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There are enormous enthusiasm and concerns in applying large language models (LLMs) to healthcare. Yet current assumptions are
based on general-purpose LLMs such as ChatGPT, which are not developed for medical use. This study develops a generative
clinical LLM, GatorTronGPT, using 277 billion words of text including (1) 82 billion words of clinical text from 126 clinical
departments and approximately 2 million patients at the University of Florida Health and (2) 195 billion words of diverse general
English text. We train GatorTronGPT using a GPT-3 architecture with up to 20 billion parameters and evaluate its utility for
biomedical natural language processing (NLP) and healthcare text generation. GatorTronGPT improves biomedical natural
language processing. We apply GatorTronGPT to generate 20 billion words of synthetic text. Synthetic NLP models trained using
synthetic text generated by GatorTronGPT outperform models trained using real-world clinical text. Physicians’ Turing test using 1
(worst) to 9 (best) scale shows that there are no significant differences in linguistic readability (p = 0.22; 6.57 of GatorTronGPT
compared with 6.93 of human) and clinical relevance (p = 0.91; 7.0 of GatorTronGPT compared with 6.97 of human) and that
physicians cannot differentiate them (p < 0.001). This study provides insights into the opportunities and challenges of LLMs for

medical research and healthcare.
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INTRODUCTION

Generative large language models (LLMs) such as the ChatGPT'
have surprised the world by answering questions conversationally
and generating textual content such as emails, articles, and even
computer codes, triggering enormous enthusiasm in applying
LLMs to healthcare®™. People are enthusiastic about LLMs in the
potential to facilitate documentation of patient reports (e.g., a
progress report)>4, improving diagnostic accuracy®, and assisting
in various clinical care®’, while at the same time concerning the
hallucinations and fabrications”®, bias and stereotype®, and risks
of patient privacy and ethics'®. Yet, this enthusiasm and concerns
are based on ChatGPT, which is not designed for healthcare use’.
Until now, it is unclear how this disruptive technology can help
medical research and potentially improve the quality of
healthcare.

Language model is a simple statistical distribution used in
natural language processing (NLP) to formulate the probability of
a sequence of words or the next word in a sequence. Surprisingly,
when it is used as a learning objective to train a specific neural
network architecture named transformer, and when the model
size is very large such as billions or hundreds of billions of
parameters, important artificial intelligence (Al) emerges. For
example, LLMs can learn knowledge from one task and apply it to
another task (i.e, transfer learning), learn from very few labeled
samples (i.e., few-shot learning), and learn without human-labeled
samples (i.e,, zero-shot learning)''~'3. The LLM pretrained using
decoder-only transformer such as GPT-3 is known as generative

LLM as it can generate human-like text. The conversational ability
of LLMs is achieved using prompt-based text generation'#, the key
technology guiding LLMs to generate reasonable answers and
contextual contents.

This study aims to develop a generative LLM using real-world
clinical text and evaluate its utility for medical research and
healthcare. We train GatorTronGPT using 82 billion words of de-
identified clinical text'> from University of Florida (UF) Health and
195 billion diverse English words from the Pile'® dataset. We train
GatorTronGPT from scratch using the GPT-3'7 architecture. We
formulate biomedical relation extraction and question answering
using a unified text generation architecture'® to evaluate how
GatorTronGPT could benefit medical research using 6 benchmark
datasets. To examine the utility of text generation in the clinical
domain, we apply GatorTronGPT to generate 20 billion words of
synthetic clinical text, which are used to train synthetic NLP
models using BERT' architecture, denoted as GatorTronS ('S’
stands for synthetic). We compare GatorTronS models with
GatorTron'®, a clinical NLP model trained using real-world 90
billion words of text, to test the hypothesis that generative clinical
LLMs can be used to generate synthetic clinical text for medical
research. To test if LLMs could be used in healthcare, two internal
medicine subspecialists from endocrinology (NSO) and cardiology
(MMA) manually evaluate clinical paragraphs written by Gator-
TronGPT compared with real-world paragraphs written by UF
Health physicians. Figure 1 shows an overview of the study design.
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Fig. 1

