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Causal inference using observational intensive care unit data: a
scoping review and recommendations for future practice
J. M. Smit 1,2✉, J. H. Krijthe 2, W. M. R. Kant 3, J. A. Labrecque4, M. Komorowski5,6, D. A. M. P. J. Gommers1, J. van Bommel1,
M. J. T. Reinders 2 and M. E. van Genderen 1

This scoping review focuses on the essential role of models for causal inference in shaping actionable artificial intelligence (AI)
designed to aid clinicians in decision-making. The objective was to identify and evaluate the reporting quality of studies
introducing models for causal inference in intensive care units (ICUs), and to provide recommendations to improve the future
landscape of research practices in this domain. To achieve this, we searched various databases including Embase, MEDLINE ALL,
Web of Science Core Collection, Google Scholar, medRxiv, bioRxiv, arXiv, and the ACM Digital Library. Studies involving models for
causal inference addressing time-varying treatments in the adult ICU were reviewed. Data extraction encompassed the study
settings and methodologies applied. Furthermore, we assessed reporting quality of target trial components (i.e., eligibility criteria,
treatment strategies, follow-up period, outcome, and analysis plan) and main causal assumptions (i.e., conditional exchangeability,
positivity, and consistency). Among the 2184 titles screened, 79 studies met the inclusion criteria. The methodologies used were G
methods (61%) and reinforcement learning methods (39%). Studies considered both static (51%) and dynamic treatment regimes
(49%). Only 30 (38%) of the studies reported all five target trial components, and only seven (9%) studies mentioned all three causal
assumptions. To achieve actionable AI in the ICU, we advocate careful consideration of the causal question of interest, describing
this research question as a target trial emulation, usage of appropriate causal inference methods, and acknowledgement (and
examination of potential violations of) the causal assumptions.

npj Digital Medicine           (2023) 6:221 ; https://doi.org/10.1038/s41746-023-00961-1

INTRODUCTION
Many treatment choices in the intensive care unit (ICU) are made
quickly, based on patient characteristics that are changing and
monitored in real-time. Given this dynamic and data-rich
environment, the ICU is pre-eminently a place where artificial
intelligence (AI) holds the promise to aid clinical decision
making1–3. So far, however, most AI models developed for the
ICU remain within the prototyping phase4,5. One explanation for
this may be that most models in the ICU are built for the task of
prediction, i.e., mapping input data to (future) patient outcomes6.
However, even a very accurate prediction of, for instance, sepsis7,
does not tell a physician what to do in order to treat or prevent it.
In other words, predictive AI is seldom actionable. More mean-
ingful decision support in the ICU could be provided by models
that assists clinicians in what to do (i.e., ‘actionable AI’8,9). To
develop actionable AI, one needs to take into account cause and
effect. Causal inference (CI) represents the task of estimating
causal effects by comparing patient outcomes under multiple
counterfactual treatments6,10. The most widely used method for CI
is a randomized controlled trial (RCT). Through randomization
(coupled with full compliance), the difference in outcome
between treatment groups can be interpreted as a causal
treatment effect. Because carrying out RCTs may be infeasible
due to cost, time, and ethical constraints, observational studies are
sometimes the only alternative. CI using observational data can be
seen as an attempt to emulate the RCT that would have answered
the question of interest (i.e., the ‘target trial’)11. With such an
approach, however, treatment is not assigned randomly and extra

adjustment for confounding is required. In the simple situation of
a time-fixed (or ‘point’) treatment (Fig. 1, Box 1)12,13, this can be
achieved by ‘standard methods’ like regression or propensity-
score (PS) analyses14. However, ICU physicians are typically
confronted with treatment decisions which occur at multiple
time-points, i.e., time-varying treatments (Fig. 1, Box 1)12,13.
Estimating the effect of time-varying treatments using observa-
tional data is often complicated by treatment-confounder feed-
back15, leading to ‘treatment-affected time-varying confounding’
(TTC, Box 1)13,16,17. Usage of standard methods in the presence of
TTC leads to bias18,19. Inverse-probability-of-treatment weighting
(IPTW), the parametric G formula and G estimation (collectively
known as ‘G methods’, Box 1) were introduced by Robins20 to
estimate causal effects in the presence of TTC, making them well-
suited for CI in the ICU. Time-fixed treatments can be either
unconditioned (e.g., ‘treat all patients at admission’) or condi-
tioned on one or more covariates to make these more
individualized (Fig. 1). Likewise, time-varying treatments can be
either unconditioned, or tailored to more specific patient groups
based on one or more (time-varying) covariates. We refer to these
as static treatment regimes (STRs) and dynamic treatment regimes
(DTRs), respectively (Fig. 1, Box 1)12. The latter type is most
common in the ICU, as treatment choices are typically dynamically
re-evaluated based on the evolving patient state. For example,
rather than deciding upon admission to administer vasopressors
daily, an ICU physician reconsiders giving this treatment through-
out the ICU stay based on the patient’s response. Hence, the
practical question of interest often requires a comparison of DTRs.
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Reinforcement learning (RL)21 is another class of methods which,
like G methods, can be used to estimate optimal DTRs and have
been increasingly applied to ICU data22. Partly due to the different
language used to describe similar concepts (see Supplementary
Table 1), studies applying G methods and RL may appear as
completely separate disciplines. However, they show great
similarities and can be used to build actionable AI models. The
aim of this scoping review is to (1) outline how CI research is
conducted concerning time-varying treatments in the ICU, (2)
discuss quality of reporting, and (3) give recommendations to
improve future research practice.

