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Natural language processing system for rapid detection and
intervention of mental health crisis chat messages
Akshay Swaminathan 1,2,9✉, Iván López1,2,9, Rafael Antonio Garcia Mar3,4, Tyler Heist1, Tom McClintock1, Kaitlin Caoili1,
Madeline Grace 1, Matthew Rubashkin1, Michael N. Boggs1, Jonathan H. Chen 5, Olivier Gevaert 6, David Mou1,7 and
Matthew K. Nock8

Patients experiencing mental health crises often seek help through messaging-based platforms, but may face long wait times
due to limited message triage capacity. Here we build and deploy a machine-learning-enabled system to improve response
times to crisis messages in a large, national telehealth provider network. We train a two-stage natural language processing
(NLP) system with key word filtering followed by logistic regression on 721 electronic medical record chat messages, of which
32% are potential crises (suicidal/homicidal ideation, domestic violence, or non-suicidal self-injury). Model performance is
evaluated on a retrospective test set (4/1/21–4/1/22, N= 481) and a prospective test set (10/1/22–10/31/22, N= 102,471). In
the retrospective test set, the model has an AUC of 0.82 (95% CI: 0.78–0.86), sensitivity of 0.99 (95% CI: 0.96–1.00), and PPV of
0.35 (95% CI: 0.309–0.4). In the prospective test set, the model has an AUC of 0.98 (95% CI: 0.966–0.984), sensitivity of 0.98 (95%
CI: 0.96–0.99), and PPV of 0.66 (95% CI: 0.626–0.692). The daily median time from message receipt to crisis specialist triage
ranges from 8 to 13 min, compared to 9 h before the deployment of the system. We demonstrate that a NLP-based machine
learning model can reliably identify potential crisis chat messages in a telehealth setting. Our system integrates into existing
clinical workflows, suggesting that with appropriate training, humans can successfully leverage ML systems to facilitate triage
of crisis messages.
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INTRODUCTION
Between 2000–2020, rates of suicide increased worldwide1,2 and
by over 30% in the United States3. In 2020 alone, 1.2 million
Americans attempted suicide and nearly 46,000 died by suicide3,4.
Patients who are suicidal often seek help via technological
platforms such as crisis hotlines, text lines, or online chat lines.
In concordance with the steadily growing rates of suicide and
suicidal ideation over the years, crisis hotlines have been
experiencing an increased volume of callers and messagers. For
example, the NAMI HelpLine saw nearly a 60% increase in help-
seekers between 2019 to 2021, and despite tripling their staff, the
HelpLine dropped call rate remained as high as 25%5.
A large problem that chat and instant messaging-based

platforms face is capacity and triage. When help-seekers out-
number available responders, responders are unable to effectively
respond to the plethora of incoming messages. In 2020, the
National Suicide Prevention Lifeline was only able to respond to
approximately 30% and 56% of incoming chats and text
messages, respectively6.
Furthermore, many platforms use a first-come-first-serve

approach7, where messages are placed in a queue in the order
that they are received, allowing high-risk messages to be buried
beneath less urgent messages. It is imperative that technology
platforms receiving crisis messages be able to effectively
distinguish between urgent and non-urgent messages.
Nascent research has demonstrated that machine learning (ML)

can be applied to automate triage of crisis messages8–11. One

model built by Xu et al., achieved high positive predictive value
and sensitivity for non-crises cases (0.984 and 0.942, respectively)
and for crises-cases achieved precision and recall of 0.649 and
0.870, respectively8. Crisis Text Line R&D built a system that uses
two binary classification models to quickly identify messages that
indicate suicidal risk and ongoing self-harm (recall = 0.89)7.
To improve response times to patients in crisis, we developed

Crisis Message Detector-1 (CMD-1), a natural language processing
(NLP) system to detect potential crisis messages sent by patients
of a large, national tele-mental health platform that serves over
200k patients. Patients can send chat messages to their clinicians
via a mobile web platform, and many use the chat feature to reach
out for help during an acute behavioral health crisis. CMD-1 was
designed to support the crisis response team, whose role is to
support patients experiencing crises, including suicidal/homicidal
ideation, domestic violence, or non-suicidal self-injury. The system
was used to surface concerning messages to the crisis response
team with the aim of decreasing response times to patients in
crisis. Importantly, CMD-1 aided but never replaced human review
of patient chat messages—all surfaced messages were reviewed
by a human prior to patient intervention, and any messages not
surfaced by the model were reviewed by a human as part of the
typical crisis response workflow. We describe how the crisis
specialist team used CMD-1 as part of their clinical workflows and
report the results of a retrospective validation and large
prospective validation (over 120,000 messages).
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RESULTS
Message and patient characteristics
The training set included 721 messages (32% true crisis events)
sent between April 1, 2021 and April 1, 2022 from 563 distinct
patients (Table 1). There was a median of 1 (95% CI: 1–1) message
sent per patient, and the median number of characters per
message in the training set was 201 (95% CI: 181–221). Of the 563
distinct patients, 74% were female, 65% were aged 25 to 45, 29%
had a diagnosis of generalized anxiety disorder with or without
other comorbidities, and 32% had been in treatment between two
to four weeks when their first message in the training set was sent.
The retrospective test set included 481 messages (32% true

crisis events) sent between April 1, 2021 and April 1, 2022 from
384 distinct patients. There was a median of 1 (95% CI: 1–1)
message sent per patient, and the median number of characters
per message in the training set was 204 (95% CI: 184–219). Of the
384 distinct patients, 73% were female, 65% were aged 25 to 45,

