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Ethnic disparity in diagnosing asymptomatic bacterial
vaginosis using machine learning
Cameron Celeste 1, Dion Ming1, Justin Broce2, Diandra P. Ojo2, Emma Drobina2, Adetola F. Louis-Jacques3, Juan E. Gilbert2,
Ruogu Fang 1,2,4,5✉ and Ivana K. Parker 1✉

While machine learning (ML) has shown great promise in medical diagnostics, a major challenge is that ML models do not always
perform equally well among ethnic groups. This is alarming for women’s health, as there are already existing health disparities that
vary by ethnicity. Bacterial Vaginosis (BV) is a common vaginal syndrome among women of reproductive age and has clear
diagnostic differences among ethnic groups. Here, we investigate the ability of four ML algorithms to diagnose BV. We determine
the fairness in the prediction of asymptomatic BV using 16S rRNA sequencing data from Asian, Black, Hispanic, and white women.
General purpose ML model performances vary based on ethnicity. When evaluating the metric of false positive or false negative
rate, we find that models perform least effectively for Hispanic and Asian women. Models generally have the highest performance
for white women and the lowest for Asian women. These findings demonstrate a need for improved methodologies to increase
model fairness for predicting BV.
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INTRODUCTION
Bacterial vaginosis (BV) is a common vaginal syndrome among
women of reproductive age and is associated with a multitude of
adverse complications including the risk of preterm labor1, pelvic
inflammatory disease2–4, STIs5,6, and HIV infection7,8. The global
prevalence for BV is high, ranging from 21% to 29%, with
disproportionately higher diagnoses in Black and Hispanic
women9,10. BV is characterized by a non-optimal vaginal micro-
biome, with a shift away from a low-diversity profile dominated by
lactobacilli to a high-diversity profile with an increase in anaerobic
organisms (i.e., Gardnerella vaginalis and Prevotella bivia). Syn-
dromic BV is characterized by vaginal discomfort, malodor,
increased vaginal pH, and itching and is traditionally diagnosed
using Amsel’s criteria and/or Nugent scoring11,12. However, a
substantial number of women with BV are asymptomatic13,14 with
an absence of vaginal discharge or odor, which causes difficulty in
diagnosis and treatment15.
Recent advancements in high-throughput sequencing technol-

ogies highlight individual complexity and allow for the character-
ization of bacterial communities present within the vaginal
microbiome1,16. Community State Types (CSTs) have emerged to
further classify the vaginal microbiome with profiles being
dominated by different Lactobacilli spp (group I, II, III, V) or
without Lactobacillus dominance (group IV)16. CSTs provide
structure to categorize the complexity of microbiome differences
seen between individuals and identify trends among different
ethnic groups. Black/African American women tend to have more
diverse vaginal microbiomes than women of European descent
even when healthy17. Indeed, the relationship between vaginal
communities and BV are emerging to reveal the role of unique
microbial combinations in disease progression18,19; the complexity
of these interactions necessitate more comprehensive methods of
analysis.

Artificial intelligence (AI) and machine learning (ML) can play a
critical role in healthcare to improve patient outcomes and
healthcare delivery. These tools can analyze vast amounts of
medical data to identify patterns, make predictions, and offer
personalized treatment plans that are tailored to an individual’s
unique health profile. However, to ensure that AI and ML are
effective and safe, they must be fair and unbiased. Prior research
shows that ML models do not always perform equally well among
ethnic groups due to bias or systematic errors in decision-making
processes that can arise from various sources, including data
collection, algorithm design, and human interpretation20,21.
Furthermore, ML models can learn and replicate patterns of bias
present in the training data, resulting in unfair or discriminatory
outcomes22,23. Fair AI ensures that the algorithms are not
influenced by factors such as ethnicity, gender, or socioeconomic
status, which can further exasperate health disparities24–27.
In recent years, AI and ML have been used to analyze data for