RESULTS
Through our search, we discovered 2184 articles that were unique.
During the independent screening of titles and abstracts, we
achieved a high agreement rate of 93%. Following the resolution
of any disagreements, we excluded 1981 studies. Moving forward,
we conducted independent full-text screening for the remaining
203 articles, resulting in an agreement rate of 86%. Once a
consensus on eligibility was reached, we included 79 studies in
the review (Fig. 2). The articles were published between 2005 and
2023, with a steadily growing number of articles per year starting
around 2010 (Supplementary Fig. 1a). A reference list of all
included studies and the list with collected items per study can be
found in the Supplementary References and supplementary
Table 2, respectively. Most studies applied G methods (n= 48,
61%), of which 42 (53%) used IPTW, five (6%) used the parametric
G formula. One (1%) study23 used targeted minimum loss-based
estimation (TMLE), a method which combines elements of IPTW
and the parametric G formula24. 31 (39%) studies used RL

Fig. 1 Taxonomy of treatment types. Treatments can be time-fixed or time-varying, and both these variants can be unconditioned, or
conditioned on one or more (static and/or time-varying) patient characteristics, i.e., more ‘individualized’. Which methodology is appropriate
to estimate causal effects of treatment using observational data, depends on the treatment type. The bottom row contains examples of some
(not all) methodologies which could be used for the corresponding treatment type. Even when an appropriate method is used, satisfaction of
the three causal assumptions (and hence, unbiased causal estimates) is not guaranteed. ICU intensive care unit, IPTW inverse-probability-of-
treatment weighting, IPW inverse-probability weighting, PCT procalcitonin.

Box 1 Causal inference glossary

● Time-fixed treatment: a treatment that only occurs at the start of follow-
up, or does not change over time.

● Time-varying treatment: any treatment that is not time-fixed. Time-varying
treatments can be sub-divided in static and dynamic treatment regimes.

● Static treatment regime (STR): a treatment regime that is not tailored to
evolving patient characteristics.

● Dynamic treatment regime (DTR): a treatment regime where the
treatment decisions depend on changing patient characteristics and/or
treatment history.

● Treatment-affected time-varying confounding (TTC): time-varying con-
founding in which one or more time-varying confounders are affected by
previous treatment.

● G methods: a class of methods proposed to adjust for TTC in the estimation
of time-varying-treatment effects, including inverse-probability-of-
treatment weighting, the parametric G formula, and G estimation.

● Reinforcement learning (RL): a class of methods that deals with the
problem of sequential decision making which returns an optimal treatment
regime (or ‘policy’).

● Off-policy evaluation (OPE): the task of estimating the value of a certain
policy, using data from settings where patients were treated according to a
different policy (i.e., observational data).

● Causal assumptions:

• Conditional exchangeability: Exchangeability means equal risks in
treated and untreated groups if patients in the untreated group were
treated, and vice versa. Observational data often violates exchange-
ability due to confounding and/or selection bias, and, therefore, causal
inference requires the assumption that all confounders are measured
and adjusted for, to achieve exchangeability conditional on these
confounders.

• Positivity: To estimate a treatment’s causal effect, one must compare
treated and untreated patient data. This requires having both treated
and untreated patients in all subgroups (or ‘strata’) defined by different
confounder values. In other words, treatment and non-treatment should
occur in all confounder strata with some positive probability.

• Consistency: Consistency assumes that the outcome for a given treatment
will be the same, irrespective of the way treatments are ‘assigned’.
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methods (Table 1). The three most frequently studied treatment
categories were anti-inflammatory drugs (n= 9, 11%), hospital-
acquired complications (n= 8, 10%), and sedatives and analgesics
(n= 8, 10%). Most studies (n= 46, 58%) considered mortality (at
varying follow-up times) as the primary outcome. Thirty-six studies
(46%) included data from at least two different ICUs. Studies that
used RL generally included more patients than studies that used G
methods, with a median of 9782 patients (IQR 5022–17,898) versus
1498 (IQR 606–3407) and relied more often on open-source ICU
databases (74% vs 23%). In total, 34 (43%) of the studies used one
or more open-source ICU database, among which the Medical
Information Mart for Intensive Care (MIMIC)-III database25 was the
most frequently used (n= 24, 30%). In contrast to RL studies
(which inherently deal with DTRs), only eight26–33 of the 48 studies
(17%) that used G methods considered DTRs and seven of these
were published in or after 2020 (Supplementary Fig. 1b).

