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Real-time machine learning model to predict in-hospital
cardiac arrest using heart rate variability in ICU
Hyeonhoon Lee 1,2, Hyun-Lim Yang 1,3, Ho Geol Ryu4,5, Chul-Woo Jung4, Youn Joung Cho4, Soo Bin Yoon4, Hyun-Kyu Yoon4 and
Hyung-Chul Lee 2,4✉

Predicting in-hospital cardiac arrest in patients admitted to an intensive care unit (ICU) allows prompt interventions to improve
patient outcomes. We developed and validated a machine learning-based real-time model for in-hospital cardiac arrest predictions
using electrocardiogram (ECG)-based heart rate variability (HRV) measures. The HRV measures, including time/frequency domains
and nonlinear measures, were calculated from 5min epochs of ECG signals from ICU patients. A light gradient boosting machine
(LGBM) algorithm was used to develop the proposed model for predicting in-hospital cardiac arrest within 0.5–24 h. The LGBM
model using 33 HRV measures achieved an area under the receiver operating characteristic curve of 0.881 (95% CI: 0.875–0.887)
and an area under the precision-recall curve of 0.104 (95% CI: 0.093–0.116). The most important feature was the baseline width of
the triangular interpolation of the RR interval histogram. As our model uses only ECG data, it can be easily applied in clinical
practice.
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INTRODUCTION
In-hospital cardiac arrest is a sudden and unexpected complica-
tion in patients admitted to intensive care units (ICUs). Despite
advancements in critical care medicine, the incidence of cardiac
arrest in ICU patients remains high, with reported rates ranging
0.5–7.8% upon hospital admission1. Early identification and rapid
treatment are key to improving patient outcomes, but limited ICU
resources and diverse causes of in-hospital cardiac arrest pose
difficulties in preventing this life-threatening event2. Thus,
developing a continual and accurate prediction model for in-
hospital cardiac arrest in ICU settings is critical for enabling real-
time detection and prompt interventions, including early defi-
brillation and cardiopulmonary resuscitation (CPR), to improve
patient outcomes.
Numerous prediction models rely on electronic medical records

(EMR) to extract various clinical features for predicting cardiac
arrest. Generally, such models have good discrimination perfor-
mance. A retrospective cohort study of patients with acute
coronary syndrome collected 20 clinical variables such as vital
signs, laboratory results, and electrocardiogram (ECG) reports
within 24 h before cardiac arrest to develop prediction models,
and the best model achieved a better discrimination performance
than existing risk prediction scores, such as the National and
Modified Early Warning scores3. Another study utilized EMR to
collect nine clinical variables, including chief complaints and
demographic data, to develop a prediction model for cardiac
arrest in emergency departments4. Since such prediction models
are often limited by the need to collect multiple variables from
EMR, some of the variables may not be immediately available or
reliable, while others may be completely unavailable in certain
hospitals5. Contrarily, ECG, widely used for continuous monitoring
of critically ill patients, accelerated by recent machine learning

(ML) algorithms is capable of detecting various cardiac abnorm-
alities automatically6. Therefore, an ECG-based prediction model
can simplify the process and ensure constant, real-time monitor-
ing for early and rapid prediction of in-hospital cardiac arrest in
real-world clinical settings.
Several ECG-based markers such as heart rate, QRS prolonga-

tion, early repolarization, and heart rate variability (HRV) have
been associated with in-hospital cardiac arrest, leading to the
development of cardiac arrest prediction models that use these
markers as predictors7–9. Among the aforementioned para-
meters, HRV, which is a measure of time variance between
successive heartbeats (also known as RR intervals), has been
identified as a promising predictor of cardiac arrest owing to its
ability to evaluate the effects of autonomic nervous system
activity in the heart10–13. Several HRV measures including the
standard deviation of normal RR intervals (SDNN) and low-
frequency (LF) and high-frequency (HF) powers have been
reported as significant predictors of cardiac arrest11,14. Further-
more, a recent multi-center prospective cohort study suggested
that HRV triangular index (HTI), calculated as the total number of
RR intervals divided by their histogram height, can be an
independent predictor of cardiac arrest15. However, these
studies are limited by their focus on single HRV measures,
overlooking the diverse information potentially offered by
multiple HRV measures. Since all HRV measures originate from
a single ECG source, the nature of HRV measures renders them
cumbersome in conventional statistical models, including multi-
variable logistic regression.
The use of ML for developing prediction models has recently

