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Digital health application integrating wearable data and
behavioral patterns improves metabolic health
Ashkan Dehghani Zahedani1, Tracey McLaughlin2✉, Arvind Veluvali1, Nima Aghaeepour2, Amir Hosseinian1, Saransh Agarwal1,
Jingyi Ruan1, Shital Tripathi1, Mark Woodward1, Noosheen Hashemi1 and Michael Snyder 1,2✉

The effectiveness of lifestyle interventions in reducing caloric intake and increasing physical activity for preventing Type 2 Diabetes
(T2D) has been previously demonstrated. The use of modern technologies can potentially further improve the success of these
interventions, promote metabolic health, and prevent T2D at scale. To test this concept, we built a remote program that uses
continuous glucose monitoring (CGM) and wearables to make lifestyle recommendations that improve health. We enrolled 2,217
participants with varying degrees of glucose levels (normal range, and prediabetes and T2D ranges), using continuous glucose
monitoring (CGM) over 28 days to capture glucose patterns. Participants logged food intake, physical activity, and body weight via a
smartphone app that integrated wearables data and provided daily insights, including overlaying glucose patterns with activity and
food intake, macronutrient breakdown, glycemic index (GI), glycemic load (GL), and activity measures. The app furthermore
provided personalized recommendations based on users’ preferences, goals, and observed glycemic patterns. Users could interact
with the app for an additional 2 months without CGM. Here we report significant improvements in hyperglycemia, glucose
variability, and hypoglycemia, particularly in those who were not diabetic at baseline. Body weight decreased in all groups,
especially those who were overweight or obese. Healthy eating habits improved significantly, with reduced daily caloric intake and
carbohydrate-to-calorie ratio and increased intake of protein, fiber, and healthy fats relative to calories. These findings suggest that
lifestyle recommendations, in addition to behavior logging and CGM data integration within a mobile app, can enhance the
metabolic health of both nondiabetic and T2D individuals, leading to healthier lifestyle choices. This technology can be a valuable
tool for T2D prevention and treatment.
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INTRODUCTION
37.3 million adults in the U.S. have diabetes; 95% of those have
T2D1. Another 96 million U.S. adults have prediabetes; 5–10% of
that population becomes diabetic every year2, and it is estimated
that 70% of individuals with prediabetes will convert to T2D over
their lifetime3. The annual cost of diabetes in the USA is $327b.
Individuals with diagnosed diabetes incur $16,752 in health care
expenses per year, which is 2.3 times greater than individuals
without diabetes4.
Three major studies in the USA, Finland, and China have shown

that lifestyle interventions, including dietary weight loss and
physical activity, can prevent diabetes progression in high-risk
individuals by 51–58% from 2.9 to 6 years after the original
intervention5–7, with continued protection of 27–43% for up to
20 years7–9. Two additional prospective trials in India and Japan
showed similar protection at 3–4 years post-intervention10,11.
Cornerstone features of the highly successful Diabetes Preven-

tion Program include: individual case managers or “lifestyle
coaches”; frequent contact with participants; a structured, 16-
session core-curriculum that teaches behavioral self-management
strategies, followed by additional classes and one-on-one meet-
ings by phone or in person at least once per month; self-
monitoring of weight, dietary intake, and physical activity;
supervised physical activity sessions; tailoring of materials and
strategies to address ethnic diversity; and an extensive network of
training, feedback, and clinical support12. Due to its success, this
approach has been widely adopted as the standard of care in
individuals at risk for T2D. The interventions needed to implement

this program, while cost effective, are resource-intensive and
require contact with health care professionals/systems that may
not be accessible to all, with reported participation rates as low as
2.6% due to lack of physician referrals and socioeconomic
barriers13. During the first 4 years of implementation of the
National DPP effort, only 39% of participants were retained at
44 weeks, and only 35.5% achieved the 5% weight loss goal14.
Furthermore, while personalization is recommended, the current
approaches offer no formal method by which to accomplish such
personalization.
The explosion of new technologies that enable continuous

glucose monitoring and activity tracking, as well as the wide-
spread use of smartphones (currently used by 85% of US adults)15,
provides a unique opportunity to leverage these technologies to
significantly enhance the efficacy and practicality of lifestyle
interventions. Technology-enabled diabetes self-management
approaches have gained traction as supplements to traditional
diabetes self-management models and implementation of DPP-
based diabetes prevention approaches. Phone-based apps allow
users to log fingerstick16–18 glucose values, body weight, food
eaten, and physical activity, with some apps accessing large
nutritional databases that allow patients to determine calories and
carbohydrates consumed when the user enters food items or
scans a barcode. Wearable devices log steps, minutes of activity,
miles attained, and heart rate changes, as well as estimate calories
burned19.
Continuous glucose monitors (CGM) are wearables that, via

alarm features and real-time feedback to the user about glucose
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trends, were initially shown to lower both hyper and hypoglyce-
mia in T1D and multidose-insulin-treated T2D20–27. Recently,
significant but modest benefits (HbA1c −0.29% vs FSBG) were
also shown in non-insulin-treated T2D28. There has been no formal
evaluation of CGM as a tool for enhanced lifestyle modification as
a method to treat or prevent T2D. Several small proof of concept
studies have been published, showing that individuals with T2D
using CGM chose lower glycemic index foods29, increased physical
activity30, decreased caloric intake, lost weight, and demonstrated
decreased postprandial glucose levels31. Among individuals with
prediabetes, there is only one published study addressing the role
of CGM in promoting behavior change, and, while it showed
greater dietary self efficacy, neither weight nor glycemic measures
were reported32.
The benefits of CGM as a behavior modification tool would be

magnified if information relating food and activity choices were
linked to glycemic responses and shared with the user, who could
then learn from the combined data. Current technology, including
wearable devices that simultaneously and continuously track
multiple health metrics and mobile apps that can integrate data
from wearable devices, have the potential to revolutionize
behavioral approaches to diabetes treatment and prevention.
While the current approaches to lifestyle management have
proven successful, they are not tailored to individuals, who may
respond differently to nutrients and activity. Indeed, several
studies showed that glycemic responses between individuals
differ following exposure to the same foods33–35, which may
reflect a variety of interindividual biologic differences such as
microbiome35, genetics34, and underlying physiology such as
insulin resistance and beta cell function35. Adherence to diets and
physical activity also varies between individuals due differences in
personal preferences and environmental factors36.
Here, we sought to determine if a novel digital technology-

based program, in which millions of CGM and other health data
points were used to provide individualized feedback and tailored
recommendations based on a user’s personal data patterns could
improve lifestyle choices and metabolic health. We hypothesized
that this approach, by inducing behavior modification that
included healthier eating and physical activity, and took into
account personalized glycemic responses and preferences, would
promote weight loss, increase physical activity, and reduce
hyperglycemia, which are important for treating and preventing
T2D as endorsed by the American Diabetes Association and
European Association for the Study of Diabetes for treatment of
T2D37.