BV, (e.g., clinical symptoms, patient demographics, and micro-
biome profiles) and have identified factors that contribute to
adverse health outcomes24. However, there is still an unmet need
to determine how AI can be used to predict BV with fairness and
to characterize unique features associated with BV that may vary
based on ethnicity. These ethnicity-specific features provide
insight into microbes that are important to consider in BV
diagnosis and treatment. Within this context, ML studies can also
identify common characteristics important for diagnosis, regard-
less of ethnicity.
ML is a useful tool to better understand these relationships and

to leverage sequencing (seq) technologies to aid in BV treatment
and diagnosis. For example, ML algorithms have been used as
classifiers for 16S rRNA seq data to diagnose BV28–30 and delineate
potential diagnostic features. However, these studies have not
considered the fairness of predictions nor evaluated how metrics
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of model performance (e.g., balanced accuracy; false positive rate,
FPR; false negative rate, FNR) vary among ethnic groups.
In this study, we determine the fairness in prediction of

asymptomatic BV using 16S rRNA seq data from a diverse cohort
of women. We compare several supervised ML models to assess
model performance for each ethnicity and identify features that
improve accuracy of prediction for each group (Asian, white, Black,
Hispanic). The significance of evaluating fairness in AI/ML is
evident as inaccuracies in diagnosis further exacerbate health
disparities among vulnerable groups. The vaginal microbiome has
been shown to vary based on ethnicity17, and ML tools provide
insights into patient-specific strategies to consider in the
development of improved diagnostics and therapeutics.

RESULTS
Model performance varies between ethnicities
The dataset used in this study was previously described16. Vaginal
species composition was characterized in vaginal fluid of 394
women by pyrosequencing of barcoded 16S rRNA genes at the
V1-V2 region. Included in the dataset are the women’s ethnicities,
the pH values of the vaginal swabs, and Nugent scores. Ethnicity
classification terms include white, Black, Asian, and Hispanic.
These terms were set by Ravel et al. and were self-identified by
each patient. For this study, a Nugent score of 7 or greater is
identified as BV positive11, otherwise the patient is identified as BV
negative. Using this threshold, BV-negative patients are comprised
of: 83 Asian, 62 Black, 65 Hispanic, and 87 white. For BV-positive
patients this dataset includes: 13 Asian, 42 Black, 32 Hispanic, and
10 white.
The models used in this study were assessed using balanced

accuracy, average precision, which is a calculation of the area
under the precision-recall curve (AUPRC), false negative rate, and
false positive rate.
Figure 1 shows the balanced accuracy and average precision of

four machine learning models (Logistic Regression (LR), Random
Forest (RF), Support Vector Machine (SVM), Multi-layer Perceptron
(MLP) classifiers) trained on the dataset. The AUPRCs for all four
models (Fig. 1a) show that the general performance of each model
is comparable. Balanced accuracy and average precision for these
models vary from 0.881 and 0.918 (Fig. 1b) and 0.9 and 0.909
(Fig. 1d), respectively.
Evaluating balanced accuracy and average precision by

ethnicity shows that the performance of these models varies
between ethnicities. Using this dataset, balanced accuracies of the
afore-mentioned models are highest for white women (.896-.975),
followed by Black women (0.911–0.941), and Hispanic women
(0.865–0.892). The models perform the least effectively for Asian
women (0.653–0.866). The average precision (AP) follows a slightly
different trend (Fig. 1d), with the highest performance for Black
women (0.957–0.977), followed by white (0.867–0.975), Hispanic
(0.877–0.897), and Asian (0.807–0.899) women, respectively. When
evaluating how different classifiers performed, Random Forest
performs best for Black women for both balanced accuracy and
average precision; conversely, Random Forest tends to be the least
accurate model when evaluated individually for white, Hispanic,
and Asian patients. For all other models (LR, SVM, MLP), average
precision and balanced accuracy are variable among ethnic
groups.
When evaluating false positive rates (FPR) by ethnicity, models

tend to perform better for Asian and white women than Hispanic
and Black women (Fig. 2a). When evaluating false negative rates
(FNR) by ethnicity, the models tend to perform better for Black
and white women than Hispanic and Asian women (Fig. 2b). When
testing on general training sets, the SVM model has the best
overall performance in balanced accuracy. For this reason, results
of later experiments are only shown for the SVM model.

