.
In the interpretation of the results of this work, one should

consider that the retrospective data used for training and testing
of the model were obtained from individuals clinically prescribed
to use a device for monitoring their heart rhythm for an extended

period of time, thus they may not be representative of the general
population. A future study with a prospective validation would be
needed before extending the applicability of the prediction model
to the general population. Our analysis is also based on the single-
lead ECG acquired during a period of up to 14 days, as well as
demographic characteristics of the individuals, while pre-existing
conditions, comorbidities, treatments, diagnoses, and other
relevant information about the individual are not available. Race
and ethnicity were not available in the retrospective dataset used
for this analysis, potentially limiting the generalizability of the
presented results. Furthermore, the presence or absence of AF is
subject to the duration of these recordings since the individual
may exhibit AF events outside the monitoring window. Finally,
although the current modeling framework is extendable to other
sensors, the specific model might not be generalizable to other
wearable devices, requiring specific calibration to different sensor
characteristics.
These results show that our deep learning approach, integrating

the morphologic analysis of the single-lead ECG in the absence of
AF, significantly improved near-term AF prediction relative to
models including all other available features. Such improved
prediction may enable a digital strategy to test individuals and
provide a risk score for future AF based on their single-lead ECG,
enabling a more targeted approach for extended monitoring of
individuals at increased risk.

METHODS
We developed a model that can estimate an individual’s risk of
developing atrial fibrillation or atrial flutter within a two-week
observation period. Atrial fibrillation and atrial flutter are grouped
into a singular category (referred to as just AF further) due to their
overlapping clinical characteristics, shared treatment strategies,
and the frequent coexistence in patients, reflecting a common
underlying atrial electrophysiological disruption. This model takes
an interval of the single-lead ECG signal as input, with a length
between 10min and 24 h, that does not contain any instances of
AF (Fig. 2).

Ethical considerations
The protocol for this study received approval from the Scripps
Office for the Protection of Research Subjects and was deemed

Table 1. Inputs considered by the model for AF prediction.

Model name Model inputs

AG model Demographics only – age and gender

AG+HRV model Demographics and HRV features

AG + Ectopic model Demographics and ectopic beat
counts

AG+HRV+ Ectopic+ Rhythm
model

Demographics, HRV features, ectopic
beat counts and other manually
extracted features

DL Only model Only features extracted from the ECG
by the deep learning network

All Features model All features available, including both
manually extracted and deep learning
features

Naming of all variants of the proposed AF prediction model based on the
choice of input available, among demographic characteristics (age and
gender), HRV features, frequency of ectopic beats, other rhythm related
features, and automatically extracted deep learning features.

Table 2. AF prediction performance at a given sensitivity of 0.80.

Feature set Age group Input ECG length Tot.
recordings

Prevalence (%) Sensitivity Specificity Precision F1 score

AG <65 1 day 11,820 2.2 0.80 0.58 0.04 0.08

AG ≥65 1 day 11,329 6.5 0.80 0.26 0.07 0.13

AG Overall 1 day 23,149 4.3 0.80 0.49 0.07 0.12

AG+HRV <65 1 day 11,820 2.2 0.80 0.66 0.05 0.09

AG+HRV ≥65 1 day 11,329 6.5 0.80 0.37 0.08 0.15

AG+HRV Overall 1 day 23,149 4.3 0.80 0.56 0.08 0.14

DL Only <65 1 day 11,820 2.2 0.80 0.72 0.06 0.11

DL Only ≥65 1 day 11,329 6.5 0.80 0.51 0.10 0.18

DL Only Overall 1 day 23,149 4.3 0.80 0.65 0.09 0.17

All Features <65 1 day 11,820 2.2 0.80 0.76 0.07 0.13

All Features ≥65 1 day 11,329 6.5 0.80 0.50 0.10 0.18

All Features Overall 1 day 23,149 4.3 0.80 0.65 0.09 0.17

Specificity, precision, and F1 score evaluated at a given sensitivity of 0.80 when considering a 1-day single-lead ECG as input, for people under the age of 65,
for people above 65, and overall. Prevalence and total number of recordings for each group are also reported. The performance is reported for the model with
four different input configurations: age and gender (AG); age, gender, and HRV (AG+HRV); deep learning features only (DL Only); all input available (All
Features).
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exempt from formal committee review (IRB 21–7719). The
requirement for written consent was waived due to the retro-
spective nature of the study, which utilizes de-identified data.