RESULTS
Data collection and Cohort
To assess whether the combination of wearable and machine
learning data can be used to provide effective and personalized
lifestyle recommendations, we collated a dataset from a cohort of
N= 2217 individuals. These individuals were participants who
enrolled in the Season of Me program, and agreed to provide
retrospective de-identified data. Need for informed consent was
waived (Advarra Internal Review Board). The Season of Me
program was designed to leverage technologic advances to
improve glucose time in range and weight loss in individuals with,
or at risk for, T2D. Participants used a mobile application (“January
AI app”) and wore a CGM (Freestyle Libre, Abbott) and HR monitor
(Apple Watch or Fitbit) for 28 days (Fig. 1).
The January AI app integrated CGM and HR data with user-

entered diet and activity data. In addition to providing integrated
response data back to users so that they would learn how lifestyle
choices influenced their glucose patterns (Fig. 2), the app
provided AI-based individualized recommendations (Figs. 1, 2,
Methods).

Following the initial 4 weeks, an 8-week second phase followed,
during which participants had the option to continue using the
app without the use of CGM or HR monitor, relying only on
personalized recommendations generated by the mobile app.
Glucose analyses included 1066 participants who had a sufficient
quantity of CGM data capture, consistent food logging, and
regular body weight tracking.
Requirements for sufficient CGM data capture were: At least

70% CGM coverage on at least half of the days at the beginning
(days 3–7) and the end (last 14 days) of the 28 day period.
Requirements for consistent meal logging were: Active logging of
all meals during the first 7 days, as well as the last 14 days.
Requirements for regular body weight data tracking were: At least
one body weight measurement in the first 7 days, and at least one
body weight measurement in the last 14 days. Heart rate (HR) data
was available throughout the entire period on all participants.
Weight data was analyzed for 567 participants who met weight
tracking criteria for inclusion (Methods). Over 27 million data
points were captured across participant logs, HR, and CGM data.
The majority of the participants were either normoglycemic
(n= 746) or had prediabetes (n= 206), and a smaller subgroup
had non-insulin-treated T2D (n= 94). The cohort was 49% male
and 51% female, with an average age of 49 ± 11.5 years. Ethnicity
data was not collected.

Suboptimal control individuals showed notable TIR
improvements, most significantly in healthy nondiabetics
Time in range (TIR) refers to time spent in the following glucose
ranges according to previous recommendations: 70–180mg/dL
for those with T2D, and 70–140mg/dL for those without
T2D24,25,38. TIR was compared between the end of the 28-day
program (defined as days 14–28), versus baseline (defined as days
2–7, excluding day 1 due to known inaccuracies in CGM readings
during the first 24 hs of use).
The group as a whole (n= 1066) demonstrated relatively high

baseline TIR, measuring 82% among T2D (70–180mg/dL range)
and 91% among those with prediabetes and healthy nondiabetics
(70–140mg/dL range), consistent with prior studies24,25,39. We
believe that 70–140 mg/dL is more appropriate for individuals
with normoglyemia or prediabetes since a target range should
represent a range that is not already attained by nearly all
individuals. Furthermore, since CGM is currently only approved for
diabetes there has not yet been an official target range
established for these groups.
TIR did not significantly improve for the group as a whole.

However, individuals with suboptimal baseline control, defined as
<90% TIR, showed notable improvements. When considering
those with suboptimal control at baseline, defined as <90% TIR,
those with T2D (n= 37) increased TIR by 9.8%, and individuals
with prediabetes (n= 57) and healthy nondiabetics (n= 182)
increased TIR by 6.2% and 9.6%, respectively (Fig. 3). For those
with baseline TIR of <70%, improvement was even greater,
ranging from 13.2% in T2D (n= 17), 9.6% in prediabetes (n= 9),
and 22% in healthy nondiabetics (n= 51, p < 0.0001). Due to low
numbers in these subgroups, only the healthy nondiabetic group
reached statistical significance.

Significant reductions in Glucose Management Indicator GMI,
hyperglycemic events, and glycemic variability were observed
across subgroups
Glucose Management Indicator (GMI) is a metric that uses CGM
data to estimate HbA1c (ADD REFERENCE). Like TIR, GMI changes
were evaluated in those with suboptimal values at baseline,
defined as either >6% or >7%, irrespective of glycemic category.
Significant GMI reductions were observed among participants
with suboptimal values at baseline. Among those with baseline
GMI > 7% (n= 23), GMI decreased by a mean of 0.43% (p < 0.001)
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Fig. 2 User experience with data synthesis, feedback, education, and personalized health recommendations based on previously recorded
information.

Fig. 1 Season of Me Program Overview.
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and among those with baseline BMI > 6% (n= 115) GMI decreased
by a mean of 0.22% (p < 0.00001). GMI reductions were similar and
statistically significant in all glycemic subgroups (healthy non-
diabetic, prediabetes, T2D) for both analyses (Fig. 3).
In addition, the mean number of hyperglycemic events per day

decreased in the cohort as a whole (p < 0.001): decreases in
hyperglycemic events >250mg/dL, >180 mg/dL, and > 140mg/dL
were 42%, 38%, and 24%, respectively, with the largest percent
decreases in the healthy and prediabetes subgroups (Fig. 4).
Decreases were present in all subgroups for all hyperglycemic
events, with the exception of events > 140 which were not
decreased in the T2D subgroup. Hypoglycemic events <70mg/dL
also decreased in the cohort as a whole, reaching statistical
significance in the healthy nondiabetic subgroup (Fig. 4). Lastly,
glycemic variability, measured as coefficient of variation,
decreased significantly in all subgroups by an average of 13.5%
(Fig. 5).