Method-specific items
Among the studies that used IPTW (n= 43), eighteen applied
stabilized weights, one applied weight truncation, and ten studies
applied both weight stabilization and truncation. The remaining
studies did not apply weight stabilization or truncation. Among
studies that applied RL on real (i.e., not simulated) patient data
(n= 26), fourteen studies used either an importance-sampling
based34, model-based35,36, a doubly robust off-policy evaluation
(OPE, Box 1) method37, or a combination of these. Thirteen studies
used the so-called ‘U-curve method’38 (Box 1) and for nine of
these, this was the only reported OPE method. Two studies did not

report any evaluation of the optimized DTR (Supplementary
Fig. 2).

Quality of reporting
A total of 1183 unique quality of reporting (QOR) items were
assessed independently, encompassing the eight, eleven, and ten
target trial subcomponents for the IPTW/TMLE, parametric G
formula, and RL papers, respectively, along with six distinct items
for the causal assumptions in all included studies. Initially, the
reviewers agreed on 1012 items (86%), and any remaining
disagreements were resolved through discussion until consensus
was reached. As each subcomponent of the analysis plan
component required for IPTW studies also applies to TMLE, we
used the same subcomponents to judge the analysis plan
component of the study that used TMLE23.

Target trial components. Both the ‘eligibility criteria’ and
‘outcome’ components were reported in 78 (99%) of the studies
(Fig. 3a). We scored the ’treatment strategies’, ‘follow-up period’
and ‘analysis plan’ components as partially or not reported in
respectively 14 (18%), 16 (20%) and 33 (42%) of the studies. All five
target trial components were fully reported in only 30 (38%)
studies. The reporting of the target trial components grouped by
used CI method are summarized in Supplementary Figs. 3–5 and
tabulated for each individual study in Supplementary Tables 3–5.

Causal assumptions. The conditional exchangeability assumption
remained unmentioned in 25 (32%), was mentioned in 34 (43%),
and an attempt to check for potential violations was reported in

Fig. 2 Flowchart of study selection. This flow diagram displays the screening strategy for the inclusion of studies in this scoping review.
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20 studies (25%, Fig. 3b). Among the studies that reported a check
for potential violations, eight studies31,33,39–44 performed a bias
analysis. The positivity assumption remained unmentioned in 54
(68%), was mentioned in five (6%), and a check for potential
violations was reported in 20 (25%) of the studies. The consistency
assumption was mentioned in nine (11%) of the studies. All three
assumptions were mentioned (or a check for potential violations

was reported) in only seven (9%) studies (Supplementary Table 6).
The reporting of assumptions grouped by CI method used are
summarized in Supplementary Figs. 6–8 and individual results for
all studies are tabulated in Supplementary Table 6. In general, the
causal assumptions remained unmentioned more often in studies
that applied RL, compared to those which applied G methods
(Supplementary Figs. 6–8). All studies that reported a check for

Table 1. Characteristics of the included studies grouped by used causal inference method.

IPTW (N= 42)
No (%)

Parametric G formula
(N= 5) No (%)

TMLE (N= 1)
No (%)

RL (N= 31)
No (%)

All (N= 79)
No (%)

Exposure of interest (categorized)

Vasopressors & intra-venous fluids 0 (0) 0 (0) 0 (0) 10 (32) 10 (13)

Anti-inflammatory drugs 7 (17) 0 (0) 0 (0) 2 (6) 9 (11)

Hospital-acquired complications 8 (19) 0 (0) 0 (0) 0 (0) 8 (10)

Sedatives & analgesics 1 (2) 0 (0) 0 (0) 6 (19) 7 (9)

Antimicrobials 4 (10) 0 (0) 0 (0) 0 (0) 4 (5)

Mechanical ventilation 1 (2) 2 (40) 0 (0) 3 (10) 6 (8)

Anticoagulants 1 (2) 0 (0) 0 (0) 2 (6) 3 (4)

Diuretics 3 (7) 0 (0) 0 (0) 0 (0) 3 (4)

Renal replacement therapy 3 (7) 0 (0) 0 (0) 0 (0) 3 (4)

Sodium bicarbonate 3 (7) 0 (0) 0 (0) 0 (0) 3 (4)

Blood transfusion 2 (5) 0 (0) 0 (0) 1 (3) 3 (4)

Other 9 (21) 3 (60) 1 (100) 7 (23) 20 (25)

Primary outcome (categorized)

Mortality 32 (76) 2 (40) 1 (100) 11 (35) 46 (58)

Combined 0 (0) 0 (0) 0 (0) 13 (42) 13 (16)

Maintenance of clinical target value 0 (0) 0 (0) 0 (0) 6 (19) 6 (8)

Hospital-acquired complications 1 (2) 2 (40) 0 (0) 0 (0) 3 (4)