Characteristics of the individuals included in this study
The individuals included in this study were prescribed the iRhythm
Zio®XT patch (iRhythm Technologies Inc, San Francisco, CA) as part
of routine care to monitor their heart rhythm for up to 14 days. It is
an FDA cleared, single-use, water-resistant, continuous ambulatory
single-lead ECG skin adhesive patch (Supplementary Fig. 1).
For the development of the proposed model, we used the raw

ECG signal directly acquired by the device, as well as the
annotation in the clinical report, including arrhythmia detection,
presence of ectopic beats, and estimated heart rate. The outcome
of the study is defined as the presence of an AF event, which is an
arrhythmia event that persisted for more than 30 s and was

verified as AF by an iRhythm certified cardiographic technician.
Individuals were categorized as AF positive if they exhibited at
least one AF episode at any point during the 2-week single-lead
ECG monitoring. We note that while the detected AF episode
might be the initial recorded instance during the study, it is
unlikely that it represents the patient’s very first episode with AF.
Given the sporadic nature of AF, it is conceivable that individuals
experienced unrecorded episodes prior to any observation.
No personal identifiable information (PII) was used in the

extraction/selection of the data. We included recordings acquired
from January 2019 to May 2022, excluding individuals with
persistent or near-persistent AF (defined as AF burden over 70%).
A total of 459,889 recordings, obtained from 446,900 unique
individuals, were analyzed in this study. The recordings were
divided into three different cohorts: (1) a training cohort, (2) a
calibration cohort, and (3) a testing cohort.

Fig. 3 AF prediction performance per Age. Receiver operating characteristic (ROC) curves of the model when considering a 1-day single-lead
ECG as input, for people under the age of 65 (a), and for people above 65 (b). The overall (and age specific) area under the ROC curve (AUC) (c)
and Average Precision (d) are reported along with prevalence and total number of recordings for each group. The performance is reported for
the model with six different input configurations: age and gender (AG, blue lines); age, gender and HRV (AG+ HRV, orange lines); age, gender
and frequency of ectopic beats (AG+ Ectopic, red lines); age, gender, HRV, ectopic beats and presence of other rhythms (AG+HRV+
Ectopic+ Rhythm, purple lines); deep learning features only (DL Only, brown lines); all input available (All Features, green lines). The
uncertainty bars represent the 95% confidence interval (CI) evaluated with a 10,000 iterations boostrap method.
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To ensure accurate and reliable model performance across
different age groups, we trained and validated a separate model
for each subgroup based on age (ages 18–54, 55–64, 65–74,
75–84, and 85–99). The training cohort for each subgroup was
enriched with additional recordings of AF to ensure that 50% of
individuals with AF were detected. We accomplished this by
randomly selecting 30,000 recordings for each age group, and
then including up to an additional 30,000 recordings (or the total
amount available if less than 30,000) that contained at least one
AF event. As a result, the training cohort for each age group
consisted of up to 60,000 recordings. The total number of
recordings is 269,889, which is lower than 300,000 since for some
groups less than 30,000 recording with at least one AF event were
available. Of these recordings, 131,706 had underlying paroxysmal
AF, with a median burden of 4.0% (inter-quartile range, IQR:
0.9–14.8%).
The calibration cohort was used to calibrate the AF prediction

model. The calibration routine corrected for differences between
the training cohort and an orthogonal cohort of data taken at a
natural prevalence from a desired population. This corrected for
factors like the higher number of AF detected cases present in the
training. This correction puts the risk scores from the model