Season of Me program aided weight loss, especially in higher
starting weights and T2D participants
To determine whether Season of Me promoted weight loss, we
compared the last body weight measurement during the final
2 weeks of the program with the first body weight measurement
at the beginning of the program (n= 567). All groups of
individuals within this cohort significantly decreased their body
weight over 28 days (p < 0.0001, Fig. 6). Overall, 75.5% of the 567
participants lost weight over the first 28 days, with an average of
2.5 lbs among nondiabetic and prediabetic individuals, and 4.4
lbs among those with T2D. Those who continued the program

for 12 weeks (n= 137) lost an average of 4.4 lbs, with 2.6 lbs lost
in healthy nondiabetics (p < 0.0001), 6.8 lbs lost in those with
prediabetes (p= 0.003), and 9.4 lbs lost in those with T2D
(p= 0.0007) (Fig. 7). Individuals with higher starting body
weights lost the most weight: those with baseline weight
250–300 lbs who continued logging weight through 3 months
lost a mean of 11.3 and 18.9 lbs at 4 and 12 weeks, respectively,
and individuals with starting body weight of 200–249 lbs lost a
mean of 2.9 and 7.4 lbs at 4 and 12 weeks, respectively (Fig. 7,
Supplemental Table S1). Expressed as % loss from initial body
weight, at 12 weeks, the % loss was 1.5, 2.3, and 5.1% in healthy
nondiabetic, prediabetic and T2D participants, respectively; and
was 2.0, 3.2, and 6.8% in those weighing 150–199, 200–249,
and >250 lbs at baseline.

Participants, especially healthy and prediabetic subgroups,
significantly increased daily physical activity during the study
Participants were instructed to log all meals and physical activity
during the first 7 days, as well as the last 14 days. Actual logging
use, defined as logging at least two activities of any type per day,
was 81% during days 1–7, and 43% during days 14–28. Activity
was recorded in minutes per event and added up to a daily total.
To account for changes in logging frequency at the end versus
beginning of the study, the total daily minutes of activity was
adjusted for the number of times a participant interacted with the
app. From the beginning to the end of the study, the adjusted
minutes/day of physical activity increased from 49 to 97min. By
subgroups, the healthy and prediabetes participants approxi-
mately doubled their physical activity (50–109min/day and

Fig. 3 Change in level of glycemia in individuals with suboptimal control at baseline. A, B Time in range for individuals starting with <90%
TIR defined as 70–180mg/dL for T2D (A) and 70–140mg/dL for prediabetes and healthy (B, C, D): GMI in individuals starting with GMI > 6% (C)
and >7% (D).
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45–73min/day, respectively), whereas those with T2D did not
change their physical activity (45–46min/day). There was no
correlation between minutes/day of physical activity and change
in TIR in the group as a whole or in any subgroups.

Heart rate as an objective measure of physical activity
HR data capture was 100% throughout the study. To objectively
assess changes in physical activity, HR > 110 bpm quantified as
min/day was assessed in the group as a whole (n= 1066) and
among glycemic subgroups (healthy, prediabetes, T2D). Five
individuals were excluded due to resting HR > 110 bpm which
precluded using this measure to indicate physical activity. In the
group as a whole, HR > 110 bpm increased from 28.8 to 32.2 min/
day (p= 0.008). Among healthy normoglycemic individuals

(n= 764) the increase was 2.9 min/day (p= 0.009), whereas in
those with prediabetes (n= 204) it was 6.3 min/day (p= 0.02), and
in those with T2D it was 0.40 min/day (p= 0.88). Detailed data are
available in Supplemental Table S2.

Participants demonstrated decreased caloric, carbohydrate,
and sugar intake, and increased protein and fiber
consumption
A key feature of the program was personalized food insights and
recommendations based on integrating glycemic responses
captured by CGM and food logged on the mobile app by the
user. 526 of the 1066 participants logged foods during the
specified time periods (the first 7 days for baseline, and the last
14 days for end-of-study data) and were included in the analysis.
Although over 2200 participants began the program, many did
not generate sufficient data to perform analysis, for example, non

Fig. 4 Change in hyperglycemic and hypoglycemic events/day. (A) Events > 140mg/dL; (B) Events > 180mg/dL; (C) Events > 250mg/dL; (D)
Events < 70mg/dL.

Fig. 5 Change in glycemic variability measured as coefficient of
variation.

Fig. 6 Weight loss at 4 weeks in those who logged at least one
weight after baseline weight.
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logging of food, HR, etc; these participants were excluded from
analysis, leaving 1066 participants upon whom analysis was
performed. To account for potential decrease in logging
adherence, only days in which food was logged at least twice,
and totaled at least 1600 calories, were included. Average daily
calories and macronutrient intake (including sugar, fiber, and
saturated fat subcategories) were calculated. Macronutrients were
expressed as absolute values (grams), and as a percent of total
calories. Participants across all subgroups demonstrated decreases
in caloric intake, carbohydrate, sugar, and saturated fat intake, and
increases in protein, total fat, and fiber intake (Table 1 and
Supplement Table S3). Percent change in the relative intake from
each macronutrient was decreased for carbohydrates (-2.6%),
sugar (-12.3%), and saturated fat (-0.5%); and increased for protein
(+3.45), total fat (+1.1%) and fiber (+7.9%), indicative of a dietary
improvement.

DISCUSSION
This real-world study demonstrates that use of digital technology
in combination with CGM can facilitate lifestyle interventions that
yield improvement in glycemic measures, in the largest cohort to
date.
Three studies have previously examined the use of CGM for

lifestyle change T2D29–31 Cox et al.29 included only four patients
and did not have a control group. Allen et al.30 utilized solely
physical activity intervention. Yoo et al.31 randomized patients
with poorly controlled T2D (baseline HbA1c of 9%) who were
treated with insulin (60%) or noninsulin therapies (40%), to real-
time CGM vs. self monitoring blood glucose (SMBG) and
demonstrated significantly greater reduction in HbA1c (0.50%,
p= 0.004) at 12 weeks in the CGM group, along with reduction in
total daily calorie intake, greater weight loss, and increased
physical activity. Wada et al.28 examined individuals with non-
insulin-treated T2D with baseline HbA1c of 7.8%; the researchers
did not measure lifestyle changes, but showed that use of flash
CGM as compared to SMBG resulted in a reduction in HbA1c at
24 weeks (0.29%, p= 0.02).
Our results extend the prior studies by demonstrating that use

