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Quantifying the impact of AI recommendations with
explanations on prescription decision making
Myura Nagendran1,2,3, Paul Festor1,3,4, Matthieu Komorowski2, Anthony C. Gordon 2 and Aldo A. Faisal 1,3,4,5✉

The influence of AI recommendations on physician behaviour remains poorly characterised. We assess how clinicians’ decisions
may be influenced by additional information more broadly, and how this influence can be modified by either the source of the
information (human peers or AI) and the presence or absence of an AI explanation (XAI, here using simple feature importance). We
used a modified between-subjects design where intensive care doctors (N= 86) were presented on a computer for each of 16 trials
with a patient case and prompted to prescribe continuous values for two drugs. We used a multi-factorial experimental design with
four arms, where each clinician experienced all four arms on different subsets of our 24 patients. The four arms were (i) baseline
(control), (ii) peer human clinician scenario showing what doses had been prescribed by other doctors, (iii) AI suggestion and (iv)
XAI suggestion. We found that additional information (peer, AI or XAI) had a strong influence on prescriptions (significantly for AI,
not so for peers) but simple XAI did not have higher influence than AI alone. There was no correlation between attitudes to AI or
clinical experience on the AI-supported decisions and nor was there correlation between what doctors self-reported about how
useful they found the XAI and whether the XAI actually influenced their prescriptions. Our findings suggest that the marginal
impact of simple XAI was low in this setting and we also cast doubt on the utility of self-reports as a valid metric for assessing XAI in
clinical experts.

npj Digital Medicine           (2023) 6:206 ; https://doi.org/10.1038/s41746-023-00955-z

INTRODUCTION
AI-driven clinical decision support systems (AI-CDSS) could have a
major impact on medical care due to their theoretically super-
human performance. In practical settings however, a translation
gap remains (especially and counterintuitively within the data-rich
environment of critical care medicine) with few systems active in
real-world hospital environments1–3. This gap implies that the
challenge of responsibly guiding clinicians to incorporate AI
recommendations into their day-to-day practice might require
more than AI suggestions alone. A key demand from clinicians, AI
researchers and regulators alike is explainable AI (XAI) which aims
to not only provide recommendations but also to justify or
motivate the AI reasoning to experts4,5. However, most studies
that practically evaluate whether and how explanations affect
expert decision-making focus on general problems with lessons
that do not necessarily translate to high complexity tasks in the
clinical sphere6,7. In the few cases where medical XAI has been
investigated with clinical experts, these have tended to focus on
diagnostic scenarios for which a pre-existing gold standard exists
with which to calculate accuracy8–10. This is not the case for many
non-diagnostic medical problems such as the haemodynamic
management of sepsis that affects millions of patients
worldwide11.
Here, we use the flagship example of the AI Clinician system

which addresses sepsis resuscitation12, a topic fraught with
uncertainty, wide variation in clinical practice and no clear optimal
solution, at least to the human eye13,14. This is despite both
decades of research and the provision of international guide-
lines15. The ongoing prospective evaluation of our AI Clinician
raises critical questions on how to best render the action
recommendations explainable and trustworthy to clinicians who

may or may not choose to execute them. This is as much a
problem of clinicians’ cognition, influenceability and psychology
as one of machine learning16–18.
We address these issues in this study by assessing how

clinicians’ decisions may be influenced by additional information
more broadly, and how this influence can be modified by either
the source of the information (human peers or AI) and the
presence or absence of an AI explanation (here using simple
feature importance). Only by further understanding these critical
building blocks for an AI-CDSS can we hope to achieve the end
goal of improved outcomes for patients. We find that additional
information (peer, AI or XAI) has a strong influence on
prescriptions (significantly for AI, not so for peers) but simple
XAI does not have higher influence than AI alone. There is no
correlation between attitudes to AI or clinical experience on the
AI-supported decisions and nor is there correlation between what
doctors self-reported about how useful they found the XAI and
whether the XAI actually influenced their prescriptions. Our
findings suggest that the marginal impact of simple XAI is low
in this setting and we also cast doubt on the utility of self-reports
as a valid metric for assessing XAI in clinical experts.