27% had a diagnosis of generalized anxiety disorder with or
without other comorbidities, and 29% had been in treatment
between two to four weeks when their first message in the
training set was sent.
The prospective test set included 102,471 messages (0.55% true

crisis events) sent between October 1, 2022 and October 31, 2022
from 32,803 distinct patients (SI Table 1). Of these, 9,795 (5.4%
events) passed through the crisis terms filter and 92,676 (0.03%
events) did not. There was a median of 2 (95% CI: 2–2) messages
sent per patient, and the median number of characters per
message in the training set was 92 (95% CI: 91–92). Of the 32,803
distinct patients, 68% were female, 73% were aged 25 to 45, 34%
had a diagnosis of generalized anxiety disorder with or without
other comorbidities, and 79% had been in treatment between two
to four weeks when their first message in the training set was sent.
Overall, the training set was similar to the retrospective test set,

but contained a smaller proportion of males (25% vs. 28%), greater
proportion of patients aged 18–25 (23% vs. 17%), smaller

Table 1. Message characteristics and patient demographic and clinical characteristics for the training set (n= 721); retrospective test set (n= 481);
and prospective test set, separated by messages that passed through the crisis terms filter and were presented to the prediction model (n= 9795),
and those that did not pass through the crisis terms filter and were automatically classified as non-crises (n= 92,676).

Metric Training set Retrospective test set Prospective test set—passed
through filter

Prospective test set—did not
pass through filter

Message-level attributes

Total N distinct messages 721 481 9795 92,676

N true crisis events (%) 225 (31.1%) 158 (32.8%) 529 (5.4%) 28 (0.03%)

Median N messages per patient (95% CI) 1 (95% CI: 1–1) 1 (95% CI: 1–1) 1 (95% CI: 1–1) 2 (95% CI: 2–2)

Date range of messages included 4/1/21–4/1/22 4/1/21–4/1/22 10/1/22–10/31/22 10/1/22–10/31/22

Median N characters per message (95%
CI)

201 (95% CI:
181–221)

204 (95% CI: 184–219) 170 (95% CI: 167–173) 83 (95% CI: 82–84)

Patient-level attributes

Total N distinct patients 563 384 6973 31,225

Gender

Female 419 (74%) 279 (73%) 4832 (69%) 21,157 (68%)

Male 135 (24%) 96 (25%) 1899 (27%) 8790 (28%)

Other 9 (1.6%) 9 (2.3%) 242 (3.5%) 1278 (4.1%)

Age (years) at date of first message sent

18–25 129 (23%) 81 (21%) 1161 (17%) 5283 (17%)

25–45 367 (65%) 248 (65%) 5051 (72%) 22,765 (73%)

45–60 55 (9.8%) 49 (13%) 664 (9.5%) 2779 (8.9%)

>60 12 (2.1%) 6 (1.6%) 97 (1.4%) 398 (1.3%)

Mental health diagnosis at the time of
first message sent

Generalized anxiety disorder (+other
comorbidities)

177 (31%) 108 (28%) 2403 (34%) 10,405 (33%)

Major depressive disorder (+other
comorbidities excluding GAD)

160 (28%) 97 (25%) 1988 (29%) 8775 (28%)

Bipolar disorder (+other comorbidities
excluding GAD and MDD)

41 (7.3%) 26 (6.8%) 567 (8.1%) 2170 (6.9%)

Other 88 (16%) 69 (18%) 1757 (25%) 8604 (28%)

No diagnosis 97 (17%) 84 (22%) 258 (3.7%) 1271 (4.1%)

Days from treatment initiation to first
message sent

<2 weeks 112 (20%) 78 (20%) 240 (3.4%) 1681 (5.4%)

2–4 weeks 178 (32%) 112 (29%) 3589 (51%) 23,805 (76%)

4–8 weeks 83 (15%) 54 (14%) 152 (2.2%) 961 (3.1%)

8–12 weeks 82 (15%) 67 (17%) 226 (3.2%) 1591 (5.1%)

>12 weeks 67 (12%) 31 (8.1%) 237 (3.4%) 1423 (4.6%)

Unknown 41 (7.3%) 42 (11%) 2529 (36%) 1764 (5.6%)
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proportion of patients with generalized anxiety disorder (29% vs.
34%), and smaller proportion of patients who were in treatment
between 2–4 weeks before their first message was sent (32%
vs. 79%).
Compared to patients in the retrospective test set, patients in

the prospective test set were more likely to be male (28% vs. 25%),
to have generalized anxiety disorder (34% vs. 28%), and to have
been in treatment for 2–4 weeks (79% vs. 29%). When comparing
messages in the prospective test set that passed through the crisis
terms filter to those that did not, messages that passed through
the crisis terms filter were longer (170 characters [95% CI:
167–173] vs. 83 [95% CI: 82–84]).