of CGM with a digital app designed to enhance healthy lifestyle
behaviors by informing users of the impact of food and activity
choices on glycemic responses yields both behavior changes and
glycemic improvement in individuals with prediabetes and even
earlier stages of dysglycemia detected by CGM. Combination of
CGM data with heart rate and activity information, as well as
content and personalized insights, is a novel approach to
management of metabolism, and yielded noteworthy results.
Glycemic improvement was observed in the group as a whole,

as was reduction in glycemic variability, but the greatest
improvement was evident in those whose glucose was not within
the optimal range at baseline, defined as 70–140mg/dL for those
without diabetes and 70–180mg/dL for those with T2D. This is the
first study to evaluate personalization of lifestyle recommenda-
tions based on previously observed glucose patterns from CGM.
The use of digital technology for diabetes treatment and
prevention has been previously studied, with applications ranging
from remote coaching to dissemination of educational programs
such as the DPP40 Importantly, none of these studies have
evaluated integration of CGM with lifestyle measures or coaching,
especially in addition to presentations to subjects of the projected
glucose impacts of specific foods/meals and/or activity patterns.
Like prior digital health apps, the one used in this study served

as a virtual coach, offering recommendations and reminders that
addressed many components of medical nutrition therapy as
recommended by the American Diabetes Association41 These
include choosing healthy foods, and tailoring recommendations
to consider individual preferences and environmental constraints
(access, budget, living situation). Most importantly, however, this

Fig. 7 Weight loss during Season of Me Program. (A) Weight loss
according to glycemic subgroup (B) Weight loss in those who
continued to log weight over 12 weeks.

Table 1. Percent change in nutrient intake from beginning to end of the Season of Me program.

kcal Carb: Total kcal Sugar: Total kcal Protein: Total kcal Fat/ Total kcal Sat. Fat: Total kcal Fiber: Total
kcal

All -21.8 -2.6 -12.3 3.5 1.1 -0.5 7.9

Healthy -22.9 -2.2 -13.1 5.4 1.6 -0.7 10.0

Pre -21.0 -4.7 -11.2 -4.0 2.8 -2.8 7.9

T2D -11.9 -4.8 -7.3 1.0 -3.5 -3.9 0.9

To account for potential bias due to decreased frequency of logging (min of two meals and 1600 kcal per day was required for inclusion), macronutrients are
expressed as a proportion of total calories to demonstrate the relative intake of macronutrients which should be free of logging bias. absolute caloric and
macronutrient intake is shown in supplemental data. Carbohydrate, sugar, and protein grams were multiplied by 4 to calculate calories, and fat and saturated
fat grams were multiplied by 9 to calculate calories consumed for specific macronutrients. Fiber was expressed as grams:total calories.
Macronutrients expressed as macronutrient calories:total calories and fiber expressed as grams:total calories
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technology system (CGM and mobile app) uniquely integrated
glycemic excursions obtained from CGM with actual food
consumed, which allowed for personalized rather than generic
coaching. Consultation with a RD in order to develop an
individualized eating plan is associated with HbA1c reductions
of 0.3-2.0%42 In the present study, which spanned only 28 days
and did not include any live coaching, GMI decreased by 0.43% in
those with baseline GMI > 7%, and by 0.22% in those with baseline
GMI 6–6.9%. In addition, hyperglycemic events (glucose spikes),
glucose variability, and TIR improved in all subgroups ranging
from healthy nondiabetic to T2D, although the small T2D
subgroup reached statistical significance only for glycemic
variability. Hypoglycemic events <70mg/dL also decreased in
the group as a whole, although, in subgroup analyses, statistical
significance was reached only in the healthy nondiabetic
subgroup.
Based on data collected, the observed glycemic improvements

likely resulted from three lifestyle changes: (1) healthier food
choices; (2) weight loss; (3) increased physical activity. While only
526 of the 1066 participants logged sufficiently to be included in
the detailed dietary analysis, food log reviews showed a decrease
not only in total calories, carbohydrates, sugar, and saturated fat,
but also in the proportion of calories from carbohydrates, sugar,
and saturated fat, with an increase in the proportion of calories
from protein, healthy fats (fats other than saturated include mono
and polyunsaturated), and fiber. Although we did not quantify
changes in the intake of meals that led to glucose elevation, the
observation that there were fewer hyperglycemic events and that
TIR improved strongly suggests that glucose-elevating meals were
decreased.
Weight loss is a cornerstone of diabetes treatment and

prevention. In the present study, use of the CGM and mobile
app promoted weight loss in >75% of participants who continued
to log weight. The amount of weight lost was greater in those with
T2D and those with higher baseline starting weight, who at
12 weeks lost up to 10.4 and 18.9 lbs, respectively. At 12 weeks,
the % loss from initial body weight was 1.5, 2.3, and 5.1% in
healthy nondiabetic, prediabetic and T2D participants, respec-
tively; and was 2.0, 3.2, and 6.8% in those weighing 150–199,
200–249, and >250 lbs at baseline. Because not all participants
logged weight throughout the study, this may selectively
represent those who were more successful in losing weight,
who owned a personal scale, or who were more motivated in
general. Thus, the weight loss benefits in those who did not
continue to log weight is not known. Nonetheless, it appears very
likely that use of the CGM with app and self-weighing at least
once after baseline is associated with progressive weight loss for
at least 12 weeks of use. Longer term studies will be needed to
determine whether this is sustained.
Physical activity also lowers glucose levels, and the participants

in the SOM program demonstrated increased physical activity as
measured both by self report (logging) and by an objective
measure (HR > 110 bpm). Multiple previous studies have demon-
strated that use of accelerometer or heart rate monitor increases
physical activity43,44 Thus, it is not discernible whether simply
wearing the HR tracker/accelerometer or receiving personalized
activity recommendations from the app contributed to the
observed increase in physical activity. Further, the nature and
intensity of the activity, as well as nuances in HR change that more
specifically address intensity and conditioning, were not available
for this analysis. Ultimately, the observation that the technology-
based intervention as described leads to behavior modification
and clinical benefits is important. It should be noted that
participants in both the healthy and pre-diabetes cohorts already
had relatively high levels of baseline activity, which could have
skewed the data vis a vis their inclination toward performing
additional exercise; nevertheless, significant increases in physical
activity among both groups was observed.