RESULTS
86 ICU doctors were recruited (31 senior [consultant/attending],
42 intermediate [registrar/fellow], 13 junior [senior house office/
resident]). Median subject age was 37 years (interquartile range
(IQR) 34–43). Median years of clinical experience was 11 years (IQR
9–19). All subjects completed the task successfully and there was
no significant difference in per trial completion time between
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arms (baseline 83 seconds (s), peers 83s, AI 79s, XAI 83s, p= 0.574
by Kruskal–Wallis test).

Impact of arms on dosing shift
An example of prescription shift for an individual patient scenario
is shown in Fig. 1a. For the same patients in different arms,
providing subjects with additional information from their respec-
tive arm led to an absolute prescription shift for fluid of 70 mls/hr
(peers, standard deviation (SD) 86 mls/hr), 90 mls/hr (AI, SD
83 mls/hr) and 85 mls/hr (XAI, SD 60 mls/hr) relative to the
baseline arm (p= 0.872 for peers, p= 0.002 for AI, p= 0.007
for XAI, all by independent T-test). For vasopressor, the prescrip-
tion shift was 0.04 mcg/kg/min (peers, SD 0.06 mcg/kg/min),
0.05 mcg/kg/min (AI, SD 0.09 mcg/kg/min) and 0.05 mcg/kg/min
(XAI, SD 0.09mcg/kg/min) relative to the baseline arm (p= 0.201
for peers, p= 0.010 for AI, p= 0.002 for XAI, all by independent
T-test). The aggregate prescription shifts are displayed in Fig. 1c.
The individual patient scenario dosing shift figures for all 24
patients are shown in Supplementary Fig. 1.

Impact of arms on practice variation
Providing doctors with a recommendation (be it peer, AI or XAI)
had a common effect: inter-clinician dose variability was
differentially affected according to whether the recommendation
was higher or lower than what subjects in the baseline arm did,
i.e., when the recommendation was higher than baseline, the
prescriptions of doctors in the peer/AI/XAI arms would be more
variable across doctors; when it was lower than baseline,
prescriptions were less variable across doctors. This can be seen
in Fig. 1b.

Association of clinician factors with adherence to AI
suggestions
Clinician attitude to AI was extracted as a principal component of
the four pre-experiment AI enthusiasm questions subjects were
asked (Fig. 2a). The first component explained 69% of the variance
(Fig. 2b). Attitude to AI did not have a significant linear association
to the difference between subject selected dose and AI
recommended dose for either fluid (r=−0.078, p= 0.075 by LLSR
(linear least-squares regression)) or vasopressor (r=−0.074,
p= 0.092 by LLSR), see Fig. 2c. Similarly, years of clinical
experience did not have a significant association to the difference
between subject selected dose and AI recommended dose for
either fluid (r= 0.001, p= 0.862 by LLSR) or vasopressor
(r=−0.086, p= 0.047 by LLSR), see Fig. 3b, c. Practice variation
and adherence to AI by grade of doctor are shown in
Supplementary Fig. 2.

Clinician opinions on AI and the explanations
Post experiment, subject likelihood of using an AI system for
sepsis prescriptions on a scale from 1 to 5 (higher more likely to
use) was mean 2.55 for training doctors (which encompasses both
junior and intermediate doctors, SD 0.96) versus 2.16 for non-
training doctors (senior/consultants, SD 1.07), p= 0.091 by
independent T-test (Fig. 4a). Subjects were asked to rate the
usefulness of the explanations on a scale from 1 to 5 (higher more
useful) with mean 2.22 for training doctors (SD 1.03) versus 1.97
for non-training doctors (SD 1.11), p= 0.296 by independent T-test
(Fig. 4b). Self-reported usefulness of explanations did not correlate
with adherence to XAI suggestions (Fig. 4d). Subjects were also
asked to rate the usefulness of showing peer and AI suggestions
together on a scale from 1 to 5 (higher more useful) with mean