Develop a clinical generative large language model, GatorTronGPT, for biomedical natural language processing, clinical text

generation, and healthcare text evaluation. a Train GatorTronGPT from scratch using GPT-3 architecture with up to 20 billion parameters.
b Solve biomedical relation extraction and question answering using a unified P-tuning base text generation architecture. ¢ Apply
GatorTronGPT to generate 20 billion words of synthetic clinical text, which was used to train synthetic natural language processing model,
GatorTronS. d Turing evaluation of 30 paragraphs of text written by GatorTronGPT mixed with 30 real-world paragraphs written by UF Health

physicians. TrM transformer unit; B billion.
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Fig. 2 Training loss and validation loss for GatorTronGPT 5 billion and 20 billion models. a Training loss. b Validation loss.

This study provides valuable insights into the opportunities and
challenges of LLMs for medical research and healthcare.

RESULTS

Training of GatorTronGPT from scratch

Training the 5 billion GatorTronGPT model used approximately 6
days and the 20 billion model used about 20 days on 560 A100
80 G GPUs from 70 NVIDIA DGX nodes using the NVIDIA SuperPOD
reference cluster architecture. Figure 2 shows the training and
validation loss. Table 1 compares GatorTronGPT with GatorTronS
and GatorTron on model architecture, training dataset, parameter
size, and whether the model is a generative LLM, to help
differentiate the three LLMs.

GatorTronGPT for Biomedical natural language processing

Table 2a compares GatorTronGPT with four existing biomedical
transformer models on end-to-end relation extraction of drug-
drug interaction, chemical-disease relation, and drug-target
interaction. GatorTronGPT outperformed all existing models, with
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the best Fi1-score of 0.500, 0.494, and 0.419, respectively.
GatorTronGPT improved state-of-the-art by 3-10% compared with
the second-best BioGPT'® model. We consistently observed
performance improvement when scaling up the size of Gator-
TronGPT. Table 2b compares GatorTronGPT with six existing
biomedical transformers using three benchmark datasets for
biomedical question answering. The GatorTronGPT model with 20
billion parameters tied with BioLinkBERT on the MedQA dataset
achieving the best performance of 0.451. GatorTronGPT also
achieved the second-best performance of 0.776 for the Pub-
MedQA dataset compared with the best performance of 0.782
from BioGPT. The performance of GatorTronGPT on the MedMCQA
dataset was lower than a much larger LLM, Galactica, with 120
billion parameters.

Evaluation of GatorTronS

Tables 3 and 4 compare GatorTronS trained with different sizes of
synthetic clinical text with ClinicalBERT and GatorTron'. For
clinical concept extraction, GatorTronS, trained using 20 billion
and 5 billion synthetic clinical text, achieved the best F1-score for
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Table 1. Comparison of GatorTronGPT, GatorTronS, and GatorTron.
Model Architecture Training dataset Parameters Generative or not
GatorTronGPT GPT3-based 82 billion clinical words, 5 billion, Generative LLM
Decoder architecture 195 billion diverse English words 20 billion
GatorTronS BERT-based 20 billion words of synthetic clinical text generated by 345 million Non-generative LLM
Encoder architecture GatorTronGPT
GatorTron BERT-based Encoder 82 billion clinical words, 6 billion words from PubMed, 345 million, Non-generative LLM
architecture 2.5 billion words from Wikipedia, 3.9 billion,
0.5 billion words from MIMIC llI 8.9 billion
Table 2. Comparison of GatorTronGPT with existing transformer models for (a) biomedical relation extraction and (b) question answering.

a

Biomedical Relation extraction

DDI BC5CDR KD-DTI

Model Pre Rec F1 Pre Rec F1 Pre Rec F1
GPT-2_medium 0.234 0.319 0.247 0.439 0.326 0.374 0.305 0.279 0.285
REBEL 0.354 0.286 0.283 0.343 0.395 0.367 0.324 0.296 0.304
REBEL-pt 0.465 0.396 0.406 0.409 0.212 0.279 0.357 0.326 0.333
BioGPT 0417 0.448 0.408 0.494 0.412 0.450 0.400 0.397 0.384
GatorTronGPT-5B 0.466 0.518 0.491 0.587 0.434 0.472 0.422 0.436 0.412
GatorTronGPT-20B 0.476 0.521 0.500 0.543 0.499 0.494 0.422 0.440 0.419
b