gained attention, as the models can learn complex relationships
among several variables without requiring prespecified assump-
tions such as independence and linearity16,17. In a previous
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study18, a prediction model for heart failure was developed and
validated using various 12-lead ECG features, including QT
interval, QRS duration, R wave axis, T wave axis, and heart rate,
along with demographic data, and the presence of atrial
fibrillation (AF) and atrial flutter. This model achieved an
impressive AUROC of 0.889. Lai et al. predicted sudden cardiac
death by utilizing ECG-derived measurable arrhythmic risk,
specifically three repolarization interval ratios and two
conduction-repolarization markers19. However, the limited
sample size (n= 46) restricts its broader implications, despite
its exceptional accuracy of 99.49%. A recent review highlighted
multiple ML-based prediction models for cardiac arrest using
ECG20, but only two out of the 10 models used sample sizes
exceeding 1000. One of these models, developed by Kwon et al.,
achieved an impressive AUROC of 0.948 for predicting cardiac
arrest within 24 h, based on 12-lead ECG recordings from a
substantial dataset of 25,672 patients21. The other model,
created by Do et al. for predicting ventricular tachycardia, with
an AUROC of 0.829, required a 3 h epoch of ECG data22.
However, 12-lead ECG recordings may not be feasible for
critically ill patients needing real-time monitoring. Therefore,
HRV measures, easily obtainable from a single-lead ECG, have
garnered attention. In a prospective observational study of 925
patients admitted to an emergency department, a support
vector machine utilizing HRV measures with other clinical
variables was found to be more accurate than a Modified Early
Warning score in predicting cardiac arrest within 72 h, achieving
an AUROC of 0.78123. Although these studies highlighted the
potential of ML algorithms using HRV measures for predicting
cardiac arrest, few studies have developed ML-based prediction

models for in-hospital cardiac arrest using multiple HRV
measures from only ECGs in large samples of critically
ill patients.
In this study, we develop and validate an ML-based prediction

model for in-hospital cardiac arrest in ICU patients using HRV. We
collect ECG data from a large sample, single-center, retrospective
cohort and extract various HRV measures. Thereafter, we utilize a
modern ML algorithm to capture the complex relationship among
these measures and improve the predictive performance. To the
best of our knowledge, this study is the first to use ML models to
predict in-hospital cardiac arrest in ICU patients, using multiple
HRV measures as predictors, and to validate the model on a large
sample of patients.

RESULTS
Dataset construction
A total of 5771 patients (6982 ICU stays) were eligible, of which
4821 patients (5679 ICU stays) were analyzed for developing and
validating the proposed prediction model (Fig. 1). Patient
demographics are listed in Table 1. The incidence of sudden
cardiac arrest was 1.88%. The ECG data were preprocessed for
quality checks, which resulted in 634,396 (1.24% event rate) and
139,663 (1.35% event rate) epochs in the development and
validation sets, respectively. After the analysis of 43 HRV
measurements, 33 were selected using the BorutaShap algorithm
to develop the prediction model (Supplementary Fig. 1).