Fig. 1 Dose shift and variability by intervention arm. a The prescription distributions for a single patient scenario (and, for illustrative
purposes only, mapped onto (b)). For each boxplot, the centre line represents the median, box edges represent upper and lower quartiles,
whiskers represent 1.5× inter-quartile range and diamonds are outliers. Blue dashed line represents the median of the peer distribution data
(only available to those in the ‘Peers’ arm). Red dashed line represents the AI suggested dose (only available to those in the ‘AI’ or ‘XAI’ arms).
2b, change in inter-clinician variability by size of recommendation difference for peers/AI/XAI (i.e. was the recommended dose higher (positive
recommendation gap) or lower (negative recommendation gap) than the baseline average (dashed green line) and how does this affect
variability of clinicians (x- and y-axes scales are arbitrary units, normalised to allow fluid and vasopressor to be plotted together. c Absolute
difference (i.e. 50 ml in either direction treated as +50ml discordance) from dose in the baseline group, aggregated for all 24 patient
scenarios. The error bars are formed by randomly taking 1000 bootstraps of the data (80% subset with replacement) and estimating a
distribution for prescription doses (error bar is distribution mean +/− standard deviation).
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2.98 for training doctors (SD 0.73) versus 2.39 for non-training
doctors (SD 1.09), p= 0.003 by independent T-test (Fig. 4c). Finally,
subjects were also asked to rate importance of evidence on a 1 to
5 scale (higher more important) for their use of an AI system with
a mean rating of 3.01 (SD 0.85) for observational evidence versus
mean 3.33 (SD 0.76) for randomised clinical trial evidence,
p= 0.011 by independent T-test.

DISCUSSION
This study has several important findings that add to our
understanding of how prescription decisions can be influenced
by AI-driven decision support recommendations. First, additional
information (peer, AI or XAI) has a strong influence (proxied by
dose shift) on prescription decisions (significantly for AI, not so for

peers). However, whether the recommendation came in a plain
form (AI alone) or garnished with an explanation (XAI, here simple
feature importance) did not make a substantial difference. Second,
inter-clinician dose variability was differentially affected according
to whether the recommendation (whether peer, AI or XAI) was
higher or lower than what subjects in the baseline arm did and
this suggests that decision support systems might have a mixed
impact on practice variation when deployed in a live setting. Third,
there was no correlation between attitudes to AI or clinical
experience on the AI-supported decisions suggesting a certain
unvarying degree of AI acceptance in clinical experts, or one
moderated more by variability in patient scenario than the
clinician themselves. Fourth, there was no correlation between
what doctors self-reported about how useful they found the XAI
and whether the XAI actually influenced their decisions which

Fig. 3 Impact of duration of clinical experience on adherence to AI suggestions. The distribution of experience levels among the three
categories of seniority is shown in (a) (Consultant, most senior and equivalent to attending in the United States (US); SpR, specialist registrar
and equivalent to fellow in the US; SHO, senior house officer and equivalent to resident in the US). Experience level was compared to AI
adherence (in the form of absolute difference from the AI suggested dose) for both fluid (b, blue) and vasopressor (c, red). Lower value
indicates higher adherence. Dot transparency in (b) and (c) represents density of points at any given location. ‘GP mean’ refers to a predicted
Gaussian Process regression fit of the data with accompanying 95% confidence interval.

Fig. 2 Impact of AI attitude on adherence to AI suggestions. Four AI statements were presented to subjects pre-experiment who were asked
for their agreement (a). Principal component analysis was applied to the results of these four questions with 69% of variance explained by a
single component (b). This single component formed our composite for AI attitude (higher value, more positive AI attitude), which was then
compared to absolute difference from the AI suggested dose, i.e., a proxy for AI adherence with lower value indicating greater adherence and
vice versa in (c) for both fluid (blue) and vasopressor (red). Dot transparency in 3c represents density of points at any given location. ‘GP mean’
refers to a predicted Gaussian Process regression fit of the data with accompanying 95% confidence interval.
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brings into question the reliability of using XAI self-reports as an
outcome metric in clinical XAI studies.
These findings should be considered in the context of several

limitations. First, the rendition of the XAI condition used feature
importance. While this is a commonly used XAI modality (both
within and outside of healthcare)12,19–23, it is also on the lower end
of the spectrum regarding what makes for a comprehensive
explanation according to cognitive science24. Indeed, the varia-
bility in modality of XAI can have different impacts on medical
decisions depending on the complexity or ambiguity of the
context as well as the user’s experience of an AI system25,26.
Second, while steps were taken to ensure a large and