Training the models on subsets of ethnicities yields limited
changes in performance
SVM models were then trained on subsets of data that contained
only one of the four ethnicities. The boxplot in Fig. 3c shows that
the trends shown in Fig. 1c are maintained. The balanced accuracy
and average precision (Fig. 3d, e) of the models are the best on
white women, followed by Black, Hispanic, and Asian women.
Comparison of the tables in Figs. 1b, d and 3b, d show that in

many cases, training the models on subsets of ethnicity decreases
performance. When evaluating how a specifically trained model
performs on its relative population of women (e.g., a model
trained on Asian women predicting BV positivity for Asian
women), all models have a worse balanced accuracy than when
trained on the entire set of data. The average precisions show a
similar trend for models trained individually on Asian and Hispanic
subsets. These trends can be attributed to the decreased number
of samples that are available to train the model. However, when
assessing average precision (AP), models trained on the Black and
white subsets have a higher average precision when predicting BV
in their relative populations.

Ethnicity-specific feature selection with model performance
To increase the model performance, feature selection methods
were implemented. Feature selection identifies variables that are
important for the model to predict BV and reduces variables that
may not be beneficial. The SVM model has the highest balanced
accuracy when all features are used to train the model; however,
feature selection methods result in a similar accuracy (Fig. 4a).
Within this study, ethnicity-specific feature selection does not
significantly improve balanced accuracy for white, Hispanic, and
Asian subsets; however, it does improve the balanced accuracy for
the Black subset (from 0.925 to 0.931) using Black features. Based
on the metric of balanced accuracy, the T-test feature selection
method performs best on the overall test set (0.915), and is used
for subsequent analysis (Fig. 4c, d).
In Fig. 4a, the white subset had the highest balanced accuracy

using all features (0.966), and remains the highest, even when
trained using different feature selection methods. Feature
selection using Correlated Point Biserial performs the worst out
of all the tests, with particularly low performance for the Asian
subset (0.753). In the multiple runs of the SVM, the Asian subset
displays the greatest variability, followed by the Hispanic subset.
In Fig. 4b, precision-recall curves show that the ethnicity-specific

feature tests have similar average precision to training with all
features. In the correlated Point Biserial, F-Test, and Gini precision-
recall curves, the Black feature set has the highest average
precision at 0.8523, 0.822, and 0.86 respectively.
In Fig. 4c, d, the balanced accuracy and average precision values

are compared using features selected from different ethnicity
groups via T-Test feature selection. The high balanced accuracy of
Black features for all ethnicity groups indicates that features
selected from the Black subset have a good representation of
important features to diagnose BV. Interestingly, the Asian subset
has the higher balanced accuracy when trained using the Black
features (0.889) compared to using all features or features selected
from all ethnicities. The Asian subset has the most variability with
each feature set and the lowest accuracy when trained on white
and Hispanic feature sets. The balanced accuracy of the white
subset is the highest, even when using features selected using
other ethnicity groups. In contrast, using the metric of average
precision (Fig. 4d), the best performances are achieved by using
the Hispanic feature set for the Asian subset, the Black feature set
for Black and white, and the white feature set for the Hispanic
subset.
When evaluating the FPR of the feature selection, FPR is the

highest overall when training with the combined selected
features, which are selected using data from the entire dataset
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(Fig. 5a). Interestingly, the model using the selected features for
white women has the lowest FPR for each ethnicity. Across all
feature sets, the model performs the worst for Hispanic women.
When examining the FNR of the feature test experiments, the

overall FNR is the highest when training the model with selected
features for white women, followed by selected features for
Hispanic, Asian, and Black women, respectively (Fig. 5b). When
examining the FNR by ethnicity, the FNR is highest for Asian
women, regardless of ethnicity-specific features.