Question answering

PubMedQA MedQA (USMLE) MedMCQA
Model Accuracy Accuracy Accuracy
PubMedBERT 0.558 0.381 NA
BioELECTRa 0.642 NA NA
BioLinkBERT 0.702 0.451 NA
GPT-2 0.750 0.333 NA
BioGPT 0.782 NA NA
Galactica_120B 0.776 0.444 0.529
GatorTronGPT-5B 0.758 0.402 0.358
GatorTronGPT-20B 0.776 0.451 0.429

The best evaluation scores are bolded.

DDI drug-drug interaction, BC5CDR BioCreative V chemical-disease relation, KD-DTI drug-target interaction, B billion parameters, NA performance not reported.

the three benchmark datasets. GatorTronS outperformed the
original GatorTron model by >1% F1-score on all three benchmark
datasets. For medical relation extraction, the GatorTronS trained
using 10 billion synthetic clinical text achieved the best F1-score
of 0.962 on the 2018 n2c2 challenge benchmark dataset, which is
comparable with the original GatorTron model (0.960). For
semantic textual similarity and natural language inference,
GatorTronS achieved the best evaluation scores, outperforming
the original GatorTron by >1%. For question answering using
emrQA dataset, GatorTronS outperformed the original GatorTron
model trained using real-world clinical text by >1%. The
comparison results show that a minimum of 5 billion words of
synthetic clinical text are required to train a synthetic model with
comparable performance to GatorTron, a transformer trained
using 82 billion words of real-world UF Health clinical text. Figure 3
compares GatorTronS models trained with different sizes of
synthetic text using line plots. We observed consistent

Published in partnership with Seoul National University Bundang Hospital

performance improvements from all eight datasets by increasing
the size of synthetic text from 1 billion to 5 billion words. The
improvements are not consistent when increasing the data size
from 5 billion up to 20 billion words.

Physicians’ Turing test

The Turing test results show that, on average, less than half
(49.2%) of the clinical notes were identified correctly, including
36.7% of the synthetic notes and 61.7% of the human notes
(Table 5a). Among the 30 synthetic notes written by Gator-
TronGPT, 9 (30.0%) and 13 (43.4%) were correctly labeled as ‘Al by
the two physicians, respectively. Among the 30 human notes
written by physicians, 17 (56.7%) and 20 (66.7%) were correctly
labeled as ‘Human’, respectively. Considering GatorTronGPT was
considered as a human for more than 30% of the instances (the
criteria from Turing test)?°, GatorTronGPT passed the Turing test

npj Digital Medicine (2023) 210
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Table 3. Comparison of GatorTronS with existing transformer-based LLMs for clinical concept extraction and medical relation extraction.
Clinical concept extraction Medical relation extraction
2010 i2b2%° 2012 i2b2% 2018 n2c2?? 2018 n2c2?2
Transformer Precision Recall F1score Precision Recall F1score Precision Recall F1score Precision Recall F1 score
ClinicalBERT NA NA 0.878 NA NA 0.789 0.859 0.883 0.871 0.968 0.941 0.954
GatorTron, 90B 0.875 0.904 0.889 0.764 0.822 0.792 0.876 0.904 0.890 0.972 0.948 0.960
GatorTronS, 1B 0.874 0.907 0.890 0.753 0.812 0.781 0.871 0.892 0.882 0.971 0945  0.958
GatorTronS, 5B 0.879 0.909 0.894 0.777 0.823  0.799 0.899 0.903  0.901 0.974 0949  0.962
GatorTronS, 10B  0.882 0911 0.896 0.765 0.823 0.793 0.887 0.904 0.895 0.974 0.950 0.962
GatorTronS, 20B  0.889 0.911 0.899 0.784 0.836 0.809 0.892 0.907 0.900 0.975 0.947 0.961

B billion words of text Clinical concepts in 2010 i2b2 and 2012 i2b2 challenges: problems, treatments, lab tests; clinical concepts in 2018 n2c2 challenge: drugs,
adverse events, and drug-related attributes (e.g., dose). Medical relation in 2018 n2c2 challenge: drug induced adverse events; B: billion words of text. Best
evaluation scores are bolded. NA: scores not reported.