representative range of patient scenarios, this may still leave
gaps in the patient state space. We intentionally developed a two-
pronged selection strategy to ensure our scenario choices were as
generalisable as possible (see Supplementary Methods 1 which
suggests reasonable coverage of the MIMIC state space presented
graphically as a function of three principal components for visual
purposes). Third, the patient scenarios were low fidelity owing to
the experimental vignette format. Whilst this allows for a high
degree of standardisation of scenarios, the dynamic nature of
evaluating a real patient over time and learning what effect a
given treatment has (or does not have) is therefore missing.
Fourth, although our sample of doctors was large compared to
similar clinical studies, it nevertheless relied on convenience
sampling and therefore may not be representative of the medical
population as a whole. Fifth, the AI suggestion itself was an
isolated message containing the recommended doses for fluid
and vasopressor without any confidence bounds or ranges. It may
be that adherence to AI suggestions would be higher when
presented with estimates of certainty, when presented graphically
or using other algorithmic approaches27. Sixth, we do not have a
detailed insight into the decision-making process that physicians
internally performed. All we have observed in this study is self-
reported data (which can be biased in many directions and from
many causes) and final prescription data. Therefore, our conclu-
sions are based on inferring that the input conditions (baseline,
peer, AI, XAI) had a direct impact on the final prescription
decisions via some internal cognitive effect on decision-making.
Alternate methodologies to further explore this decision-making
process might involve qualitative interviews and ‘think-aloud’

studies in which the verbalisation of decision-making is encour-
aged and formally analysed at aggregate level using thematic
analysis. As a result, our interpretation of the study findings and
conclusions are based on a data-driven framework of values rather
than a more cognitive theoretical framework about how exactly
the decision-making is influenced.
Notwithstanding these limitations, reviewing our findings

alongside existing literature provides important insights into
how we can improve the design and deployment of AI-based
medical decision support tools. Attempts to quantitatively
evaluate AI recommendations in general (non-clinical) problems
have demonstrated the sometimes counterintuitive nature of how
explainability impacts on performance. In one experiment, the
response shift (a marker for AI influence similar to our experiment)
was greater when an explanation was provided6. However, the
quality of the explanation (good vs. poor) did not affect this shift
with the authors suggesting that subjects might have been
reassured by the presence of an explanation when the AI
performance itself was good rather than actually assessing
explanation quality or fidelity6, a potential form of automation
bias. In a clinical environment, the consequences of erroneously
acting on poor advice can be considerable with a study among 50
general practitioners (GPs) demonstrating that only 10% were able
to correctly disagree with incorrect AI advice on a dermatology
problem28 while in a radiology setting even task experts were not
immune to the effects of poor AI advice (although they were
considerably better at rejecting it than non-task experts)8.
Explanations have traditionally been posited as a means of

rescuing users from poor AI advice though this has not clearly
been borne out in clinical studies. For example, in a study
investigating a psychiatric medication decision support tool, the
presence of explanations did not provide rescue from intentionally
poor AI recommendations suggesting a level of automation bias
that could be problematic in a real-world clinical environment10. In
our study, the explanation did not significantly increase adherence
above and beyond the AI suggestion with several possible causes.
It could be that trust and adherence was maximally achieved in
most subjects by the AI suggestion alone leading to a ceiling
effect. Or the very basic nature of the XAI was not persuasive. Or
perhaps the nature of needing to make repetitive and cognitively
burdensome decisions led users to quickly adopt a heuristic, one

Fig. 4 Post-experiment questions. a–c Shows responses to post-experiment questions broken down by training status. Self-reported
usefulness of explanations is also plotted against adherence to XAI recommendation for both fluid (d, left) and vasopressor (d, right). Lower
values indicate greater adherence and vice versa. For each boxplot, the centre line represents the median, box edges represent upper and
lower quartiles, whiskers represent 1.5× inter-quartile range and diamonds are outliers. Colour spectrum gradient over boxplots relates to how
useful XAI was rated.
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way or the other, as to whether they used the explanation in their
decision-making or not. Further still, there were several users who
commented that the variables given by the AI as part of the
feature importance explanation did not seem physiologically
plausible (see Supplementary Note 1 for a selection of post-
experiment subject comments). This poses a paradox to those
designing XAI systems. On the one hand, some might argue that a
more complex explanation could satisfy users and lead to higher
adherence. However, the strength of AI in being able to identify
patterns in large datasets that are imperceptible to human
clinicians can also be a weakness with regards to developing XAI.
If some clinicians associate the quality of an AI explanation with
physiological plausibility, then is an AI explanation based on
patterns that human clinicians don’t usually see in their practice
likely to be persuasive? Probably not. Ultimately, a mixed
qualitative-quantitative approach might be critical for getting a
better insight into the decision-making process that physicians
use and where AI can be of most benefit and least harm during
that process.
Other pertinent topics within medical AI-driven decision