Need for mechanical ventilation 2 (5) 0 (0) 0 (0) 0 (0) 2 (3)

Other 7 (17) 1 (20) 0 (0) 1 (3) 9 (11)

Number of included ICUsa

1 16 (38) 2 (40) 0 (0) 20 (77) 38 (51)

2–4 5 (12) 1 (20) 1 (100) 4 (15) 11 (15)

5–10 3 (7) 1 (20) 0 (0) 0 (0) 4 (5)

11–20 4 (10) 1 (20) 0 (0) 0 (0) 5 (7)

21–100 5 (12) 0 (0) 0 (0) 0 (0) 5 (7)

>100 9 (21) 0 (0) 0 (0) 2 (8) 11 (15)

Utilized open source databases

MIMIC-II 0 (0) 0 (0) 0 (0) 1 (3) 1 (1)

MIMIC-III 6 (14) 0 (0) 0 (0) 18 (58) 24 (30)

MIMIC-IV 3 (7) 1 (20) 0 (0) 3 (10) 7 (9)

eICU 2 (5) 0 (0) 0 (0) 2 (6) 4 (5)

AmsterdamUMCdb 0 (0) 1 (20) 0 (0) 2 (6) 3 (4)

Study size (n patients)a

0–100 2 (5) 0 (0) 0 (0) 0 (0) 2 (3)

100–500 7 (17) 1 (20) 0 (0) 0 (0) 8 (11)

501–1000 9 (21) 0 (0) 1 (100) 1 (4) 11 (15)

1001–5000 16 (38) 3 (60) 0 (0) 6 (23) 25 (34)

>5000 8 (19) 1 (20) 0 (0) 19 (73) 28 (38)

Type of exposure regime

Static 36 (86) 3 (60) 1 (100) 0 (0) 40 (51)

Dynamic 6 (14) 2 (40) 0 (0) 31 (100) 39 (49)

IPTW inverse probability of treatment weighting, TMLE targeted minimum loss-based estimation, RL reinforcement learning.
aFor the number of included ICUs and study size, the studies that used simulated patient data (n= 5) are not taken into account and therefore, the number of
RL and all studies add up to 26 and 74, respectively.
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potential violations of the conditional exchangeability assumption
also mentioned this assumption, whereas for the positivity
assumption, eleven out of 20 studies that reported a check for
potential violations did not explicitly mention positivity (Supple-
mentary Table 6).

Adjusting for treatment-affected time-varying confounding
Seventeen studies (22%) estimated the treatment effect by
adjusting for baseline confounding and by adjusting for baseline
confounding and TTC. For most of these studies, the point
estimates of the treatment effects varied substantially after
adjusting for both baseline and TTC, moving the effect estimate
towards or away from the null hypothesis, or even leading to
opposite effect estimates (Fig. 4).

DISCUSSION
Our scoping review of 79 published studies revealed a diverse
range of treatments being investigated. Despite the fact that most
treatments of interest in the ICU setting are DTRs, we observed a
dominant emphasis on STRs among studies that used G methods.
Many studies had inadequate reporting of the components of
target trials, with the ‘treatment strategies’, ‘follow-up’ and
‘analysis plan’ components being incompletely reported most
frequently. The causal assumptions were frequently not specified,
especially in studies utilizing RL methods, indicating a potential
lack of awareness in this research field of the importance of these
assumptions. The upcoming ‘Prediction of Counterfactuals Guide-
line’ (PRECOG)45 aims to provide guidance on the reporting of
causal assumptions and model evaluation in CI studies using
observational data, and we anticipate that its adoption may yield
substantive enhancements in the quality of reporting in forth-
coming CI studies utilizing observational ICU data. We decided not
to employ the ROBINS-I tool46 for assessing bias in observational
studies in our evaluation. We made this choice for two main
reasons. Firstly, utilizing ROBINS-I would require verifying specific
causal assumptions, which, in turn, would demand expert
knowledge of the treatment-outcome relationships studied in
each of the included articles. Given the extensive scope of our
review and the fact that many studies did not explicitly address
these causal assumptions, we found this task to be beyond the
intended scope of our review. Consequently, we opted to evaluate
studies based on their acknowledgment of these assumptions and
their reported attempts to validate them. Secondly, when