Table 4. Comparison of GatorTronS with existing transformer-based LLMs for semantic textual similarity, natural language inference, and question
answering.

Semantic textual similarity Natural language inference Question answering

2019 n2c2* MedNLI?* emrQA Medication® emrQA Relation?®
Transformer Pearson correlation Accuracy F1 score Exact Match F1 score Exact Match
ClinicalBERT 0.879 0.827 0.691 0.241 0.931 0.853
GatorTron, 90B 0.881 0.867 0.718 0.298 0.954 0.903
GatorTronS, 1B 0.853 0.851 0.702 0.288 0.965 0.924
GatorTronS, 5B 0.888 0.882 0.726 0.305 0.968 0.926
GatorTronS, 10B 0.893 0.886 0.728 0.311 0.972 0.929
GatorTronS, 20B 0.898 0.885 0.726 0.307 0.973 0.927

B: billion words of text. The best evaluation scores are bolded.
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Fig. 3 Comparison of GatorTronS models trained with 1, 5, 10, and 20 billion words of synthetic text on
billion words of text.

(p<0.001). Table 5b summarizes the means and standard
deviations of the linguistic readability and clinical relevance and
consistency. Statistical tests show that there is no significant
difference between notes written by GatorTronGPT and human
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T T T T
1B 5B 108 208B
(h) Question answering on emrQA Relation

eight benchmark datasets. B

physicians in both linguistic readability (p=0.22) and clinical
relevance and consistency (p=0.91). Table 5c shows two
examples written by GatorTronGPT; more examples are provided
in Supplementary Table S1. Percent agreement and interrater
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Table 5. Turing test results.
a.

Ground truth

Al (n=30) Human (n = 30) Total (n=60)
Physician 1 9 (30.0%) 17 (56.7%) 26 (43.3%)
Physician 2 13 (43.3%) 20 (66.7%) 33 (55%)
Overall 11 (36.7%) 18.5 (61.7%) 29.5 (49.2%)
p-value <0.001 =0.104 <0.001
b.

Ground truth

Al (n=30) Human (n = 30) p-value
Readability 6.57 (1.22) 6.93 (1.09) 0.22
Clinical relevance 7.00 (1.23) 6.97 (1.07) 0.91

C.

Example 1 (Passed Turing test): HISTORY OF PRESENT ILLNESS: Ms. [**NAME**] is a [**AGE**]-year-old female with prior history of left breast cancer
who is referred to the [**LOCATION**] Clinic to discuss surgical management of her left lung nodule which was picked up on CT scanning for
surveillance. The patient’s chest CT obtained at an outside institution showed an incidental finding of a left lower lobe pleural nodule, which she
brought with her to clinic today for further review. Ms. [**Name**] reports to be doing well, with no change in her baseline level of shortness of
breath, but denies any difficulty breathing, cough or hemoptysis. She feels essentially back to baseline and plays golf one day a week. Otherwise, Ms.
[**NAME **] has no other pulmonary complaints and has never smoked tobacco or inhaled second hand smoke. She does report several years of
intermittent reflux, which worsened after eating rough foods. She underwent an upper Gl study for this, which showed a small hiatal hernia as well as
a moderate-sized sliding hiatal hernia. She subsequently underwent an abdominal CT for evaluation for mesenteric ischemia and was felt to have a
dilated pancreatic duct. Due to suspected head pathology on imaging (although the final report is pending), she underwent an MRI, which confirmed
no pancreatic pathology. Given this, Ms. [**NAME **] has been trying to avoid fatty and fried foods, which has improved her reflux. Ms. [¥**NAME **]
does report recent onset of sleep apnea, for which she is using CPAP every night for the last month. She tolerates this well without complaints of dry
mouth, gasping for air, or undue sleepiness. Ms. [**NAME **] was seen in our outpatient [**LOCATION**] clinic on [**DATE**] at which time it was
determined that in order to obtain a tissue diagnosis of this left lower lobe lesion a VATS approach would be utilized. She presents today for further
pre-operative planning. Currently, Ms. [**NAME**] denies any pulmonary symptoms, fevers, chills, cough or weight loss. PAST MEDICAL HISTORY: 1.
CARDIAC RISK FACTORS: Hypertension, Hyperlipidemia 2. CARDIAC HISTORY: None 3. OTHER PAST MEDICAL HISTORY: Left lower lobe pulmonary
nodule