Feature selection reveals important microbes in BV patients of
different ethnicities
The heatmap in Fig. 6 shows the most important features returned
when applying the T-Test to each group. Atopobium, Dialister,
Eggerthella, Megasphaera, Prevotella, Ruminococcaceae_3,
Sneathia, and pH show strong importance when using the
T-Test on the “all ethnicities” group. Prevotella, Megasphaera,
Gardnerella, and Dialister are shown to be the Asian feature set’s
top features. Significant features derived from the Asian subset are
not as strongly significant compared to the white, Black, and
Hispanic-derived features (Supplementary Table 1). The Black
feature set shows that Megasphaera, Prevotella, and pH show a
strong significance (p= 1.03e-15 to 6.58e-19). To a lesser degree,
Atopobium, Eggerthella, Dialister, Parvimonas, and Peptnophilus are

shown to also have high significance to the Black feature set
(p= 1.52e-8 to 1.5e-11). The Hispanic feature set is similar to the
Black feature set with the top significant features being
Megasphaera, Prevotella, pH, and Atopobium. Sneathia and
Ruminococcaceae_3 are shown to be more significant to the
Hispanic feature set than to the Black feature set. The most
significant features for the white subset are Megasphaera,
Sneathia, Parvimonas, Aerococcus, Prevotella, and Eggerthella
respectively. The Black and white feature sets have a greater
number of significant features compared to the Hispanic and
Asian feature sets. The most consistent significant features across
all groups are Megasphaera, Eggerthella, Prevotella, Dialister,
Sneathia, Ruminococcaceae_3, and pH.

DISCUSSION
The application of Fairness in AI allows for the evaluation of ML
model performance across ethnicity25. Here, we show that several
supervised learning models perform differently for ethnic groups
by assessing commonly used metrics, such as balanced accuracy
and average precision, as well as more clinically relevant metrics,
such as FPR and FNR, in a cohort of women with asymptomatic BV.
The results provide evidence that there is a discrepancy in model
performance between ethnicities.

Fig. 1 The testing of multiple machine learning models against specific ethnicities in the data set. Data was collected using 10 runs of
5-fold cross-validation. a Precision-recall curves for each model. b, d The balanced accuracy (b) and average precision (d) with 95% confidence
interval of each model as an average of the 50 runs. Bold means the highest performance among methods (columns), and underline means
the highest performance among ethnicities (rows). c, e Boxplots showing the median, upper quartile and lower quartile of the balanced
accuracy (c) and average precision (e). Outliers are excluded. Values for boxplots are available in Supplementary Tables 1 and 2.
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The selected models (RF, SVM, LR, MLP) vary in performance
using the metrics of balanced accuracy and precision; however,
the models generally perform most effectively on the white subset
and the least effectively on the Asian subset (Fig. 1). Interestingly,
Random Forest performs best for the Black subset in both
balanced accuracy and precision. These findings highlight the fact
that the diversity of microbial composition seen in Black women
may be more accurately predicted using a tree-based model.
When using metrics of importance for clinical diagnosis, such as

FPR, Hispanic and Black women are most affected, with Hispanic
women having the highest FPR (Fig. 2a, b). False positive rates
indicate a misdiagnosis of BV in women, which can result in
unnecessary costs and incorrect treatment for patients, including
over-prescription of antibiotics which can have negative
effects15,31,32. In contrast, the FNR indicates an incorrect negative
diagnosis, which can result in lack of necessary treatment,
increasing the risk of associated adverse events (e.g., STDs, pelvic
inflammatory disease, infertility, early labor). A failure to screen for
BV in the asymptomatic state can have long-lasting effects on the
quality of life. In the case of this work, Hispanic and Asian women
have the highest FNR across models, highlighting the potential for
inadequate treatment and increased health risk for these
populations.
To begin to mitigate this discrepancy and create a fair machine