Model evaluation results
Following hyperparameter optimization through fivefold cross-
validation, we retrained our light gradient boosting machine
(LGBM) model on the entire development set and subsequently
evaluated its performance on the validation set. As a primary
outcome, the model achieved an area under the receiver
operating curve (AUROC) of 0.881 [95% confidence interval (CI):
0.875–0.887] and an area under the precision-recall curve (AUPRC)
of 0.104 [95% CI: 0.093–0.116] (Fig. 2). The AUROC of the
secondary outcomes were comparable to that of the primary
outcome, while the AUPRC declined as the range of the prediction
period narrowed and neared the event of sudden cardiac arrest.
Additional metrics assessing the discriminative performance of the
model, including sensitivity, specificity, precision, accuracy, and
F1-score, are presented in Table 2. Considering the calibration
performance, our model overpredicted in the 0.2–0.3 range of
predicted probability for the primary outcome (Fig. 3). For the
secondary outcomes, our model exhibited consistent and reliable
calibration at both 18 and 12 h. However, as the prediction period
narrowed (from 6 to 1 h), the model increasingly overpredicted
sudden cardiac arrests. The results of subgroup analyses, stratified
by the type of patient monitor, are detailed in Table 3. The
AUROCs of our model did not show significant variation between
the two types of patient monitors.

Comparative analysis
To provide context, a clinical parameter-based model was also
developed for comparative purposes. All stages of developing the
clinical parameter-based model, including feature selection, model
development, and validation, mirrored those of our model. The
BorutaShap algorithm selected 42 features, excluding only one
(the difference feature of diastolic blood pressure). Our model
showed a significantly higher AUROC than the clinical parameter-
based model (0.881 vs. 0.735, p < 0.001). Additional metrics
evaluating the discriminative performances of the model are
presented in Supplementary Table 1.

Fig. 1 Flowchart of the study cohort. ICU intensive care unit.

Table 1. Demographic characteristics of the study population at the
ICU level.

Study population (n = 5679)

Age (year) 62.6 ± 16.1

Sex (female, %) 2348 (41.3)

Height (cm) 163.1 ± 9.8

Weight (kg) 62.3 ± 13.3

Event of sudden cardiac arrest (n, %) 107 (1.88)

Type of intensive care unit

Medical intensive care unit (n, %) 793 (14.0)

Surgical intensive care unit (n, %) 4886 (86.0)

Type of patient monitor

SolarTM 8000 M (n, %) 828 (14.6)

IntelliVue (n, %) 4851 (85.4)

Data are presented as mean ± S.D. or number (%). ICU intensive care unit.
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Feature importance analysis
The feature importance of our model was analyzed using the
Shapley additive explanations (SHAP) method (Fig. 4). The most
important feature, as determined by the SHAP values, was the
baseline width of the triangular interpolation of the RR interval
histogram (TINN), followed by HTI, the inverse of the average
length of the acceleration/deceleration segments (IALS), 20th
percentile of the RR intervals (Prc20NN), the minimum of the RR
intervals (MinNN), and the interquartile range of the RR intervals
(IQRNN). Among these features, a higher IALS value, as well as
lower values of TINN, HTI, Prc20NN, and MinNN, were associated
with a high risk of in-hospital cardiac arrest.

Change of HRV measures over time until the event
An additional analysis was conducted to reveal the changes in
HRV measures before an in-hospital cardiac arrest, specifically
within the timeframe of 0.5 h to 24 h preceding the cardiac arrest
event. The results highlighted the top six important features in our
model (Fig. 5). The HTI values increased until the event of cardiac
arrest, whereas IALS and MinNN values decreased. TINN, Prc20NN,
and IQRNN values started to increase at ~6 h before the event of
cardiac arrest (Supplementary Fig. 2).

DISCUSSION
Recognizing the need for predicting in-hospital cardiac arrest in
critically ill patients, we developed and validated an ML-based
prediction model for in-hospital cardiac arrest using HRV measures
in ICU patients. Our model leveraged HRV measures to overcome
limitations encountered with conventional prediction models that
rely on extensive EMR data. The proposed model not only
simplifies the prediction process through a single data source but
also facilitates real-time, continuous monitoring. The results
demonstrated the potential of the LGBM model, which achieved
good discrimination performance. This was paramount for the
early detection and rapid prediction of in-hospital cardiac arrest,
thereby improving patient outcomes in real-world clinical settings.
This study highlights the (1) ability of the proposed model to
predict the risk of in-hospital cardiac arrest using ECG data only,