Example 2 (Failed Turing test): Assessment: ICD-9-CM 1. Pain in joint, pelvic region and thigh, unspecified laterality 719.45 fentaNYL (DURAGESIC) 75
MCG/HR HYDROcodone-acetaminophen (VICODIN HP) 5-300 MG Tablet 2. Migraine NOS/not Intrcbl 346.90 SUMAtriptan Succinate 3. Bone Pain
Arthritis 333.90 Dexamethasone Sodium Phosphate 4. Bipolar disorder 296.80 traZODone (DESYREL) 100 MG Tablet prazosin (MINIPRESS) 2 MG
capsule carvedilol (COREG) 3.125 MG tablet isosorbide mononitrate (IMDUR) 30 MG CR tablet Refer to Psychiatry clopidogrel (PLAVIX) 75 MG tablet
SUMAtriptan Succinate 5. ASTHMA UNSPECIFIED 493.90 albuterol (PROAIR HFA;VENTOLIN HFA) 108 (90 BASE) MCG/ACT inhaler 6. Major depressive
disorder, single episode, unspecified 296.20 DULoxetine (CYMBALTA) 60 MG capsule Refer to Psychiatry amitriptyline (ELAVIL) 25 MG tablet
traZODone (DESYREL) 100 MG Tablet 7. POST-SURGICAL VARICOSE VEINS of LOWER EXTREMITIES 454.9 fentaNYL (DURAGESIC) 75 MCG/HR 8. Other
and unspecified hyperlipidemia 272.4 simvastatin (ZOCOR) 40 MG tablet COMPREHENSIVE METABOLIC PANEL 9. PND (post-nasal drip) 784.91
loratadine (CLARITIN) 10 MG tablet 10. Bipolar | disorder, single manic episode, unspecified 296.00 clonazePAM (KlonoPIN) 1 MG tablet Refer to
Psychiatry 11. Allergic rhinitis 477.9 loratadine (CLARITIN) 10 MG tablet 12. Grief reaction 309.0 traZODone (DESYREL) 100 MG Tablet 13. Encounter for
long-term (current) use of other medications V58.69 methocarbamol (ROBAXIN) 750 MG tablet COMPREHENSIVE METABOLIC PANEL 14. GERD
(gastroesophageal reflux disease) 530.81 lansoprazole (PRE

a. Number and percentage of correctly identified notes; p-values were calculated using Chi-squared test. b. Means and standard deviations of the quality
measures; p-values were calculated using T-test. c. Two examples of synthetic clinical text generated by GatorTronGPT. The text generation stops at maximum
512 tokens. Pass Turing test: both physicians labeled as “Human”; Fail Turing Test: both physicians labeled as “Al"

reliability were found to be good or excellent, as summarized in
Supplementary Tables S2 and S3.

for developing synthetic clinical NLP models (i.e, GatorTronS),
which achieve better or comparable performance to GatorTron, an
NLP model trained using real-world clinical text, demonstrating
the utility of synthetic clinical text generation. The physicians’

DISCUSSION

This study develops a generative clinical LLM, GatorTronGPT, using
the GPT-3 architecture'® with 277 billion words of mixed clinical
and English text. GatorTronGPT achieves state-of-the-art perfor-
mance for four out of six biomedical NLP benchmark datasets. Our
previous GatorTron'® model, trained using an encoder-only BERT
architecture with 8.9 billion parameters, also achieved state-of-
the-art performance on six clinical NLP benchmark datasets. The
two studies demonstrate the benefit of LLMs for biomedical and
clinical research. GatorTronGPT can generate synthetic clinical text
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Turing test show that GatorTronGPT can generate clinical text with
comparable linguistic readability and clinical relevance to real-
world clinical notes. This study provides valuable insights into the
opportunities and challenges of generative LLMs for medical
research and healthcare.