learning classifier, we test whether ethnicity-specific feature sets
improve accuracy. Our results show that this method does
increase precision for Black and Asian subsets (Fig. 4d). In
addition, these ethnicity-specific feature selections provide insight
into the differences between BV presentation in women of
different ethnicities. With respect to FPR and FNR, the findings of
the ethnicity-specific feature selections were similar to those of
models without feature selections.
The inequal performance of the models could be partially due

to the imbalance of the dataset, which can make it appear that a
model is performing better than it would in a clinical setting. BV-
positive samples for the white and Asian populations were limited
in this dataset. However, there is a consistent trend that the
models performed the best on the white subset and the worst on
the Asian subset. This suggests that there are other factors
involved. One such factor may be the baseline complexity of the
vaginal microbiome in Black, Asian, and Hispanic women17,18.
The variability in definition of a healthy vaginal microbiome

could lead to inequal performance of general purpose, one-size-
fits-all ML models. The different distribution of microbes provides
domain-informed prior information for ML models that can
account for differences in prediction accuracy. Vaginal CSTs begin
to characterize the complexity of the vaginal microbiome, by
defining dominant bacteria, ranging from I-V19. It is seen in this
dataset that the majority of Black and Hispanic women belong to
community group IV, which is the most complex, and has a high

prevalence of Prevotella, Dialister, Atopobium, Gardnerella, Mega-
sphaera, Peptoniphilus, Sneathia, Eggerthella, Aerococcus, Finegol-
dia, and Mobiluncus. Other community groups are dominated by
Lactobacillus spp.16. This could explain why the models perform
worse for Black and Hispanic women than they do for white
women. The majority of women in the Asian subset did not
categorize as community group IV; however, it had the most even
distribution of patients across all community groups. This is
supported by the heatmap in Fig. 6, which offers minimal
evidence for the importance of a singular microbe to distinguish
between BV positive and BV negative in Asian women. At the
same time, the heatmap provides strong support for the
importance of certain bacteria, such as Megasphaera, for the
diagnosis of white women. Finally, we are able to see shared
features that are important for each subgroup of women, which
can inform fair molecular diagnostics33.
The ethnicity-specific feature selection provides evidence that

information from one ethnic group can assist in the decision-
making ability of a model on another ethnic group. Figure 3 shows
that training the model using Black and Hispanic features
improves model performance for Asian women, even greater
than when the model is trained using features identified from the
Asian subset. This phenomenon could be attributed to the fact
that the variety of data in the subsets of Black/Hispanic women
and Asian women are comparable. Using these feature selections,
the model can leverage the more balanced nature of Black/
Hispanic subsets and make better predictions on the unbalanced
subset of Asian participants.
It is important to recognize that these results may not be

generalizable due to the small sample size of the dataset. In
addition, the small sample sizes of the Asian and white
populations with a positive BV diagnosis may impact statistical
validity when evaluating the model performance and selecting the
most important features with respect to these racial populations.
However, it is important to note that even with these limitations,
our models identify discrepancies in accuracy across ethnicity
groups.
Due to the increasing availability and use of 16S rRNA

sequencing to characterize BV, the possibility of using ML models
is important to consider, as they can be leveraged as powerful
tools to determine the relationship between the vaginal micro-
biome composition and adverse outcomes34–38. Traditional
diagnostic tools can be limited, and more information is needed
to determine nuances based on ethnicity17. ML models developed
on data from women of multiple ethnicities can help parse
individual differences for more accurate diagnosis and better
therapeutics.
Future work should include expanding studies focused on

collecting vaginal microbiome data with respect to BV diagnosis
to improve statistical validity of ML models for predicting BV.