(2) usability of multiple HRV measures in the proposed ML-based
model, and (3) explainability of the model through HRV measures.
In this study, only ECG data are used to predict the risk of in-

hospital cardiac arrest, making our proposed model highly
accessible and transferable to other healthcare settings that
collect ECG data because continuous ECG monitoring is a standard
practice in ICU settings. Unlike previous studies that employed
multiple data sources, such as demographic information, vital
signs, and laboratory results, to develop their prediction
models4,23–25, our model finds easy application in clinical practice
because only ECG data are required to predict cardiac arrest in ICU
settings. Additionally, we conducted a comparative analysis
between our model and a clinical parameter-based model from
a previous study, which utilized 43 features derived from six vital
signs. While the clinical parameter-based model achieved an
impressive AUROC of 0.94 for predicting in-hospital cardiac arrest
within 1 h, our findings indicated that its performance was not
consistently maintained when predicting events occurring within
24 h (Supplementary Table 1).
Since HRV quantifies dynamic changes in ECG signals, previous

studies utilized HRV measures to develop models in various
medical contexts, including the prediction of poor outcomes or
treatment responses26–28. However, such studies used traditional
statistical models, such as a multivariable logistic regression
model, which limited the number of HRV measures that could
have been used owing to the linearity assumption between
predictors and outcomes29. Contrarily, ML-based models handle
complex relationships among predictors and outcomes, thus
offering the advantage of using numerous other HRV measures,
including IALS, pNN50, TINN, and HTI, in the model development
process, in addition to the traditional sets of HRV measures, such
as the mean of the RR intervals (meanNN), SDNN, LF, and HF29.
Furthermore, ML-based models provide a distinct advantage while
managing the inherently nonlinear and nonstationary fluctuations
of HRV measures29. In our study, we utilized nonlinear measures
including IALS, TINN, and HTI, which have been proven effective in
detecting diseases such as end-stage renal disease, primary
aldosteronism, and pulmonary hypertension30–32. The integration
of these nonlinear HRV measures into ML algorithms proved to be
of great potential in delivering superior discriminative perfor-
mance. This observation was consistent with those of previous

Fig. 2 Receiver operating characteristic and precision-recall curves that represent the discrimination performance of the best model on
the validation set. Each line shows the receiver operating characteristic curve (a) and the precision-recall curve (b) for predicting in-hospital
cardiac arrest from 0.5 h to 24, 18, 12, 6, 3, and 1 h.
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studies on different diseases33, thereby further endorsing the
effectiveness of the proposed approach.
In this study, the BorutaShap algorithm was employed to

identify the most relevant HRV measure from 43 HRV measures,
resulting in the selection of 33 HRV measures as input features for
the model. Utilizing such a comprehensive set of HRV measures
increased the accuracy and robustness of the prediction model.
The feature importance analysis results determined using the
SHAP method revealed that TINN, HTI, IALS, Prc20NN, MinNN, and
IQRNN were the most critical HRV measures in the in-hospital
cardiac arrest prediction model.
TINN, standing as the most pivotal feature in our study, was

closely followed by HTI. Both TINN and HTI are time-domain HRV
measures derived from geometric analysis, providing insights into
the overall shape and distribution of the RR interval histogram10.
TINN quantifies the baseline width of the distribution of RR
intervals using triangular interpolation, where the triangle is
determined by the least squares error. A larger TINN value typically
signifies greater variability in the RR intervals. Conversely, HTI
reflects the total number of RR intervals divided by the height of
these intervals, shedding light on how the RR intervals are
distributed. A lower HTI suggests that a higher proportion of
intervals cluster around the mode, while a higher HTI indicates a
wider spread of intervals. Notably, previous research has
emphasized the importance of both HTI and TINN in cardiac risk
assessment. Studies have shown that these values tend to be
significantly lower in patients with sudden cardiac death
compared to those with hypertrophic cardiomyopathy or healthy
individuals34. Additionally, in the context of developing prediction
models for cardiac arrest in critically ill patients, TINN and HTI
values have been found to be lower in patients experiencing
cardiac arrest compared to those without23. These values have
also exhibited distinctions in patients with arrhythmias compared
to healthy individuals, with a notable difference in HTI values
between these groups35. Furthermore, a previous study proved
HTI to be an independent predictor of cardiovascular mortality in
patients with AF15.
New HRV measures introduced in recent studies were applied