We discover an important utility of synthetic clinical text
generation. To date, there has been a gap in accessing and
sharing large-scale clinical text and clinical LLMs due to the
sensitive nature of clinical text and the fact that automatic de-
identification systems cannot remove 100% protected health
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information (PHI). Not surprisingly, a recent study?' on clinical
foundation models point out that most LLMs in the medical
domain are trained using “small, narrowly-scoped” clinical dataset
with limited note types (e.g, MIMIC?%) or “broad, public”
biomedical literature (e.g., PubMed) that has limited insights to
healthcare. Generative LLMs can provide large-scale synthetic
clinical text to fill the gap. We compare the synthetic text with
real-world clinical text to examine why GatorTronS, a transformer
model trained using a much smaller (e.g., 5 billion words)
synthetic clinical text corpus, could achieve better or comparable
performance to GatorTron'?, a transformer model trained using a
much larger (90 billion words) real-world clinical text corpus. We
identify potential reasons including (1) real-world clinical text has
significant redundancies, which is a well-known characteristic of
clinical narratives?, and (2) GatorTronGPT generates more diverse
synthetic clinical text. We randomly sample a subset of real-world
clinical notes with number of words comparable to the synthetic
text (i.e., 20 billion words) to compare the coverage of unigrams
(i.e., individual tokens) and bigrams (i.e., two consecutive tokens).
The comparison results show that the synthetic text generated by
GatorTronGPT contain remarkably more diverse unigrams (40.43
million : 4.82 million, ratios are reported as “synthetic” : “real
notes”) and bigrams (416.35 million : 62.51 million); the synthetic
text also has higher entropy than the real-world clinical text (4.97:
4.95). Supplementary Table S4 provides detailed comparison
results and examples. A previous study®* has reported that by
augmenting real-world clinical training data using additional
human annotated synthetic text generated by a smaller gen-
erative LLM, GPT-2, NLP models can achieve better performance.
Our study further demonstrates that, without additional human
annotation and augmentation of training data, a larger clinical
GPT-3 model can generate synthetic clinical text to train synthetic
NLP models outperforming NLP models trained using real-world
clinical text. Text generation using generative LLMs could mitigate
the risk of exposing patient privacy and improve accessing and
sharing of large-scale clinical text and NLP models, thus enabling
the next generation of clinical text analytics using synthetic clinical
text.

Generative LLMs aspire to become a “Unified Field Theory” to
unify most fundamental NLP tasks using a single model
architecture. It might be still early to judge if LLMs will become
the one and only foundation model’? for NLP, but it looks like we
are closer than ever. Generative LLMs have the potential to impact
medical research in many aspects. In addition to performance
improvement demonstrated in this study, generative LLMs
provide a unified solution using prompt-based text generation?>,
which leads to a new paradigm of “one model for all NLP tasks”
and has better few-shot learning and transfer learning ability to
deliver portable clinical NLP systems'>2%, The evaluation of
GatorTronGPT shows that clinical LLMs can be used to generate
clinical-relevant content with the potential to help document® and
code patient information in EHR systems, thus reducing the
extensively onerous documentation burden for clinicians?’=2°, The
prompt-based text generation of LLMs can potentially help
compose treatment plans by integrating instructions from clinical
guidelines and patients’ historical records in EHRs. The conversa-
tional ability of LLMs provides opportunities to develop intelligent
EHR systems with human-like communication?, where healthcare
providers, patients, and other stakeholders can communicate in an
intelligent electronic health record (EHR) system. Industry
stakeholders such as Epic and Nuance have been reported to be
exploring these potentials3°3",