Fig. 2 The outcomes by ethnicity from 10 runs of 5-fold cross-validation for multiple machine learning models and feature testing
methods. a The false positive rate of each model by ethnicity as an average of the 50 runs. b The false negative rate of each model by
ethnicity as an average of the 50 runs. Outliers are excluded. Values for boxplots are available in Supplementary Tables 3 and 4.
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These studies should prioritize the collection of a balanced dataset
in regard to BV-negative and BV-positive patients in each
ethnicity. Furthermore, within this asymptomatic dataset, women
previously diagnosed with BV could be indicated, which could
provide added benefit to the ML model and further develop it to
provide an optimal performance. Due to the importance of
community group and the complexity of a patient’s vaginal
microbiome, future studies should also focus on collecting data
from women of different community state types. Lastly, future
work should focus on improving ML and AI models to detect
positive BV diagnosis with respect to differentiation in the vaginal
microbiome across ethnicity, regardless of data imbalance.

METHODS
Dataset
The dataset was originally reported by Ravel et al.16. The study was
registered at clinicaltrials.gov under ID NCT00576797. The protocol
was approved by the institutional review boards at Emory
University School of Medicine, Grady Memorial Hospital, and the
University of Maryland School of Medicine. Written informed
consent was obtained by the authors of the original study.

Preprocessing
Samples were taken from 394 asymptomatic women. 97 of these
patients were categorized as positive for BV, based on Nugent score.
In the preprocessing of the data, information about community
group, ethnicity, and Nugent score was removed from the training
and testing datasets. Ethnicity information was stored to be
referenced later during the ethnicity-specific testing. 16S rRNA
values were listed as a percentage of the total 16S rRNA sample, so
those values were normalized by dividing by 100. pH values ranged
on a scale from 1 to 14 and were normalized by dividing by 14.

Multiple runs
Each experiment was run 10 times, with a different random seed
defining the shuffle state, to gauge variance of performance.

Supervised machine learning
Four supervised machine learning models were evaluated. Logistic
regression (LR), support vector machine (SVM), random forest (RF),
and Multi-layer Perceptron (MLP) models were implemented with
the scikit-learn python library. LR fits a boundary curve to separate
the data into two classes. SVM finds a hyperplane that maximizes
the margin between two classes. These methods were implemented

Fig. 3 Ethnicity-specific training of the best overall model (SVM). Data was collected using 10 runs of 5-fold cross-validation. a Precision-
recall curves for each model trained. b, d The balanced accuracy (b) and average precision (d) of each training as an average of the 50 runs.
Bold means the highest performance among methods (columns), and underline means the highest performance among ethnicities (rows).
c, e Boxplots showing the median, upper quartile and lower quartile of the balanced accuracy (c) and average precision (e). Outliers are
excluded. Values for boxplots are available in Supplementary Tables 4 and 5.
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to test whether boundary-based models can perform fairly among
different ethnicities. RF is a model that creates an ensemble of
decision trees and was implemented to test how a decision-based
model would classify each patient. MLP passes information along
nodes and adjusts weights and biases for each node to optimize its
classification. MLP was implemented to test how a neural network-
based approach would perform fairly on the data.

K-folds cross-validation
Five-fold stratified cross validation was used to prevent
overfitting and to ensure that each ethnicity has at least two
positive cases in the test folds. Data were stratified by a
combination of ethnicity and diagnosis to ensure that each fold
has every representation from each group with comparable
distributions.

Fig. 4 Selecting the most important features for each ethnicity run on the SVM model. a A table and plot showing the balanced accuracy
for each feature selection method run on the SVM model. b Precision Recall Curves and corresponding adjusted precision values for each of
the selection methods. c Balanced Accuracy table and plot. Results show features selected for each ethnicity using the T Test method tested
against each ethnicity. d Average Precision table and plot for the same test run in c. Outliers are excluded. Values for boxplots are available in
Supplementary Tables 7–9. Bold means the highest performance among methods (columns), and underline means the highest performance
among ethnicities (rows).
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Hyper parameter tuning
For each supervised machine learning model, hyper parameter
tuning was performed by employing a grid search methodology
from the scikit-learn python library. Nested cross validation with 4
folds and 2 repeats was used as the training subset of the cross
validation scheme.