conducting causal inference with observational data, the potential
for bias arises not only from the absence of randomization but
also from potential biases stemming from incorrect study design
choices47. Rather than assessing these design choices directly, we
chose to evaluate studies based on the clarity and completeness
of their reporting regarding these choices. To structure this
evaluation, we used the target trial framework11, which is widely
recognized and used as a conceptual benchmark to describe
study design choices in causal inference studies using observa-
tional data across various medical domains48–52. G methods and
RL methods are often perceived as separate disciplines, but show
great similarities53. For example, Q-learning54 (an RL method, used
by many of the included studies55–59) is very similar -and under
certain conditions even algebraically equivalent- to G estimation
(a G method)60. An important difference is that G methods are
used for modeling both STRs and DTRs, while RL methods typically
deal with DTRs. As both G methods and RL methods perform the
same CI task (i.e., finding optimal treatment regimes), both rely on
the same, strong causal assumptions, which should be acknowl-
edged. While the consistency assumption is often plausible for
treatments in the ICU, violations of the conditional exchange-
ability and positivity assumption are more likely and should be
examined. Prior to examining violations of the causal assumptions,
one needs a research question that is truly of interest in the ICU, a
clear description of study design choices (e.g., using the target trial
framework11), and usage of a CI method that is appropriate for the
type of studied treatment. The results of our scoping review have
led to five recommendations that build on widely accepted views
and concepts in the field of CI to improve future research and
move towards actionable AI in the ICU (Box 2).

Ask the right research question
Treatments of interest in the ICU are typically DTRs and, therefore,
this type of treatments is expected to be the focus of CI research
in the ICU. However, despite an upward trend in recent years
(Supplementary Fig. 1b), still 83% of the studies that used G
methods studied STRs. To illustrate that many of these studies are
considering research questions that are not truly of interest in the
ICU, we will explore some examples. Zhang and colleagues
divided patients into two groups according to whether they
received diuretics within the first two days of ICU admission or
not61. Thus, the emulated target trial answers the question
whether or not to administer diuretics at the start of ICU
admission. However, we argue that the question an ICU physician

Fig. 3 Quality of Reporting summary plots. a Reporting quality of the target trial components. *For the follow-up component, the studies
that used simulated patient data (n= 5) are not taken into account. b Reporting quality of causal assumptions (level 1= assumption not
mentioned, level 2= assumption mentioned, level 3= attempt to check for potential violations of the assumption reported).
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is really interested in is when to administer diuretics throughout
the whole ICU stay, taking into account changing patient
characteristics such as fluid balance (especially at later ICU stages).
In addition, many of the included studies emulated target trials
comparing ‘giving treatment sometime during follow-up’ versus
‘never giving treatment’. For example, Bailly and colleagues
studied the effect of systemic antifungal therapy, comparing a
treated group (those who received antifungals during their ICU
stay) with an untreated group (those who never received
antifungals)62. As giving treatment ‘sometime during follow-up’
can be done in many ways, the estimated treatment effect is ill-
defined and typically not truly of interest. In other words, both
studies by Zhang61 and Bailly62 serve as examples of emulated
RCTs that would never be conducted in the ICU. Conversely,
Morzywołek and colleagues27 emulated a target trial that reflects a
very relevant research question, i.e., what is the optimal moment
to start renal replacement therapy in acute kidney injury? They
identified an optimal DTR based on a combination of biomarkers
lowered mortality without increasing the number of RRTs, offering
valuable insights for planning a future confirmatory RCT. Wang
and colleagues investigated the effectiveness of low tidal volume
ventilation32, a DTR investigated in one of the most influential
RCTs in the field of intensive care medicine63. This trial faced
criticism (among other concerns) due to high non-adherence
rates. Consequently, the target trial these authors emulated
reflected the highly relevant question: what would the treatment
effect have been under full compliance?

Describe the question as a target trial emulation
It can be beneficial to conceptualize a randomized trial that could
have addressed the research query (i.e., the target trial). Even in
cases where executing the exact target trial is unfeasible, outlining
its constituent elements within the target trial framework11 aids in
recognizing shortcomings in the appropriateness of the research
question and accuracy of the analysis. Almost one fifth of the
included studies lacked a clear description of the ‘treatment
strategies’ component of the target trial, that is, which treatment
regimes are compared in the target trial. For example, Arabi and
colleagues64 used IPTW to study the effect of corticosteroid
therapy for ICU patients with Middle East Respiratory Syndrome.
However, it remains unclear which treatment regimes (e.g., ‘treat
daily with corticosteroids’) are being compared. Moreover, more
than one third of the included studies lacked a complete
description of the ‘analysis plan’ component and therefore, are
not reproducible. We advocate detailed description which allows
reproduction of the used methodology, ideally accompanied with
code and (example) data.

Use methods that suit the research question
Many studies were not included in this review because they
modeled time-fixed treatments. As time-fixed treatments in the
ICU are rare, we hypothesize that in many of these studies, the
implicit treatment of interest is time-varying. Research questions
concerning time-varying treatments may be reformulated into