trained for any age range on the same scale with intuitive
interpretation, unifying the risk score across all patients. The
calibration cohort contained 150,000 recordings, 30,000 for each
age subgroup, from individuals not included in the training set
(natural prevalence, without selection based on presence of AF).
The testing cohort was used for evaluating the model perfor-
mance and it was strictly separated from the other two cohorts. It
contained 40,000 recordings selected at random after excluding
the recordings from individuals included in the training or
calibration cohorts (Supplementary Fig. 2).

Model for the prediction of AF
The presented model was developed as a two-stage process for
the analysis of the input ECG signal, combined in a hierarchical
way. In the first stage, the model extracts several sets of features
from 10min of ECG data, as described in the following:

● first, a collection of standard heart-rate variability (HRV)
metrics is evaluated utilizing the location of the R-peaks,
excluding ectopic beats, which are considered separately;

● then, metrics related to other abnormal rhythms (e.g.,
supraventricular tachycardia, atrioventricular block) and

Fig. 4 AF prediction performance per ECG length and AF burden. AUC (a, c) and Average Precision (b, d) of the model for different lengths
of the input ECG (a, b), and for different AF burden ranges (c, d). Prevalence and total number of recordings for each group are also reported.
The performance is reported for the model with six different input configurations: age and gender (AG, blue lines); age, gender and HRV
(AG+ HRV, orange lines); age, gender, and frequency of ectopic beats (AG+ Ectopic, red lines); age, gender, HRV, ectopic beats and presence
of other rhythms (AG+ HRV+ Ectopic+ Rhythm, purple lines); deep learning features only (DL Only, brown lines); all input available (All
Features, green lines). The uncertainty bars represent the 95% CI evaluated with a 10,000 iterations boostrap method.
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ectopic beats are evaluated from the available annotations,
including PACs and premature ventricular contractions (PVCs);

● finally, a deep learning module (DL module A) is used to
automatically discover a set of representation learning
features that provides a rich and compact representation of
the single-lead ECG given as input.

Thanks to its modularity, each of these categories could be
included or excluded from the final model. For comparison, we
trained the model with different input configurations to show the
benefit of including each one of these categories in the prediction.
The full feature set and the corresponding category are reported
(Supplementary Table 1).
In the second stage, the features extracted from multiple

consecutive 10-min intervals were used as input for a second deep
learning module (DL module B), which integrates all the available
information collected over a longer period of time with
demographic features. This hierarchical structure allows the model
to focus on the local characteristics of the ECG during the first
stage, while in the second stage the temporal relationships of the
multi-dimensional signal are considered on a larger scale and
leveraged to estimate the risk of future AF events (Fig. 2).

Representation learning features
The proposed model aimed to enhance the accuracy of predicting
AF from ECG data by leveraging long-term temporal relationships.
However, recurrent neural networks (RNNs) face difficulties in
processing long multi-dimensional sequences, limiting the num-
ber of short windows that can be used within a 1-day time frame.
As a result, it was essential to identify a window size that provided
enough temporal information to train a model effectively without
making the sequence excessively long and complex. A 10-minute
time frame has been empirically found to be a good compromise
between these factors. It allows enough temporal information to
be captured, while keeping the sequence short enough to be
analyzed efficiently by the RNN. (Supplementary Material 1) DL
module A was thus trained with the goal of extracting a set of
representative features predictive of future AF events from an ECG
period of 10 min without AF. For each 10-minute interval, the
model analyzed and encoded the ECG data into a set of 128
outputs that contained all the essential information required for
the following steps. These 128 features were taken from the
second-last fully connected layer. (Supplementary Fig. 3) Once the
DL module A was trained, its weights were considered frozen and
no longer updated in the second phase (Fig. 2).