Hyper parameters
For Logistic Regression, the following hyper-parameters were
tested: solver (newton-cg, lbfgs, liblinear) and the inverse of
regularization strength C (100, 10, 1.0, 0.1, 0.01).
For SVM, the following hyper-parameters were tested: kernel

(polynomial, radial basis function, sigmoid) and the inverse
regularization parameter C (10, 1.0, 0.1, 0.01).
For Random Forest, the following hyper-parameters were

tested: number of estimators (10, 100, 1000) and maximum
features (square root and logarithm to base 2 of the number of
features).
For Multi-layer perceptron, the following hyper-parameters

were tested: hidden layer size (3 hidden layers of 10,30, and 10
neurons and 1 hidden layer of 20 neurons), solver (stochastic
gradient descent and Adam optimizer), regularization para-
meter alpha (0.0001, or .05), and learning rate (constant and
adaptive).

Metrics
The models were evaluated using the following metrics: balanced
accuracy, average precision, false positive rate (FPR), and false
negative rate (FNR). Balanced accuracy was chosen to better
capture the practical performance of the models while using an
unbalanced dataset. Average precision is an estimate of the area
under the precision recall curve, similar to AUC which is the area
under the ROC curve. The precision-recall curve is used instead of
a receiver operator curve to better capture the performance of the
models on an unbalanced dataset39. Previous studies with this
dataset reveal particularly good AUC scores and accuracy, which is
to be expected with a highly unbalanced dataset.
The precision-recall curve was generated using the true labels

and predicted probabilities from every fold of every run to
summarize the overall precision-recall performance for each
model. Balanced accuracy and average precision were computed
using the corresponding functions found in the sklearn.metrics
package. FPR and FNR were calculated computed and coded
using Equations below39.

Below are the equations for the metrics used to test the
Supervised Machine Learning models:

Precision ¼ TP
TP þ FP

(1)

Recall ¼ TP
TP þ FN

(2)

Balanced Accuracy ¼ 1
2

TP
TP þ FN

þ TN
TN þ FP

� �
(3)

FPR ¼ FP
FP þ TN

(4)

FNR ¼ FN
FN þ TP

(5)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the
number of false negatives.

Average Precison ¼
X
n

Rn � Rn�1ð ÞPn (6)

where R denotes recall, and P denotes precision.

Ethnicity specific testing
The performance of the models were tested against each other as
previously stated. Once the model made a prediction, the stored
ethnicity information was used to reference which ethnicity each
predicted label and actual label belonged to. These subsets were
then used as inputs for the metrics functions.
To see how training on data containing one ethnicity affects the

performance and fairness of the model, an SVM model was trained
on subsets that each contained only one ethnicity. Information on
which ethnicity each datapoint belonged to was not given to the
models.

Feature selection. To increase the performance and accuracy of
the model, several feature selection methods were used to reduce
the 251 features used to train the machine learning models. These
sets of features were then used to achieve similar or higher
accuracy with the machine learning models used. The feature
selection methods used included the ANOVA F-test, two-sided T-
Test, Point Biserial correlation, and the Gini impurity. The libraries
used for these feature selection tests were the statistics and scikit
learn packages in Python. Each feature test was performed with all
ethnicities, then only the white subset, only Black, only Asian, and
only Hispanic.
The ANOVA F-Test was used to select 50 features with the

highest F-value. The function used calculates the ANOVA F-value

Fig. 5 False positive and false negative rates for SVM models using T Test feature selection. a The false positive rate for the T Test feature
selection method tested on each ethnicity. b The false negative rate for the T Test feature selection method tested on each ethnicity. Outliers
are excluded. Values for boxplots are available in Supplementary Tables 10 and 11.
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between the feature and target variable using variance between
groups and within the groups. The formula used to calculate this is
defined as:

F ¼ SSB=ðk � 1Þ
SSW=ðn� kÞ (7)