Fig. 4 Influence of adjusting for treatment-affected time-varying confounding. Treatment effect estimates adjusted only for baseline
confounding versus adjusted for baseline and treatment-affected time-varying confounding (TTC) reported by sixteen of the included studies.
Treatment effects were reported in terms of odds or hazard ratios (including the reported 95% CIs). In three studies (A), the point estimates
moved to the opposite direction, in two (B) and eight (C) studies, the estimates moved away from and towards the null hypothesis,
respectively. In three studies (D), there was a marginal difference in point estimates. Pouwels et al. (2020) estimated treatment effect on
length-of-stay (in terms of days) by adjusting for baseline confounding and by adjusting for baseline confounding and TTC, and found a
marginal difference in point estimates. *Khanal et al. (2012) compared prolonged intermittent renal replacement therapy with two different
alternative treatments.
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simplified, time-fixed versions, because standard methods are
easier to implement or high-quality, longitudinal data is unavail-
able. One may argue that, if the bias introduced by TTC18,19 is
negligible, standard methods suffice for CI in time-varying
treatments as well. However, empirical results from studies
included in this review suggest that adjusting for TTC can lead
to substantial differences in effect estimates and sometimes even
to opposite conclusions (Fig. 4). Hence, it is possible that many of
the excluded studies that implicitly studied time-varying treat-
ments but modeled these as if they are time-fixed, published
biased effect estimates. We advocate adjustment for TTC in any CI
study where the treatment of interest is time-varying. Modeling
DTRs is slightly more complex than STRs (which may be a reason
for the focus on STRs among the included studies) and therefore
requires different approaches. Various methods exist to find
optimal DTRs, either from a set of pre-specified regimes or directly
from data (for an overview, we refer to the book by Chakraborty
and Moodie65). Among the included studies in this review, for
example, Shahn and colleagues28 used ‘artificial censoring/
IPW’65–67 to estimate the optimal fluid-limiting treatment regime
for sepsis patients among a pre-specified set of DTRs (i.e., ‘fluid
caps’). RL methods and G estimation can be used to approximate
optimal DTRs without a pre-specified set of regimes. In RL studies,
finding the optimal treatment regime (typically referred to as the
optimal ‘policy’, see Supplementary Table 1) is typically followed
by a validation step to quantify the value of the optimized regime
(i.e., OPE, Box 1). The ‘U-curve method’38, a frequently used OPE
method among the included RL studies in this review (Supple-
mentary Fig. 2), is based on associating the difference between
the (observed) clinician’s treatment regime and the (estimated)
optimal treatment regime with patient outcome. As it completely
ignores the potential effect of confounders, we recommend
avoiding this method.

Mind the conditional exchangeability assumption
Conditional exchangeability is never guaranteed using observa-
tional data as the absence of unmeasured confounders is not
verifiable in the data. To think about residual confounding or
selection bias, incorporation of subject-matter expertise is key.
Directed acyclic graphs (DAGs)68 provide a simple and lucid
approach for researchers dealing with observational data to
showcase this expert knowledge, theories, and suppositions
regarding the causal relationships among variables. For practical
guidance on effective utilization of DAGs we refer to the work of
Tennant and colleagues69. There are different approaches to
quantify how potential violations of the conditional exchange-
ability would affect the study results70. Indirect approaches
consider, for instance, the effect of adding additional confoun-
ders11. A ‘bias analysis’ (or sensitivity analysis)71 examines the
characteristics of potential unmeasured confounders and can be
useful to quantify how much bias it would produce as a function
of those characteristics.

Mind the positivity assumption
The positivity assumption -on the contrary- is verifiable, although
this is rather complex for time-varying treatments72 and, given its
dynamic nature, violations are expected in the ICU setting. The
intuition for this assumption is that one can only study a
treatment regime using data of patients who have received
treatment that conform to this regime. The number of patient
treatment histories that match the treatment regime of interest
(i.e., the ‘effective sample size’73) shrinks with the number of
treatment decisions in the patient’s history (which tends to be
high in the ICU). For example, Gottesman and colleagues38 applied
RL to a dataset of 3855 patients to find an optimal treatment
regime for sepsis, but the effective sample size for this regime was
only a few dozen. A small effective sample size makes
positivity222222 violations likely and leads to high uncertainties
in estimated treatment effects. A straight-forward opportunity to
tackle this challenge is increasing the sample size. Therefore, we
advocate more usage (if appropriate) of the four currently
available open-source ICU databases74. However, increasing the
sample size does not guarantee increasing the effective sample
size, as the patients in the extra dataset may not be treated
according to the regime of interest. Hence, another opportunity to
increase the effective sample size is to minimize the mismatches
between the treatment regime(s) of interest and those observed
in the data. Studies employing G methods may simply accomplish
this by avoiding the modeling of treatment regimes which differ
greatly from the treatment protocol in place. In contrast, studies
utilizing RL typically do not pre-specify treatment regimes (as they
optimize them through learning agents) and consequently,
avoiding specific treatment regimes (or policies) is more challen-
ging. In the RL literature, various approaches have emerged to
address this issue, resulting in policies more closely aligned with
physician practices75. These approaches can be categorized into
‘policy constraint’ and ‘uncertainty based’ methods, with the latter
exemplified by the application of Conservative-Q Learning in two
of the included RL studies76–78. Detection (but not ruling out) of
violations of the positivity assumption can be facilitated through
examination of the distribution of estimated (stabilized) inverse-
probability-of-treatment (IPT) weights72, which was done in 20 of
the 42 studies that utilized IPTW (Supplementary Table 6). This
examination is recommended not only for IPTW but also for
studies utilizing other CI methods. In studies using RL methods
that employ importance-sampling34 (which is closely related to
IPTW53) for OPE, analogous to the examination of IPT weights, it is
recommended to examine the distribution of the importance
weights38. In studies using IPTW, weight stabilization and
truncation can be used to limit high uncertainties in the effect
estimates. Weight stabilization can improve the precision of effect