It is worth noting the significance of the glycemic improve-
ments observed in the healthy nondiabetic group. That the
observation group exhibited glycemic excursions that could be
improved by diet might come as a surprise to many. CGM data on
nondiabetics is scant in the literature. While the TIR is high in this
group at baseline, in the current analysis, which is the largest
cohort of nondiabetic individuals with published data on CGM,
glycemia still improved in multiple metrics. Whether improved
glycemia in this population prevents diabetes or improved health
outcomes is not currently known, as diabetes prevention studies
have been conducted in high risk individuals with prediabetes.
The data presented in fact suggests that with the advent of CGM
an even earlier stage of dysglycemic is detectable and can
improve with lifestyle interventions. This is important as future
studies should examine the long term health risks (T2D,
cardiovascular disease) as well as the impact of diabetes
prevention strategies in this group of individuals. Such studies,
which will take years to conduct, will determine whether the
improvements in glycemic profile would be beneficial to health
and potentially reduce the risk for T2D.
The current findings have several limitations inherent in real

world studies. First, there was no control group—data presented
are based on the change from baseline to end-of-program and
thus could represent a “placebo” effect from simply being enrolled
in a program. A future randomized trial with a comparator group
would extend and confirm the present findings. Second, the
requirement to use a CGM means that it is likely that the
participants in this study demonstrated high levels of self-efficacy,
and thus it is not clear that results would translate into less self-
motivated individuals who were recommended by a health care
provider to engage in a similar intervention. Third, some of the
data captured depends on adherence to logging. It is possible that
participants did not log all food or activity; thus, alternate metrics
were used, such as the ratio of macronutrient to total calories and
HR > 110min, which generally supported the logged metrics.
Logging weight is also subject to success bias and thus may only
be interpreted to reflect the weight loss of those who weighed
themselves at least once after starting the program. Fourth,
ethnicity was not collected in this cohort. It is important to
recommend ethnically and culturally appropriate lifestyle inter-
ventions, particularly with regard to dietary recommendations,
and thus improvement of this application would include capture
of ethnicity and ethnic/culturally-sensitive recommendations if
desired by the user. Fifth, the duration of intervention was 28 days.
Longer duration studies will be required to ascertain the durability
of behavior changes and glycemic benefits. Finally, weight
reporting in this study was not comprehensive as weight loss
was not a specific goal of our study and therefore weight
monitoring was optional. Weight logging was not required, nor
were users reminded to log or enter their weight. It is not
appropriate to compare our study to the DPP in terms of weight
reporting, as our study’s focus was on logging food and activity
and measuring glucose levels with CGM.
In our participants without a diagnosis of T2D, we used

thresholds for Time in Range (TIR) that were previously reported
in the literature (70–140mg/dL) or justifiable based on translation
to Hemoglobin A1c (Glycemic Management Indicator (GMI)).
Currently, there are no TIR thresholds for patients without
diabetes, but we believe that they will be established in the
future38 It is not clear whether glucose levels outside a
prespecified range (eg 70–140mg/dL) or above a given threshold
(>180mg/dL) in individuals who do not meet traditional criteria
for diabetes lead to clinical consequences such as microvascular
disease. It is also not clear whether glucose levels on CGM predict
increased conversion rates to T2D in those who do not meet
traditional OGTT criteria for prediabetes. Long-term studies will be
required to ascertain these important questions. However, both
mild glycemic excursions into prediabetic and diabetic range, and
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glycemic variability, which has been associated with increased risk
for cardiovascular disease45 are more readily ascertained with
CGM than with older methods of glucose measurement, and it is
likely that future studies will reveal answers to the questions
posed above regarding the prediction of clinical events according
to specific CGM metrics in both T2D and earlier stages of
dysglycemia.
In summary, we demonstrate that an app-based platform that

integrates food and physical activity logging with CGM and HR
data, and provides personalized lifestyle recommendations based
on user input enhances healthy lifestyle practices and improves
metabolic health in individuals with and without T2D. This nee
technology improves glucose profiles even in individuals who by
current standards are normoglyemic, and promotes weight loss in
overweight and obese individuals, highlighting its potential for
early intervention. Importantly, the ability to offer intervention
without human coaching (with or without AI-enabled personaliza-
tion) enables affordable scaling to large numbers of people,
including those who are underserved or living in remote
areas––thus helping to reduce the continually increasing pre-
valence of prediabetes and diabetes. In this respect, it will be
important to optimize user engagement, including customization
to varied ethnicities and socioeconomic levels, and to consider the
needs of different age groups, including the elderly who often
have more difficulty accessing in-person health care services, and
to youth and young adults, who tend to be less adherent to
traditional models of diabetes prevention and may selectively
benefit from technology-based models. Overall, this approach and
similar technology-based approaches have the potential to
improve metabolic health at early stages, and may increase the
efficacy of current practices to prevent and treat T2D through
lifestyle modification.

METHODS
The methods were performed in accordance with relevant
guidelines and regulations and approved by the Advarra
review board.

Participants
Individuals over the age of 18 years were eligible to participate.
Those with a prior diagnosis of diabetes who were not taking
insulin were eligible, as were those with prediabetes or no history
of glucose abnormalities. There were no body weight or BMI
restrictions. Only participants who signed a disclaimer to use
deidentified data (DID) were included. An external review board
(Advarra) confirmed that analysis of DID was exempt from
requiring formal informed consent.

The season of Me program for personalized metabolic health
management
The Season of Me (SoM) program was designed to leverage
technologic advances to improve glucose time in range and
weight loss in individuals with or at risk for T2D. Participants paid
to use a mobile-app (January AI) and wear a CGM (Freestyle Libre,
Abbott) and HR monitor (Apple Watch or Fitbit) for 28 days (Fig. 1).
The mobile app integrated CGM and HR data with user-entered
diet and activity data, along with wearable-tracked HR. In addition
to providing integrated data back to users, the program provided
individualized recommendations based on data both logged by
users and pulled from users’ wearable devices.
The first 14 of 28 days consisted of an experimental phase,

during which participants were monitored using a CGM and a HR
monitor. The initial 4 days of this period served as a baseline,
during which participants continued their regular diet and
activities. On Day 3, participants undertook a glucose shot test.
Commencing from Day 5, time-restricted feeding was introduced

based on a schedule suggested by the app, and specific food
experiments were initiated (e.g., ‘Low Glycemic Load first meal’ on
Day 6).
Upon completion of the 14-day experimental phase, partici-

pants received a personalized report. This report compiled health
insights derived from the data collected during the experimental
phase, and provided tailored recommendations aimed at improv-
ing glycemic control, focusing on the enhancement of TIR.
Subsequent to the experimental phase, participants transi-

tioned into a 15-day Time in Range Improvement Phase. During
this period, daily tasks, structured as task cards within the mobile
application, were assigned to participants. Each day involved the
completion of 3–5 specific tasks, including mandatory reading of
educational content (Fig. 8).
For Days 1–14, tasks predominantly consist of adherence

assignments (for example, “Wear your HR monitor for at least
23 h today”); food experimentation tasks; and time-restricted