to this study. A new HRV measure known as heart rate
fragmentation or IALS was identified as one of the important
features of our study. For IALS, acceleration, and deceleration
segments were defined by a sequence of RR intervals between
consecutive inflection points, for which the difference between
the two RR intervals was <0 and >0, respectively. Segment length
was determined as the number of RR intervals in that segment36.
A prior study revealed that IALS was significantly higher in
patients with congestive heart failure (CHF), with a mean IALS of
0.78. This result is similar to that of our study (Fig. 5), suggesting
that higher IALS can be associated with compromised cardiac
conditions37. Approximately 30–50% of the patients with CHF
were estimated to be at risk of sudden cardiac arrest38.
Few studies have used the other HRV measures included in our

study, such as IQRNN, to study the relationship between those
measures and cardiac arrest; however, our findings suggested that
IQRNN has the potential as predictors of cardiac arrest. The values
of IQRN, as well as TINN in patients experiencing sudden cardiac
arrest, remained similar to those in patients without sudden
cardiac arrest up until approximately 6 h prior to the event, after
which dynamic changes occurred. Nevertheless, the causality
between these HRV measures and cardiac arrest requires further
investigation.
Changes in HRV measures were analyzed within the timeframe

of 0.5 h to 24 h preceding the in-hospital cardiac arrest and
compared with their median values in patients without in-hospital
cardiac arrest, as shown in Fig. 5. The IALS values were consistently
higher within 0.5 to 24 h preceding the cardiac arrest event
compared to the patients without in-hospital cardiac arrest;
however, there was a decreasing trend in these values leadingTa
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up to the cardiac arrest event. Conversely, HTI values started low,
but increased towards the event of cardiac arrest. These
consecutive changes in HRV measures have not been documen-
ted in previous studies. Therefore, the analytical results of this
study are expected to provide valuable insights into the real-time
condition evaluation of a patient and facilitate the prompt
initiation of interventions aimed at preventing events of cardiac
arrest.
Furthermore, this study has the significant advantage of

utilizing a large sample size of ~5000 patients, which adds to
the representativeness and generalizability of the results to other
patient populations. A large sample size is critical for accurately
detecting rare events, such as in-hospital cardiac arrest, which is
essential for developing reliable ML-based predictive models39,40.
Nevertheless, the limitations of this study must be considered

while interpreting the results. The binary classification model used

has certain restrictions; the model can only predict whether a
patient will experience a cardiac arrest but does not provide
information on the timing of the event; however, we tried to
evaluate our model on different time periods as secondary
outcomes. Additionally, the model does not account for the
influence of treatment interventions on outcomes and focuses
solely on baseline predictors. The selection of the development
and validation sets may also have been biased, which can affect
the accuracy and generalizability of the results. Furthermore, the
study was performed at a single center, limiting the transferability
of the findings to other patient populations and healthcare
systems.
Future research should focus on validating the findings of this

study in larger multi-center studies to increase the generalizability
of the results and confidence in the predictions made by the
model. Open datasets with labels for cardiac arrest and ECG

Fig. 3 Calibration plot. The x and y axes represent the predicted probability and observed actual proportion of in-hospital cardiac arrest,
respectively. The diagonal line represents a perfectly calibrated model, while deviations from this line indicate over- or under-prediction of in-
hospital cardiac arrest. Error bars are 95% confidence intervals.

Table 3. Discrimination performance of sudden cardiac arrest stratified by patient monitor type.