Our Turing test focuses on (1) linguistic readability; (2) clinical
relevance; and (3) physicians’ ability to differentiate synthetic and
human notes. The statistical tests show that there are no
significant differences in linguistic readability (p =0.22; 6.57 of
GatorTronGPT compared with 6.93 of human) or clinical relevance
(p=0.91; 7.0 of GatorTronGPT compared with 6.97 of human).
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Further, physicians cannot differentiate them (p < 0.001), suggest-
ing the potential utility of GatorTronGPT for text generation in
healthcare. Two physician evaluators find that the texts written by
GatorTronGPT generally lack clinical logic, indicating that more
research and development are needed to make this technology
mature for healthcare. Our Turing test focuses on statistical
differences not utility in real-world clinical practice, which should
be examined in future studies when this technology matures. A
recent study>? examined an LLM developed at New York
University, i.e, NYUTron, and our previously developed Gator-
Tron' for prediction of readmission, in-hospital mortality,
comorbidity, length of stay, and insurance denial, demonstrating
the potential utility of LLMs in healthcare.

While LLMs are promising for healthcare applications, much
more research and development are needed to achieve this goal.
Current general-purpose LLMs are designed for conversation as a
chatbot outside of healthcare. Therefore, the current use of
ChatGPT for healthcare is more like a typical case of intended use
versus actual use as described in the medical device regulation®3.
Domain-specific LLMs are needed for clinical applications. Due to
the noisy data and probabilistic nature of text generation, LLMs
are prone to confabulation or hallucination, which is dangerous
for healthcare. In this study, we adopted robust decoding
strategies (e.g., nucleus sampling) to alleviate potential off-target
text generation. Researchers are exploring solutions such as
reinforcement learning from human feedback (RLHF)3* to reduce
hallucinations, but it is still a not yet solved limitation of current
LLMs. Future studies should explore strategies to better control
the hallucinations at a minimal level to ensure the safety of using
LLMs in healthcare. The security and risk of LLMs must be carefully
examined in healthcare settings. We applied a de-identification
system to remove PHIs from UF Health notes before training
GatorTronGPT, future studies should carefully examine if Gator-
TronGPT has potential risk of speaking out PHIs and quantify the
potential risk of re-identify real-world patients. Synthetic data,
though generated by Al models, may still mirror the characteristics
of its source material (e.g., UF health clinical notes). For example,
ChatGPT has been reported to accidentally leak sensitive business
data from a private company>*. In addition, people are increas-
ingly aware of the potential bias of Al applications in healthcare.
Bias inherited from the original training data may be imitated and
sometimes even amplified by Al models, which may cause
systematic bias to specific patient groups>°. Future studies should
explore strategies to mitigate potential bias and ensure fairness of
LLM applications. Like any medical Al applications, it is necessary
to carefully examine this disruptive new technology to guide its
application and make it “approved ” Al-enabled medical tool*’.

METHODS

We developed GatorTronGPT using 82 billion words of de-
identified clinical text'> from the University of Florida (UF) Health
and 195 billion diverse English words from the Pile'® dataset. We
trained GatorTronGPT from scratch using the GPT-3'7 architecture
(used by ChatGPT). We formulated biomedical relation extraction
and question answering using a unified text generation archi-
tecture'® and evaluated GatorTronGPT using 6 biomedical bench-
mark datasets. To examine the utility of text generation, we
applied GatorTronGPT to generate 20 billion words of synthetic
clinical text, which were used to train synthetic NLP models,
denoted as GatorTronS (“S” stands for synthetic). We compared
GatorTronS with GatorTron'®, a clinical NLP model trained with the
same architecture but using real-world clinical text. To test if LLMs
could generate text for healthcare settings, two internal medicine
subspecialists from endocrinology (NSO) and cardiology (MMA)
manually evaluated 60 clinical paragraphs including 30 para-
graphs written by GatorTronGPT randomly mixed with 30 real-
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world paragraphs written by UF Health physicians. Figure 1 shows
an overview of the study design.