Box 2 Summary of recommendations for future research

● Ask the right research question
When developing a model for causal inference, consider clinically

relevant treatments. In the ICU, treatment decisions typically occur at
multiple time point during admission (i.e., time-varying treatments) and
often depend on the patient’s response to treatment (i.e., dynamic
treatment regimes).

● Describe the question as a target trial emulation
It is useful to imagine a randomized trial that would have answered the

research question (i.e., the target trial). Even if performing the target trial is
not feasible, describing its components using the target trial framework
helps to identify flaws in the relevance of a research question and
correctness of the analysis.

● Use methods that suit the research question
Standard methods, like propensity-score analyses, are easy to implement

and suffice for time-fixed treatments, but lead to biased estimates when
used to adjust for treatment-affected time-varying confounding (TTC).
Research questions concerning time-varying treatments are often compli-
cated by TTC, and, therefore, require methods that can appropriately adjust
for this.

● Mind the conditional exchangeability assumption
Causal inference is not possible based on data only, and incorporation of

expert knowledge is key to think about the causal structure between the
treatment and outcome of interest. Representing this expert knowledge in
causal diagrams is useful to visualize potential sources of bias. A bias
analysis can be helpful to quantify how much bias unmeasured confounders
could produce.

● Mind the positivity assumption
This assumption is verifiable, but this is rather complex for time-varying

treatments and violations are expected given the dynamic nature of the
ICU. Violations could be minimized by increasing the sample size (e.g., by
more usage of open-source ICU databases) and by studying treatment
regimes that are (more) similar to those observed in the data. Examination
of estimated inverse-probability-of-treatment weights is useful to detect
(but not rule out) positivity violations.
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estimates without the introduction of bias. However, a model
based on stabilized weights results in a slightly different effect
estimate compared to non-stabilized weights79 and, therefore,
should be interpreted carefully. Weight truncation also improves
precision, but at the expense of bias. Examination of the influence
of the introduced bias by checking the change of the effect
estimates under progressive truncation of IPT weights is
recommended80.
This review stresses the importance of causality for actionable

AI and provides a contemporary overview of CI research in the ICU
literature. We describe shortcomings of the identified studies in
terms of reporting and, furthermore, provide handles for
improving future CI research. These recommendations are not
limited to the ICU but apply to medical CI research as a whole.
Unlike other reviews on time-varying medical treatments22,81,82,
we did not limit our focus to either G methods or RL, but rather
acknowledge that both these method classes can be used to
perform CI tasks and therefore, hold the promise to bring
actionable AI to the bedside.
Our review has limitations. First, whereas efforts were made to

ensure that the literature search was comprehensive, we could
have missed studies for different reasons. Some research might
have employed unconventional terminology to delineate their
chosen CI method or utilized a CI approach that fell outside the
scope of our search strategy. For example, dynamic weighted
ordinary least squares (dWOLS)83,84 is a relatively new method
which has been used to model DTRs in the ICU setting in several
studies85,86. This method benefits from properties of both
Q-learning (an RL method) and G-estimation (a G method) and
may be an interesting direction for future research. Also, digital
twin technology builds on causal inference and has been applied
in the ICU setting87. Second, items that were not collected could
be of interest for future investigation. For example, we did not
differentiate RL further into specific RL methods.
Towards actionable AI in the ICU, we concur with the guidance

of editors of critical care journals88,89 to change the focus of
observational research in the ICU from prediction to causal
inference. To unlock this potential in a trustworthy and
responsible manner, we advocate development of models for CI
focusing on clinically relevant treatments, using a description of
the research question as a target trial emulation, choosing
appropriate CI methods given the treatment of interest and
acknowledging (and ideally examining potential violation of) the
causal assumptions.

METHODS
The study protocol was registered in the online PROSPERO
database (CRD42022324014)90. The filled-in PRISMA Extension for
Scoping Reviews (PRISMAScR) checklist91 can be found in
Supplementary Table 7.

Search strategy
Candidate articles were identified through a comprehensive
search in Embase, MEDLINE ALL, Web of Science Core Collection,
Google Scholar, medRxiv, bioRxiv, arXiv and ACM Digital Library
up to March 2023, with no start date. We developed a search
strategy that could be modified for each database (Supplementary
Table 8). Search terms included relevant controlled vocabulary
terms and free text variations for CI, G methods, or common RL
methods, combined with ICU related terms.