AUROC AUPRC Sensitivity Specificity Precision Accuracy F1-score

SolarTM 8000 M

Within
0.5–24 h

0.867
(0.857–0.875)

0.039
(0.035–0.043)

0.749 (0.722–
0.777)

0.817
(0.815–0.819)

0.032
(0.030–0.034)

0.783
(0.769–0.797)

0.061
(0.057–0.066)

IntelliVue

Within
0.5–24 h

0.853
(0.844–0.863)

0.259
(0.231–0.288)

0.887
(0.867–0.908)

0.692
(0.686–0.699)

0.125
(0.118–0.133)

0.790
(0.779–0.800)

0.220
(0.208–0.232)

Data are presented as mean with 95% confidence interval. AUROC area under the receiver operating characteristic curve, AUPRC area under the precision-recall
curve.
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waveforms, such as the Medical Information Market for Intensive
Care, can help validate our results before conducting a multi-
center prospective study. Moreover, incorporating clinical factors
such as comorbidities or medications may further assist the
model41; however, we intentionally excluded these factors in this
study considering variable availability across different hospital
settings. Additionally, developing survival models that account for
both the probability and timing of a cardiac arrest event is
expected to provide valuable information for clinical decision-
making and allow a better understanding of the long-term
outcomes of patients who experience sudden cardiac arrest in ICU
settings.
In conclusion, we developed and validated an ML-based real-

time prediction model to predict in-hospital cardiac arrest in

critically ill patients, focusing on the importance of HRV measures.
If future prospective studies validate our results, they can
potentially be used to detect in-hospital cardiac arrest in critically
ill patients.

METHODS
Study design
All data for model development were retrieved from a prospective
registry containing vital signs of ICU patients at the Seoul National
University Hospital (SNUH). The prospective registry was approved
by the Institutional Review Board (IRB) of SNUH (approval number:
1408-101-605) and registered at ClinicalTrials.gov (NCT02914444).
Furthermore, the IRB approved the retrospective analysis of data

Fig. 4 Shapley additive explanation dependence determines the relationship between the value of a feature and the predicted outcome
of the model. Each dot represents a single prediction, while the x and y axes represent the mean absolute Shapley values and feature names,
respectively. HRV heart rate variability, TINN baseline width of the triangular interpolation of the RR interval histogram, HTI heart rate
variability triangular index, IALS inverse of the average length of the acceleration/deceleration segments, Prc20NN 20th percentile of the RR
intervals, MinNN minimum of the RR intervals, IQRNN interquartile range of the RR intervals, MedianNN median of the RR intervals, CVSD root
mean square of successive differences divided by the mean of the RR intervals, pNN50 proportion of RR intervals >50ms, out of the total
number of RR intervals, MCVNN median absolute deviation of the RR intervals divided by the median of the RR intervals, PAS percentage of
NN intervals in alternation segments, PIP percentage of inflection points of the RR intervals series, PI Porta’s index, MeanNN mean of the RR
intervals, pNN20 proportion of RR intervals >20ms, out of the total number of RR intervals, Prc80NN 80th percentile of the RR intervals, LFn
normalized low frequency, obtained by dividing the low-frequency power by the total power, RMSSD square root of the mean of the squared
successive differences between adjacent RR intervals, SDNNI1 mean of the standard deviations of RR intervals extracted from 1-minute
segments, VLF spectral power of very low frequencies, SHAP Shapley additive explanations.
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from the prospective registry (approval number: 2303-113-1413).
Due to the retrospective nature of this study and the anonymity of
data, the IRB waived off the requirement for written informed
consent from patients.

Data collection
For this study, registry data of all the patients admitted to medical
or surgical ICUs (MICU or SICU) at SNUH from March 2020 to
August 2022 were eligible. However, patients under the age of 18
and those without ECG recordings were excluded from the study.
The ECG data used in this study were collected using two different
patient monitors (IntelliVue, Philips Healthcare, Amsterdam,
Netherlands, and SolarTM 8000 M, GE Healthcare, Wauwatosa,
WI, USA) and stored in a free biosignal collection program (version
1.9.9, accessed on June 6, 2022, https://vitaldb.net)17. The clinical
parameters, used for comparative analysis, including heart rate,
systolic blood pressure, diastolic blood pressure, mean blood
pressure, SpO2, and respiration rate, were also collected using the
same patient monitors. The event time of CPR was extracted from
the clinical data warehouse of SNUH (Supreme 1.0, Seoul National
University Hospital, Seoul, Republic of Korea) to incorporate the
presence and time of sudden cardiac arrests during each ICU stay.
For ICU stays with multiple CPR attempts, only the first CPR event
was used.
We constructed a structured ECG dataset of ICU stays with