Fig. 8 Example task card. Such a task card would have been
presented to participants in the Season of Me program via their
mobile application. Users can indicate whether or not the task was
performed by toggling the button indicated.
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eating tasks. From Days 15–30, tasks were primarily centered on
interventions to enhance TIR. These encompass strategies such as
carbohydrate reduction, caloric restriction, exercise regimens,
time-restricted eating protocols, and mindfulness practices.
To facilitate participant learning throughout the 30-day journey,

Insight Cards were provided via the app. These cards were
categorized into Program-related Insight Cards and General
Insight Cards. Program-related Insight Cards provided compara-
tive analyses between different days and conditions (e.g., “Day 3
vs Day 4 vs Day 6”) to visualize the impacts of various
interventions on blood glucose levels. General Insight Cards
include Food Cards and Activity Cards, which illustrated the
glucose and HR responses to a specific food item or physical
activity, respectively.
Following the initial 28 day phase, a 2-month optional second

phase followed, during which participants implemented the
learnings without the use of CGM or HR monitor, relying only
on personalized recommendations generated by the mobile app.
These recommendations centered around the following five levers
(Fig. 2):
1. Reducing spiking foods. Based on users’ food logs and CGM

data, the app identified the foods that caused the largest increase
in blood glucose, and offered alternative, lower-glycemic foods.
2. Calorie restriction. The app gave users personalized total

caloric recommendations based on age, weight, height, sex, and
physical activity at baseline, with recommendations to stay below
the caloric requirement for weight maintenance.
3. Increasing fiber intake. After an observational period during

which users’ baseline fiber intake was observed, the app
suggested fiber-rich foods to increase daily fiber consumption to
21–25 and 30–35 g/day for females and males, respectively. The
app not only identified users’ existing sources of fiber, but also
suggested alternative foods with higher fiber content.
4. Increasing activity. After an observational period during

which users’ baseline physical activity level was observed, the app
suggested activity, especially post-meal activity, with the goal of
reducing postprandial glucose spikes.
5. Increasing fasting period. The app recommended a 16-h

fasting target to all users, tracking users’ fasting periods and
comparing observed fasting activity against goal.

Delivery of personalized food and activity recommendations
Health goals were addressed by a proprietary mobile application
that incorporates CGM and HR monitoring coupled with food and
activity tracking, and generates glucose predictions for food and
activity patterns.
We utilized two blood glucose prediction models (“Continuous

Glucose Prediction model”/“CGP model” and “Food Recommenda-
tion model”/“FR model”). The former utilizes a machine learning-
based algorithm that takes into account the user’s previously
recorded blood glucose, heart rate, and food logging information
to output the user’s predicted blood glucose values in response to
food and activity. The latter recommends to the user foods similar
to those the user desires to eat, in order to allow the user to
choose foods which cause comparatively lower spikes in glucose.
Those models are described in detail below.

Continuous Glucose Prediction (CGP) algorithm
Overview. The machine learning-based algorithm has a base of
data that is collected from all users, comprising 46,655 days of
data from 1978 users; based on an individual’s entered and
captured data, the model is fit to their unique glycemic responses
to food and exercise as captured by CGM, HR, and food
logging data.
The CGP model has two primary utilities. First, this model allows

users to predict the glycemic impact of food 2 h into the future,
and without consuming the food item(s) in question (“CGP”).

Second, this model allows users to continuously estimate blood
glucose values throughout the day, if provided information about
food logging and heart rate alone (“Virtual CGM” or “VCGM”). This
aspect of the algorithm allows for continued, personalized
recommendations in-between CGM usage periods, thus lessening
the user burden and cost associated with physical CGM devices.
The CGP model requires a minimum of 5 days of complete data

(12 h of HR and CGM data, in addition to logs of all calorie-
containing food and beverage, constitute a day of “complete”
data), but continues to fit itself to the individual if the individual
continues wearing a CGM and heart rate monitor, and
logging food.
The CGP model was an RNN model. The RNN model consisted

of a single LSTM layer followed by a dense layer with a sigmoid
activation function. The LSTM layer allows the model to capture
long-term dependencies in the input sequence. We tried both
LSTM and GRU layers with different numbers of nodes and layers.
Our evaluation of our model showed that, based on our data,
LSTM was the best choice, giving us better RMSE and MAPE.
We furthermore used a meta learning algorithm to optimize the

hyperparameters of the RNN model. The meta learning algorithm
uses a set of training tasks to learn the optimal hyperparameters
for the RNN model. The training tasks consisted of subsets of the
dataset. For each training user, the meta learning algorithm
generated a set of hyperparameters that optimized the RNN
model’s performance on the specific user.
The error in these predictions is 13.4 mg/dl RMSE over the 2 h

post-meal period. This error is on par with the best-published
results, which do not report this high variance, post-meal period46

Notably, the 2-h, post-meal, glucose prediction error remained low
at 14.8 mg/dl RMSE, even after participants stopped using their
glucose monitors, suggesting that the app was able to learn an
individual’s biology sufficiently well so as to predict their glucose
response.

Data and preprocessing. Our dataset consisted of participant-
derived continuous glucose measurements, heart rate readings,
physical activity, time stamps, and dietary constituents. This
resulted in a time-series database for each variable, offering a rich,
multi-modal representation of individual physiological profiles.
Initial preprocessing was conducted to assure the suitability of

data for machine learning algorithms. This process comprised the
removal of aberrant or incomplete data entries and the
standardization of all input features to maintain consistency
across the dataset. Additional features were engineered from the
raw data to enhance the predictive power of the model. For
example, time of day was represented as sin and cos functions to
ensure temporal continuity. The preprocessed dataset was
bifurcated into a training subset for model learning; and a testing
subset for subsequent model performance evaluation.