Eligibility criteria
We included any primary research article, conference proceedings
or pre-print papers that present models for the task of CI
concerning time-varying treatments in patients admitted to the
adult ICU. Articles were not eligible if it modeled a time-fixed

treatment, utilized data from an RCT (unless the treatment of
interest was not the randomized treatment), it focused on the
introduction of new methodology, or was an abstract-only, review,
opinion, or survey. Duplicates and articles not written in English
were also excluded.

Study selection
Duplicate removal and eligibility screening were performed using
EndNote 20 (Clarivate Analytics, Philadelphia, PA, USA). We used a
two-stage approach for screening: first by title and abstract and
then by full article text. Two reviewers (JS and WK) independently
screened the titles and abstracts. The two reviewers then
independently performed full-text screening on all articles.
Conflicts regarding the eligibility of studies during the screening
process were resolved by consensus in regular sessions between
the two reviewers.

Data extraction
Data were extracted by JS and confirmed by WK. The items for
extraction were based on the STROBE (STrengthening the
Reporting of OBservational studies in Epidemiology) checklist92,
supplemented by method-specific items. We extracted the
following items from all included studies: details of study variables
(i.e., studied treatment and primary outcome), the number of
included ICUs, usage of open-source database(s), number of
participants included, studied treatment type (Fig. 1), and used CI
method. In addition, we extracted the following method-specific
items: the usage of methods to reduce extreme weights (i.e.,
weight stabilization93 and truncation80) for studies using IPTW and
the off-policy evaluation94 (OPE, Box 1) method used for studies
using RL. Finally, if a study estimated the treatment effect both by
adjusting for baseline confounding and by adjusting for baseline
confounding and TTC, we also collected these different estimates.

Quality of reporting
To assess the quality of reporting (QOR) of the included studies,
two reviewers (JS and WK) independently judged the reporting of
the components of the target trial framework11 and the causal
assumptions (Box 1). Conflicts regarding the QOR assessment
were resolved by consensus in regular sessions between the two
reviewers.

Target trial components
The ‘target trial framework’, introduced by Hernán and Robins11,
consists of seven main components. We judged the reporting of
five of these: eligibility criteria, treatment strategies, follow-up
period, outcome and analysis plan (Table 2). We scored the
analysis plan component as ‘reported’ if one could reproduce the
modeling given the required data. For studies using RL, we judged
the ‘treatment strategies’ and ‘outcome’ components as ‘reported’
if the definitions of the used action space and reward were
reported, respectively. We split the follow-up period component
into three subcomponents: time-zero (or ‘index date’), end of
follow-up, and time resolution (i.e., the time steps in which the
treatment level is considered the same)95. We split the analysis
plan component into specific subcomponents depending on the
CI method used (Supplementary Table 9). We scored the target
trial components that are split in subcomponents as ‘reported,
‘partially reported’ and ‘not reported’ if all, some, or none of the
subcomponents were reported, respectively. Leading questions
used to judge whether each target trial subcomponent was
reported can be found in Supplementary Table 9. We did not
evaluate QOR for the components of ‘assignment procedures’ and
‘causal contrast of interest’, as no variability among the studies
was expected. This is due to the fact that (except during clinical
trials) ICU physicians typically have full knowledge of the
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treatments being administered to patients, resulting in an
unblinded assignment of the modeled treatment. Additionally,
the primary objective in CI studies using observational data is
typically to compare the effect of actual treatment adherence
(per-protocol effect), rather than the effect of being assigned to a
specific treatment regime at baseline (intention-to-treat effect).

Causal assumptions
The task of CI relies on strong assumptions, including conditional
exchangeability, positivity, and consistency (referred to collec-
tively as ‘causal assumptions’, Box 1). Violations of these
assumptions result in biased estimates and therefore it is crucial
to acknowledge them and, if possible, assess potential violations.
A study’s QOR regarding causal assumptions was scored using
three levels of increasingly good reporting quality: (1) no mention
of the assumption, (2) mention of the assumption, and (3)
attempted examination of potential assumption violations. For the
conditional exchangeability assumption, two types of attempts
were differentiated: ‘indirect approaches’11 and ‘bias analyses’71.
The examination of the distribution of the (stabilized) IPT weights
was considered as a method to assess potential positivity
assumption violations. As there are currently no approaches to
check for consistency assumption violations, merely mentioning
the consistency assumption (level 2) was considered the highest
level of reporting quality.

Evidence synthesis
We tabulated extracted study items for each study individually
and grouped by CI method used. QOR results concerning the
target trial components and the causal assumptions are summar-
ized as percentages using bar charts, and results of the QOR
assessment for each study individually were presented in a long
format table. For the reporting of the target trial components, we
made separate tables for each group of studies that used a
specific CI method. The collected treatment effect estimates
reported by studies that estimated the treatment effect both by
adjusting for baseline confounding and by adjusting for baseline
and TTC, were plotted as point estimates and corresponding 95%
confidence intervals.
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