(event group) and without (control group) sudden cardiac arrests

(Fig. 6). For the event group, ECG data from 0.5 to 24 h prior to the
event were collected and 5min epochs with 5 min intervals
spanning 0.5–24 h were extracted. Each epoch begins immedi-
ately after the end of the previous one. For the control group, we
randomly sampled ECG data for 24 h from each ICU stay and
extracted 5min epochs with 5 min intervals similar to the event
group. Only data from the 5-min epochs were used in calculating
the HRV features and predicting the event. Thereafter, the dataset
was randomly divided into development (80%) and validation
(20%) sets at the patient level, while maintaining the same ratio of
groups in both sets.

Data preprocessing
The ECG signals were originally collected at a sampling rate of
500 Hz but were downsampled to 250 Hz to reduce the amount of
data and computational resources required for processing. To
ensure a more accurate HRV analysis, a series of preprocessing
steps were applied to the ECG data: ECG signals were divided into
5 min epochs, signals were filtered to remove noise, and data
quality was checked to ensure that the data were usable.
Specifically, a 0.5 Hz high-pass Butterworth filter (order= 5) was
used, followed by powerline filtering of the 5min ECG signal
during the first step. Next, a continuous quality index was
computed by interpolating the distance of each QRS segment
from the average QRS segment (1 corresponded to the heartbeats
closest to the average sample, while 0 corresponded to the most

Fig. 5 Changes in key HRV measures over time until the event. Fluctuations in the top six important HRV measures before in-hospital
cardiac arrest are compared to their respective median values in patients without in-hospital cardiac arrest. The x and y axes represent time
(min) and HRV measures values, respectively. The blue line and shaded region represent the mean value and 95% confidence intervals of HRV
measures each time before the event of in-hospital cardiac arrest, respectively, while the red dashed line represents the median value of HRV
measures in patients without in-hospital cardiac arrest. Kendall’s tau coefficient was used to measure the association between the time for the
event and HRV measures. HRV heart rate variability, TINN baseline width of the triangular interpolation of the RR interval histogram, HTI heart
rate variability triangular index, IALS inverse of the average length of the acceleration/deceleration segments, Prc20NN 20th percentile of the
RR intervals, MinNN minimum of the RR intervals, IQRNN interquartile range of the RR intervals.
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distant heartbeat from the average sample). When the proportion
of QRS segments with a quality index greater than or equal to 0.9
was not greater than 80%, a few 5min epochs were excluded
according to the quality index. For the clinical parameter-based
model, which was developed based on a prior study25, we initially
established a total of 43 features. This set included six raw
features, six differential features, 30 statistical features computed
using a sliding window approach, and one additional feature
known as the shock index. Because the clinical parameters were
originally collected at 2 sec intervals, we extracted median values
within each 5min epoch for the raw features. The differential
features were calculated as the differences between the values in
the current epoch and those in the previous epoch for the clinical
parameters. We applied a fixed-length 2-h sliding window to
segment each parameter with a 5min interval. These segments
were then aggregated to statistical measures such as the mean,
median, minimum, maximum, and standard deviation for each
feature across all the segments.