support research include the purported source of the advice as
well as the experience level of the clinical audience receiving it.
Gaube and colleagues studied both clinical experts and non-task
experts for a chest radiograph diagnostic challenge with XAI
suggestions. They found that experts rated their confidence as
higher when advice was labelled as originating from an AI
(although their accuracy was unchanged) while non-task experts
had improved accuracy with the provision of explanations
(compared to experts who did not)9. The peer suggestions in
our study are not directly comparable as they were genuine rather
than synthetic suggestions (and so differed in magnitude from the
AI recommendations). However, we nonetheless also found that AI
suggestions were more influencing than peers as a source of
suggested advice. We did not, though, find any association with
clinical experience level on adherence to AI.
Taken together, our findings on a comparatively large clinical

expert population raise important questions for the meaning and
design of medical XAI systems. Specifically, we show that the
marginal impact of XAI was low in this experimental setting. The
exact type, presentation and feedback loops for medical XAI
systems that actually influence doctors remains unclear. It seems
very likely that future research will need to more comprehensively
consider social and cognitive aspects of decision-making along-
side technical deployment of AI systems. We also cast doubt on
the utility of self-reports as a valid metric for assessing XAI in
clinical experts. Further work in this area could look to higher
fidelity and more granular markers that assess the natural
behaviour of clinicians when they interact with decision support
tools. Answering these questions will be critical for bridging the
translation gap between theoretical medical AI and real-world
bedside implementation.

METHODS
Data source and AI clinical decision support system
The ‘AI Clinician’ is a reinforcement-learning based intensive care unit
(ICU) clinical decision support system that provides semi-autonomous
continuous dosing suggestions for intravenous (IV) fluid and
vasopressors12. The ‘AI Clinician’ was trained on the data of 17,083
ICU patients from the MIMIC-III database as previously described12.
MIMIC-III is an anonymised, open-access database of over 60,000 ICU
admissions from 2001–2012 in six teaching hospital ICUs from Boston
in the United States29. Briefly, patients selected for training by the AI
Clinician were adults with sepsis as defined by the sepsis-3 criteria30.
Each patient’s data were split into 4-hour time blocks. For every
4-hour time block for each of the 17,083 patients, the AI Clinician
clustered the patient into one of 750 states and produced a

suggested dose for intravenous fluid and noradrenaline (the most
commonly used vasopressor agent in septic shock)31.
Twenty four patient scenarios were chosen for inclusion in the

experiment. Twelve of these were ‘expert selected’ by trying to
ensure representation from four broad categories: (i) three
patients where both the fluid and vasopressor AI dose suggestions
were similar to what human clinicians had done in MIMIC-III, (ii)
three patients where only the AI vasopressor suggestion was
similar to humans (iii) three patients where only the AI fluid
suggestion was similar to humans and (iv) three patients where
neither AI fluid nor vasopressor suggestions were similar to
humans. These 12 patients also spanned scenarios where the
patient was receiving anywhere from no vasopressor to a large
dose (>0.5 mcg/kg/min of noradrenaline-equivalent), again to
ensure a representative patient mix. The other 12 patients were
chosen by clustering the entire MIMIC-III sepsis dataset of 17,083
patients into 12 clusters and then selecting a patient within the
closest percentile to the cluster centroid. This resulted in 12
patients that were less sick (as defined by proportion on
vasopressor support and APACHE score) than the initial 12 but
that were more representative of the MIMIC-III septic cohort. The
amount of fluid and vasopressor support is shown in Supplemen-
tary Methods 1, separated by whether the patient was ‘expert-
selected’ or ‘cluster-derived’.