Model architecture. The model architecture consists of Long
Short-Term Memory (LSTM) layers and Dense layers. The LSTM
layers are designed to capture temporal dependencies in the time
series data, while the Dense layers provide non-linear transforma-
tions and help in the final prediction. The input to the model at
each time step includes the following features: continuous glucose
values, heart rate, exercise, time of day, and food nutrients. These
features are concatenated and fed as input to the model. To train
the model, sequences of input data are created from the training
set. Each sequence contains a fixed number of consecutive time
steps and associated target values (e.g., the next glucose value).
The sequences are created by sliding a window over the time
series data. The model is trained using the generated sequences
from the training set. During training, the model predicts the next
step given the current input, and the previous prediction is fed
back as an input for the next time step. This feedback loop helps
the model learn from its own predictions. The model is trained by
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minimizing the loss function, log likelihood loss function was used,
between the predicted values and the true target values. The
ADAM optimizer was used to perform backpropagation and
gradient descent algorithms. Hyperparameters, such as the
number of LSTM and Dense layers, the size of each layer, learning
rate, and batch size, were tuned to optimize the model’s
performance. After training, the performance of the model was
evaluated using the testing set. Various evaluation metrics, such as
root mean squared error, correlation coefficient, and MAPE were
computed to assess the accuracy and reliability of the predictions.
Based on the evaluation results, further refinements may be made
to the model. This could involve adjusting hyperparameters,
modifying the architecture, or adding regularization techniques to
improve generalization and prevent overfitting. Once the model is
trained and evaluated, it can be used to make predictions on new,

unseen data. Given a sequence of input features, the model can
generate predictions for the next time step(s) of blood glucose
values (Fig. 9).
We also wished to determine the most significant inputs

(among CGM, heart rate, etc.) to the performance of the CGP
model. Ablation analysis was conducted (Fig. 10A), removing
inputs to the model in sequence to examine the deleterious
effects on the model. The difference in the RMSE as a result of
ablating nutrient information versus activity information demon-
strates that the macronutrients and their quantity consumed are
far more important than activity, heart rate, and time of day to the
model’s fidelity.
This was followed by reverse ablation analysis (Fig. 10B). While

ablation analysis removes inputs to determine which input is most
important, reverse ablation analysis adds inputs. The reverse

Fig. 9 Overview of the Machine Learning Pipeline for Prediction of Blood Glucose Values. This figure illustrates the machine learning
pipeline designed for predicting future blood glucose levels based on various inputs, including continuous blood glucose measurements,
food nutrients, heart rate, exercise, and time of day. The pipeline consists of several steps, starting with data preprocessing, followed by the
utilization of a recurrent neural network (RNN) comprising LSTM (Long Short-Term Memory) and Dense layers. A The process begins by
collecting and preparing the input data, which encompasses continuous blood glucose readings, food nutrient information, heart rate data,
exercise data, and time of day. The collected data then undergoes preprocessing, where it is cleaned, normalized, and organized in a suitable
format for the subsequent stages. B Next, the preprocessed data is fed into the RNN model, which is composed of LSTM and Dense layers. The
LSTM layers are employed to capture temporal dependencies and patterns within the data, enabling the model to understand the sequential
nature of blood glucose fluctuations over time. The Dense layers aid in learning complex relationships and extracting relevant features from
the input data. C The RNN model is trained to predict the blood glucose level for the next time step. Once the initial prediction is made, it is
fed back into the model as an input, allowing the model to generate subsequent predictions for future time steps. This feedback loop enables
the model to iteratively refine its predictions and adapt to changing conditions. D The output of the pipeline is a sequence of predicted blood
glucose values, which can be used for various applications, such as monitoring and managing blood glucose levels in individuals with
diabetes or supporting personalized dietary and exercise recommendations. Overall, this machine learning pipeline offers a systematic
approach for blood glucose prediction, leveraging data preprocessing and a recurrent neural network architecture with LSTM and Dense
layers to provide accurate and timely forecasts of blood glucose levels.
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ablation analysis shows that, by adding activity, HR, and time of
day information, our RMSE increases from 12.5 to 14. However,
upon adding nutrient information, RMSE increases to 21. This
demonstrates the dramatic effect that nutrition information has
on the fidelity of the model.
Overall, both analyses led us to conclude that, in order of

descending importance, the significance of each input was as
follows: nutrients, time of day, heart rate, activity.

Evaluation of CGP model
Data Collected: DID was collected retrospectively from 2217

users over 28 days. Data points included body weight, CGM data,
food and activity log data, and HR from an activity tracker.
Nutritional breakdown included total caloric intake, macronutrient
composition, and fiber intake, which was captured by participants’
self-reported food logs collected in the mobile application. Activity
was quantified in minutes/day. Only participants with complete
logging and data capture were included in the final analysis (see
below). Among those included in the final analysis, adjustments
were made to account for potential bias in nutrient intake as a
result of differences in logging frequency over time: (1) nutrients
were calculated only from “good” logging days, defined as a
minimum of two logging events spread throughout waking hours
spanning a 16 h range, and a total of ≥1600 calories logged, and
(2) specific macronutrients and fiber were presented as grams as
well as proportion of total calories (grams converted to calories)
such that the changes in the proportion of these nutrients were
not biased by residual differences in frequency of logging.
Physical activity was adjusted for overall frequency of logging
and expressed as adjusted minutes/day. HR data was collected
continuously, as was CGM data, both from wearable devices, and
did not rely on participant adherence with logging; thus, this data
is not subject to logging bias. For CGM, the first day of use is
known to be somewhat less accurate, and thus all glycemic
measures excluded the first day of use in all participants. Further
adjustments were made for days with loss of CGM signal, and this
proportion of “lost time” was applied to all measures of event
frequency. The average measures such as TIR and GMI did not
require this adjustment. HR data capture was remarkably
consistent and no gaps in signal were present.
Requirements for Inclusion in data analysis: In order to ensure

that only individuals who had complete data capture and
reasonably consistent data logging were included in the final
analysis, the following requirements were designated. Analysis of
outcomes included only those individuals who had a sufficient
quantity of CGM data capture, consistent food logging, and
regular body weight tracking and HR capture. Requirements for