Where k is the number of groups, n is the total sample size, SSB
is the variance between groups, and SSW is the sum of variance
within each group. The two-tailed T-Test was used to compare the
BV negative versus BV positive group’s rRNA data against each
other. The two-tailed T-Test is used to compare the means of two
independent groups against each other. The null hypothesis in a
two-tailed T-Test is defined as the means of the two groups being
equal while the alternative hypothesis is that they are not equal.
The dataset was split up into samples that were BV negative and
BV positive which then compared the mean of each feature

against each other to find significant differences. A p-value <0.05
allows us to reject the null hypothesis that the mean between the
two groups is the same, indicating there is a significant difference
between the positive and negative groups for each feature. Thus,
we use a p-value of less than 0.05 to select important features. The
number of features selected were between 40 and 75 depending
on the ethnicity group used. The formula for finding the t-value is
defined as:

t ¼ x1 � x2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1Þ2
n1

þ ðs2Þ2
n2

q (8)

x1;2 being the mean of the two groups. s1;2 as the standard
deviation of the two groups. n1;2 being the number of samples in
the two groups. The p-value is then found through the t-value by
calculating the cumulative distribution function. This defines

Fig. 6 A heatmap showing the top ~50 features selected by the T Test method for the SVM model. The intensity of the heatmap shows
higher significance. The corresponding p-values are log transformed. Features are ordered in alphabetical order. Values for the heatmap are
available in Supplementary Table 12.
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probability distribution of the t-distribution by the area under the
curve. The degrees of freedom are also needed to calculate the p-
value. They are the number of variables used to find the p-value
with a higher number being more precise. The formulas are
defined as:

df ¼ n1 þ n2�2 (9)

p ¼ 2 � 1� CDF tj j;dfð Þð Þ (10)

where df denotes the degrees of freedom and n1;2 being the
number of samples in the group. The Point Biserial correlation test
is used to compare categorical against continuous data. For our
dataset was used to compare the categorical BV negative or
positive classification against the continuous rRNA bacterial data.
Each feature has a p-value and correlation value associated with it
which was then restricted by an alpha of 0.2 and further restricted
by only correlation values >0.5 showing a strong correlation. The
purpose of the alpha value is to indicate the level of confidence of
a p-value being significant. An alpha of 0.2 was chosen because
the Point Biserial test tends to return higher p-values. This formula
is defined as:

rpb ¼ M1 �M0ð Þ
s

ffiffiffiffiffi
pq

p
(11)

where M1 is the mean of the continuous variable for the
categorical variable with a value of 1; M0 is the mean of the
continuous variable for the categorical variable with a value of 0; s
denotes the standard deviation of the continuous variable; p is the
proportion of samples with a value of 1 to the sample set; and q is
the proportion of samples with a value of 0 to the sample set.
Two feature sets were made from the Point Biserial test. One

feature set included only the features that were statistically
significant using a p-value of <0.2 which returned
60–100 significant features depending on the ethnicity set used.
The second feature set included features that were restricted by a
p-value < 0.2 and greater than a correlation value of 0.5. This
second feature set contained 8–15 features depending on the
ethnicity set used.
Features were also selected using Gini impurity. Gini impurity

defines the impurity of the nodes which will return a binary split at
a node. It will calculate the probability of misclassifying a
randomly chosen data point. The Gini impurity model fitted a
Random Forest model with the dataset and took the Gini scores
for each feature based on the largest reduction of Gini impurity
when splitting nodes. The higher the reduction of Gini value, the
impurity after the split, the more important the feature is used in
predicting the target variable. The Gini impurity value varies
between 0 and 1. Using Gini, the total number of features were
reduced to 3–10 features when using the ethnicity-specific sets
and 20 features when using all ethnicities. The formula is defined
as:

Gini ¼ 1�
X

pi
2 (12)

where pi is the proportion of each class in the node. The five sets
of selected features from each of the five ethnicities were used to
train a model using four supervised machine learning algorithms
(LR, MLP, RF, SVM) with the full dataset using our nested cross-
validation schemed as previously described. All features were
selected using the training sets only, and they were applied to the
test sets after being selected for testing. Five-fold stratified cross
validation was used for each model to gather including means
and confidence intervals.
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