Data source

This study used 82 billion words of clinical narratives from UF
Health Integrated Data Repository (IDR) and 195 billion words of
diverse English words from the Pile’® corpus. This study was
approved by the University of Florida Institutional Review Board
under IRB202102223; the need for patient consent was waived. At
UF Health, we collected approximately 290 million clinical notes
from 2011-2021 from over 126 departments, approximately 2
million patients and 50 million encounters from inpatient,
outpatient, and emergency settings'®>. We merged the UF Health
clinical corpus with the Pile’® dataset to generate a large corpus
with 277 billion words. We performed minimal preprocessing for
the Pile dataset and applied a de-identification system to remove
18 PHI categories defined in the Health Insurance Portability and
Accountability Act (HIPAA) from the UF Health notes.

Preprocessing and de-identification of clinical text
Following our previous study'®, we performed a minimal preproces-
sing procedure. First, we removed all empty notes and the notes
with less than 10 characters followed by performing a deduplication
at the note level using the exact string match strategy. Then, we
leveraged an internally developed preprocessing tool (https://
github.com/uf-hobi-informatics-lab/NLPreprocessing) to normalize
the clinical text. The normalization processing consists of three steps
including (1) unifying all text into UTF-8 encoding, removing illegal
UTF-8 strings, and removing HTML/XML tags if any; (2) sentence
boundary detection where we normalize the clinical notes into
sentences; (3) word tokenization where we used heuristic rules to
separate punctuation and special symbols (e.g., slash, parenthesis)
from words (e.g., converting “(HbA1c)” to “(HbA1c)” and “excision/
chemo” to “excision/chemo”) and fixing concatenations (e.g.
missing white space like converting “CancerScreening ” to “Cancer
Screening”). After preprocessing, we performed another deduplica-
tion at the sentence level using the exact string match strategy.
To de-identified the UF Health clinical notes, we adopted an
internally developed de-identification system which consists of
an LSTM-CRFs based model and a postprocessing module
replacing system-detected protected health information (PHI)
entities with dummy strings (e.g., replace patients’ names with
[**NAME**]). We adopted the safe-harbor method to identify 18
PHI categories defined in the Health Insurance Portability and
Accountability Act (HIPAA). The LSTM-CRFs model for PHI
detection was trained using the publicly available 2014 i2b2
de-identification datasets and an internal dataset with over 1100
clinical notes from UF Health annotated for PHI removal (named
as UF-deid-dataset; not publicly available due to IRB restrictions).
After three years of continuous customization and improvement
at UF Health, the current model achieved an overall F1 score of
97.98% (precision of 96.27% and recall of 99.76%) on the UF-
deid-dataset test set, which means our de-identification system
can remove 99.76% of all PHIs. Detailed information about the
development of the de-identification system can be accessed
from our previous paper%,

Train GatorTronGPT from scratch

We trained GatorTronGPT using 5 billion parameters and 20 billion
parameters and determined the number of layers, hidden sizes,
and number of attention heads according to the guidelines for
optimal depth-to-width parameter allocation proposed by ref. 3°
as well as our previous experience in developing GatorTron'>. The
5 billion model has 24 layers, hidden size of 4,096, and number of
attention heads of 32; the 20 billion model has 44 layers, hidden
size of 6144, and number of attention heads of 48. We trained the
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5 billion model using a 2-way tensor model parallel with a batch
size of 1120 and learning rate of 1.200E-05. We trained the 20
billion model using an 8-way tensor model parallel with a batch
size of 560 and a learning rate of 1.000E-05. We adopted a dropout
rate of 0.1. We inherited the GPT-3 architecture implemented in
the MegaTron-LM* and trained GatorTronGPT models from
scratch with the default GPT-3 loss function'. We used a total
number of 560 NVIDIA DGX A100 GPUs from 70 superPOD nodes
at UF’s HiPerGator-Al cluster to train GatorTronGPT by leveraging
both data-level and model-level parallelisms implemented by the
Megatron-LM  package®®. (See  https://github.com/NVIDIA/
Megatron-LM for more details) We monitored the training
progress by training loss and validation loss using 3% of the data
and stopped the training when there was no improvement.

GatorTronGPT for biomedical relation extraction and question
answering

End-to-end relation extraction is an NLP task to identify the triplets
<conceptl, concept2, relation> from biomedical text. Question
answering is to identify the answer for a given question and the
context. Following previous studies'®*!, we approached the two
tasks using a un