CGM data were at least 70% CGM coverage on at least half of the
days at the beginning (days 1–5, excluding day 1) and the end
(days 15–27) of the 28 day period. Requirements for meal logging
were active logging of all meals during the first 7 days, as well as
the last 14 days, and HR capture ≥20 h per day. For inclusion in
data analysis, users must have logged at least two meals and 1600
kcal/day. Requirements for body weight data tracking were at
least one body weight measurement in the first 7 days and in the
last 14 days. Because fewer individuals tracked weight at day 28,
the analysis of weight change was conducted only in the subset
who had the baseline and end of study weight measurements.
Statistical analysis: Data was measured using paired-student t-

tests for beginning vs. end of study for all measures, using Jupyter
Notebooks, SciPy, Numpy, Pandas, Matplotlib, Seaborn, pickle, and
datetime (the latter two are inbuilt Python packages). Beginning
of study was defined as days 2–7 for glucose variables; and days
1–5 for activity and food logging variables. All variables were
checked for normality and none needed log transformation for
analyses. End of study was defined as days 14–28 for all measures.
P < 0.05 was considered statistically significant. The performance
of the CGP model was shown to be superior when compared to
other models (Fig. 11A), with a high correlation coefficient of 0.833
when comparing actual BGL to predicted BGL (Fig. 11B). A visual
depiction of CGP compared to actual curves shows that the actual
curve lies within the error bound of the CGP model. Figure 11C
shows a comparison of glucose prediction to its corresponding
actual CGM curve within a 2-h window, while Fig. 11D shows a
comparison of virtual CGM prediction to its corresponding actual
CGM curve within a 24-h window. We also examined whether
there was a correlation between user demographics and error, in
order to determine whether users of certain demographics were
more prone to higher error in BGL predictions, and found that
higher weight correlates with higher percent error (p < 0.05), and
higher age correlates with lower percent error (p < 0.05) (Fig. 11E).
Furthermore, we compared error by disease type and gender, in
order to determine whether male/female participants, or normo-
glycemic/prediabetes/T2D participants were more likely to experi-
ence higher error in BGL predictions. Our percent error and RMSE
peak/point-by-point was lower for healthy users than for users
with T2D and with pre-diabetes. Our percent error was also lower
for male participants than for female participants, though there
are participants whose percent error represents an outlier
(Fig. 11F).

Food recommendation algorithm. Food recommendations utilize
a separate food recommendation engine underpinned by the CGP
model, which predicts the glycemic impact of selected foods

Fig. 10 Reliance. A Use of ablation analysis to determine feature importance. Starting from the left, the most important modality is removed
and the model is retrained to measure the impact of the removed dataset. This analysis demonstrates in order of descending importance the
significance of each input was as follows: nutrients, time of day, heart rate, activity. B Similar to (A) but in each iteration the least important
dataset is removed.

A.D. Zahedani et al.

11

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023) 216



based on their macronutrient composition and the individual’s
prior responses to macronutrients. The food recommendation
engine extrapolates nutritional information and macronutrients
from known databases to recommend similar foods that are
predicted to be less impactful on a user’s blood glucose, based on
the individualized output of the CGP model. The food

recommender engine follows four main processing stages, with
the user input being a specific food, and the result being similar
foods with lower glycemic impacts. The food recommender
engine winnows down the food database to find more similar
foods, then healthier foods within the set of similar foods
(Fig. 12A). Similar, healthier foods are then displayed to the user
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Fig. 11 Understanding the performance of the CGP model. A Evaluation of CGP model performance against that of comparable models
(prediction of the glucose impact of certain foods, “CGP”; and prediction of a glucose curve when given consistent food logging and heart
rate information, “VCGM”) to that of several other models. Across a number of dimensions, including RMSE Peak, RMSE point by point, RMSE
point by point shifted, correlation, and percent error, we found that the CGP model outperformed each of its competitors. B Comparison of
actual blood glucose values versus blood glucose values predicted by the CGP algorithm. The correlation coefficient is 0.83, and holds more
strongly for non-outlier values (<200mg/dL). The reasons for this are twofold: first, because BGL fluctuation for these users is generally high;
second, because extreme outlier BGL values are rare, and thus appear far less frequently in our training set. C Comparison of CGP predicted
blood glucose values versus actual blood glucose values. The CGP algorithm operates on a stochastic basis, generating at each 15-min time
interval 100 different potential BGL values, along with the corresponding likelihood of each value occurring. The red line reflects CGP
predicted BGL; the green line represents BGL values derived from CGM. The orange zone represents the range of BGL values between the 25th
and 75th percentiles of the CGP predictions, by likelihood of occurrence; the blue zone represents the 10th and 90th percentiles. As shown,
the CGM-derived curve falls within the confidence interval of the predicted curve. D Comparison of VCGM predicted blood glucose values
versus actual blood glucose values over a 24-h period. The red line reflects CGP predicted BGL; the green line represents BGL values derived
from CGM. The orange zone represents the range of BGL values between the 25th and 75th percentiles of the CGP predictions, by likelihood
of occurrence; the blue zone represents the 10th and 90th percentiles. As shown, the CGM-derived curve falls within the confidence interval of
the predicted curve. E Correlation between demographics and errors. We examined whether certain demographic information correlated with
higher instances of error. We found that higher weight correlates with higher percent error (p < 0.05), and higher age correlates with lower
percent error (p < 0.05). F Comparisons of error by gender and disease type. We found that percent error and RMSE peak/point-by-point were
lower for healthy participants than for participants with prediabetes/T2D; and lower for males than for females.

Fig. 12 Overview of the Food Recommender model. A Food Recommender processing stages. Conceptually, the Food Recommender can be
organized as a sequence of 4 processing stages: Input food→(1) Personalized similarity food matching. Finding food items similar to the food
item being searched by the user →(2) Blacklist foods removal. Removal of foods that the user has “blacklisted”, i.e. allergies, sensitivities →(3)
Healthiness ranking. Ranking of foods according to a “healthiness” scale that takes into account carbohydrate and fiber composition →(4)
Cleanup of recommendations list. Removal of substandard recommendations→ Recommendations for user. B Interface between app and
Food Recommender. C Example in-app recommendations. Note the similarity between the food item being looked up, and the food item
being recommended to the user.
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in-app as “healthy recommendations” (Fig. 12C). The model
interfaces with the application via a “FoodRec Client” interface
(Fig. 12B).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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