Long ECG processing
A longer input signal (up to 1 day) was considered for the final
assessment of the probability of AF occurrence. The set of features
extracted during the first stage was computed for each 10-minute
interval, and the resulting sequence was then processed by DL
module B, which consisted of a 2-layer bidirectional long short-
term memory (LSTM) neural network34, followed by 2 fully
connected layers. During this optimization process, the pre-
trained DL module A operated as a feature extractor, while DL
module B was trained using an analogous process (Supplementary
Material 2).
To map the model’s output to a real risk probability, we

employed a calibration process. Specifically, we calibrated the
model’s output scores for each age group using the calibration
cohort, which followed a natural distribution. This allowed us to
convert the model’s specific outputs to the probability of
observing an AF event in the given monitoring window. Given
the large size of each calibration cohort ( > 18,000 recordings), we
utilized isotonic regression to calibrate the risk scores. The
resulting output of the calibration step represents the final

probability of developing AF. All the presented results refer to the
calibrated outcome.

Cleaning, processing, and normalization
The set of features extracted during the first stage from a 10-
minute ECG included HRV, ectopic and abnormal rhythm, and DL
features, along with age and gender. Since these features have
different scales, ranges, and distributions, a processing pipeline
was necessary to ensure that they could be effectively analyzed in
the subsequent steps. The processing consisted of 3 parts: (1) data
normalization or exponential transformation, (2) offset removal,
and (3) scaling.
To handle the exponentially distributed variables, which were

typical of rhythm burdens, we applied an exponential transforma-
tion of the form 1 - exp(-x), after removing the offset and scaling
the values. For the remaining features, we utilized a Box-Cox
transformation to achieve an approximately normal distribution35.
All the parameters and the individual processing are reported
(Supplementary Table 1).
ECG signals that were excessively noisy or contained a high

number of artifacts were not included in the training dataset.
Specifically, signals were considered invalid if any of the following
conditions were met: 1) the average heartbeat was below 20 beats
per minute, 2) a period longer than 2min in the 10-minute
window was automatically labeled as an artifact, 3) the number of
detected R peaks was too few or too sparse to allow for the correct
computation of the HRV metrics. These exclusion criteria helped to
ensure the quality and reliability of the data used.

Performance evaluation
To evaluate the predictive importance of the features considered,
we trained and tested the model with six types of input
configurations: demographic characteristics only (age and gender,
AG); demographics and HRV (AG+ HRV); demographics and
frequency of ectopic beats (AG+Ectopic); demographics, HRV,
ectopic beats, and presence of other non-sustained rhythms
(AG+ HRV+ Ectopic+ Rhythm); features from DL module A only
(DL Only); and all available information (All Features; Table 1).
To assess how the acquisition length affected the AF prediction

capabilities, we equalized the test cohorts by only considering
samples with no AF events during a full day. We identified three
potential scenarios of interest:

● a short monitoring time (10min), a reasonably short signal
acquisition time that may be acquired in a clinical setting or
potentially at home;

● a medium monitoring time (1 h), that can be requested for
patients needing additional screening and can potentially be
performed as part of one clinical encounter;

● a longer monitoring time of 24 h, as is routinely carried out
through the use of a wearable, portable device outside the
clinical setting.

Finally, to assess the relationship between model performance
and AF burden, the population was divided into three ranges: low
(<1%), medium (from 1 to 10%), and high (>10%) AF burden. The
performance of the model for each of these subgroups was based
on a 1-day monitoring window.
To assess and compare the performance of all the presented

scenarios, we utilized AUC and average precision metrics. We
estimated confidence intervals using a bootstrap percentile-based
method by repeatedly sampling the dataset with replacement for
a total of 10,000 iterations, and we reported them with a
confidence level of 95%. To compare different outcomes over the
same population, we evaluated relative improvements and p-
values using a paired bootstrap test, where the difference in
performance was measured on identically sampled bootstrap
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iterations. For the estimation of p-values, we considered a two-
sided paired test.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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