Calculation of HRV parameters
The Neurokit2 Python library, a comprehensive and validated
toolkit for ECG signal analysis, was utilized to detect R peaks and
extract various HRV measures from each 5min epoch, as
employed in previous studies42–44. The toolkit facilitated the
calculation of HRV measures based on detected R peaks, ensuring
reliable results through a standardized and automated approach.
The HRV measures were calculated using the detected R-peak
information. The toolkit provided a total of 74 HRV measures
comprising 24 time-domain measures such as meanNN, SDNN,
and square root of the mean of the squared successive differences
between adjacent RR intervals (RMSSD); 9 frequency-domain
measures such as the spectral power of LF, HF, and the ratio of LF
to HF (LF/HF); and 41 nonlinear measures such as the standard
deviation perpendicular to the line of identity (SD1), cardiac
sympathetic index, and cardiac vagal index. In the nonlinear
category, we preselected 15 measures, which were derived either
from the Poincaré plot45,46, or the heart rate fragmentation
approach36. Additionally, we excluded four time-domain HRV
measures as they required ECG epochs longer than 5min.
Consequently, we began with a total of 43 HRV features as the

initial feature candidates before applying the BorutaShap algo-
rithm (Supplementary Fig. 1).

Measurement outcome
The primary outcome was the occurrence of cardiac arrest within
0.5–24 h, as in a previous study3,4. The secondary outcomes
included the occurrences of cardiac arrest from 0.5 to 18, 12, 6, 3,
and 1 h. The discrimination performances of the model were
evaluated using AUROC, AUPRC, sensitivity, specificity, precision,
accuracy, and F1-score. To evaluate the calibration performance of
the model, we graphed a calibration plot comparing the predicted
probabilities of sudden cardiac arrest against the observed
fractions.

Feature selection
For feature selection, we employed the BorutaShap algorithm
because it uses a combination of the Boruta and SHAP algorithms
to identify the most important features in a given dataset47. Thus,
the BorutaShap algorithm was applied to identify the most
relevant features from the 43 predetermined HRV measures
extracted for our model, and 43 clinical features extracted for the
clinical parameter-based model, respectively. In this study, only
the features categorized as “accepted” by the BorutaShap
algorithm were chosen for inclusion in the model development
process, with those marked as “tentative” or “rejected” being
excluded.

Model development and validation
A LGBM model was utilized to develop the proposed ML-based
prediction model, which is an implementation of the decision
tree-based ensemble algorithm, with high efficiency, scalability,
and strong performance on a wide range of datasets48. The
hyperparameters of the LGBM model were optimized using
Bayesian optimization, which is an efficient approach to auto-
matically tune ML algorithms by modeling the generalization
performance of a learning algorithm as a sample from a Gaussian
process and using the tractable posterior distribution to select the
next optimal parameter for trial49. Hyperparameter optimization
was conducted with fivefold cross-validation at the patient level

Fig. 6 Collection protocol of 5min epoch within ECG data. ICU intensive care unit.
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using the development set to find the best hyperparameters such
as the number of leaves, fraction of features, and regularization
determined using the AURPC score. Subsequently, we performed
another round of fivefold cross-validation at the patient level to
identify the optimal model training parameters including the
number of boosting iterations. Once these optimal parameters
were established, we proceeded to train the model using the
entire development set. Following this, we implemented the Beta
calibration method for further refinement50. Following this, we
implemented the Beta calibration method for further refinement.
The final model, resulting from these steps, was tested with the
validation set. All this learning scheme was applied to both our
model and the clinical parameter-based model.

Feature importance
We employed the SHAP method51 to explain the output of the ML
model based on a game-theoretic framework. Each feature was
assigned a unique contribution value that indicated its impact on
the prediction outcome. In the classic concept of Shapley values
from cooperative game theory, SHAP values are grounded and a
way to distribute the prediction outcomes fairly among all
features is provided. Additionally, this method is used to
determine the attributes of each feature to the predicted outcome
applied to the validation set.

Statistical analysis
Kendall’s tau coefficient was used to measure the association
between the time for the event and HRV measures. DeLong’s test
was employed to compare the AUROCs52. All statistics were
reported with point estimates and 95% CIs. Python 3.8.0 (Python
Software Foundation, Wilmington, DE, USA) was used for signal
preprocessing, model development, validation, statistical testing,
and visualization. A p value < 0.05 was considered statistically
significant.
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