Vignette experiment and conditions
We conducted an experimental human-AI interaction vignette
study for doctors using a modified between-subjects design.
There were four experimental arms. In every arm, subjects were
provided with patient data in the form of a fixed variables table
(e.g. age, gender, weight), an interactive graph displaying a limited
set of time varying features and a second larger table showing all
time varying features (see Supplementary Methods 2 for screen-
shots). This was designed to look similar to the way in which most
ICU doctors in the UK encounter patient data on their respective
electronic health records (EHRs).
Each subject (ICU doctor) performed 16 trials (Fig. 5a). The first

four trials were identical for all subjects and were used as a pre-
training period. The subsequent 12 trials comprised the main
experiment. For each trial, subjects were asked to select a dose for
fluid and a dose for vasopressor to be applied for the next hour.
We used a multi-factorial experimental design with four arms,
where each clinician experienced all four arms on different subsets
of our 24 patients. The four arms were: baseline with no additional
AI or peer human information (baseline); additional peer human
clinical information (peer, see description below); additional AI
decision support system information (AI); additional AI decision
support system with explanation of the AI decision (feature
importance, XAI). Examples of all four scenarios are available in the
Supplementary Methods 2.
For the baseline scenario, subjects viewed only the patient data.

For the peer human clinician scenario, subjects were also shown
the probability density function of IV fluid and vasopressor doses
prescribed by other doctors in the MIMIC-III dataset for patients in
the same state. This can be thought of as a proxy for what peer
clinicians have previously done for similar patients. This data was
displayed as a violin plot (consisting of a conventional box plot
with an overlaid distribution for the data derived via a kernel
density estimation (KDE)). The rationale for including peer data as
an experiment arm was to evaluate if clinicians merely want
additional information or context to support their decision
(regardless of source) or whether there is something specific
about an AI suggestion that is more or less persuasive than simply
knowing what their peers typically do.
For the AI scenario, subjects were also shown the AI Clinician

suggested doses for fluid and vasopressor in text form. For the XAI
scenario, subjects were shown the AI Clinician suggested doses as
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well as an explanation based on feature importance. The state
space for the AI Clinician was constructed using a k-means
clustering algorithm. After the algorithm converged, the cluster
centroids represented the average feature values for patients in a
particular state/cluster. A new patient would be assigned to the
state/cluster that minimised the distance from their feature values
to the respective cluster centroid. Intuitively, with over 40 features,
some features will be closer to the cluster centroid value than
others for any patient assigned to a given state. This is exploited to
rank features in terms of their proximity to the cluster centroid (or
average state feature values) given that the archetypal patient for
whom an RL agent policy action most applies is a patient who is
most typical of that state. Subjects were shown the top five ranked
features contributing to state assignment (for details see
Supplementary Methods 3). Although feature importance can be
considered a basic form of XAI, it is nonetheless in widespread use
within medical studies12,19–23.
The trial design matrix (see Supplementary Methods 4) ensured

that half the subjects saw a patient under one arm while the
others encountered the same patient under a different arm,
allowing estimation of between arm variability by controlling for
the patient. Our primary measure of interest was the difference in

prescribed dose to the same patient across the four different arms
—effectively measuring the shift in dose across arms as a measure
of impact that the arm has on clinical decisions (Fig. 5b). The
overall order of trials was varied to counterbalance any learning
effects. Statistical analyses included two-sided T-tests for compar-
ison of means (after confirming normality) and linear regression
for assessing associations. Both were performed with no adjust-
ment for multiple comparisons.

Subject recruitment and experiment conduct
The experiment was created as an interactive web page using
HTML and JavaScript (jsPsych library) that could run locally on a
laptop. Pre-cleaned data from MIMIC-III patients trained on by the
AI Clinician were checked for consistency and then feature values
were converted to standard clinical UK units.
Clinician demographics, experience and affinity to AI were

collected using a questionnaire prior to completion of the main
experiment (Fig. 5a). After the experiment, subjects further
completed a short post-experiment questionnaire (see Supple-
mentary Methods 5). Data collected for each patient scenario
included: clinician’s prescription doses for fluid and vasopressor
per patient scenario as well as time taken per patient scenario.
A convenience sample of ICU doctors was recruited with the

following inclusion criteria: (i) practising doctor, (ii) has worked for
at least 4 months in an adult ICU, (iii) currently works in ICU or has
worked in ICU within the last 6 months. Participants had the
opportunity to participate remotely via Zoom or in person.
Electronically recorded informed consent was obtained from all
participants and each experiment lasted approximately
45minutes. The study was approved by the Research Governance
and Integrity Team (RGIT) at Imperial College London (ICREC
reference 21IC7245). The institutional review board of the
Massachusetts Institute of Technology (no. 0403000206) and Beth
Israel Deaconess Medical Center (2001-P-001699/14) approved the
use of MIMIC-III for research. Because our study made use of fully
anonymised patient data, individual patient consent was not
required.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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