CMD-1 performance
On the retrospective test set, the model had an AUC of 0.82 (95%
CI: 0.784–0.862), sensitivity of 0.99 (95% CI: 0.955–0.998),
specificity of 0.12 (95% CI: 0.085–0.158), PPV of 0.35 (95% CI:
0.309–0.4), and NPV of 0.95 (95% CI: 0.831–0.994) (Table 2). The
calibration slope was 0.48 (p= <0.001) and the calibration
intercept was 0.43 (p < 0.001). The calibration curve and plot
showed reasonable concordance between actual and predicted
event probabilities (SI Figs. 1 and 2). The features selected by the
model were reasonably associated with the crisis outcome (SI
Table 3).
On the prospective test set, the crisis term filter had a sensitivity

of 0.993 (95% CI: 0.982–0.998), specificity of 0.910 (95% CI:
0.908–0.911), PPV of 0.0567 (95% CI: 0.052–0.062), and NPV of
0.99996 (95% CI: 95% CI: 0.999–1.00) (SI Table 2). The logistic
regression model showed stronger discrimination, with an AUC of
0.99 (95% CI: 0.987–0.991), sensitivity of 0.97 (95% CI: 0.95–0.981),
specificity of 0.97 (95% CI: 0.966–0.973), PPV of 0.66 (95% CI:
0.626–0.692), and NPV of 0.99 (95% CI: 0.997–0.999). The
calibration slope was 0.96 (p= <0.001) and the calibration
intercept was –1.43 (p < 0.001). The calibration curve and plot
showed reasonable concordance between actual and predicted
event probabilities when the predicted probabilities were greater
than 0.5 or less than 0.1, and overestimation of event probabilities
when the predicted probabilities were between 0.1 and 0.5 (SI
Figs. 1 and 2).
For the prospective test set (10/1/22–10/31-22), model perfor-

mance was measured daily. Sensitivity ranged from 0.89 to 1.00,
specificity ranged from 0.994 to 0.999, PPV ranged from 0.48 to
0.85, and NPV ranged from 0.999 to 1.000 (Fig. 1).
Among patients aged 18–21 in the prospective test set, the

model had an AUC of 0.98 (95% CI: 0.9756–0.9936), sensitivity of
0.976 (95% CI: 0.871–0.999), specificity of 0.965 (95% CI:
0.944–0.979), PPV of 0.702 (95% CI: 0.566–0.816), and NPV of
0.998 (95% CI: 0.988–1). The calibration slope was 1.21

(p= <0.001) and the calibration intercept was –1.34 (p < 0.001)
(Table 3).
Failure analysis of 17 false negatives (SI Table 4) revealed that

the 4 messages that did not pass through the crisis terms list
contained phrases not included in the terms list (e.g., “ER,” “tired of
being alive,” “not exist,” “not feeling okay”).

Response times
From October 1 to October 31, the daily median time from
message sent to CMD-1 post ranged from 8 to 11min (average
IQR 5.1 min), the daily median time from CMD-1 post to crisis
specialist triage ranged from 0 to 1min (average IQR 1.1 min), and
the daily median time from message sent to crisis specialist triage
ranged from 8 to 13min (average IQR 4.7 min) (Fig. 2). Prior to
deploying CMD-1, internal analysis showed that response times to
chat messages were over 9 h on average.

DISCUSSION
While crisis helplines provide much needed support to individuals
experiencing mental health emergencies, they can be limited by
human capacity12 and are typically not integrated within
healthcare systems. With increasing volumes of requests for help5

that are triaged on a first-come-first-serve basis, time-sensitive
crisis messages from high-risk individuals may wait in a queue
behind less urgent messages. We built CMD-1, an NLP-enabled
system that detects and surfaces crisis messages to enable faster
triage from a crisis response team. We deployed CMD-1 within a
large, national telehealth provider platform and performed a
prospective validation on over 120k messages coming from over
30k distinct patients. We found that CMD-1 was able to detect
high-risk messages with high accuracy (97.5% sensitivity and
97.0% specificity) and enabled crisis specialists to triage crisis
messages within 10 min (median) of message receipt.
The speed at which a high-risk individual in crisis is contacted is

especially important because immediate intervention can ulti-
mately divert them away from a suicide attempt (Kelly et al., 2008;
McClatchey et al., 2019). CMD-1 reduced response times to crisis
chat messages by nearly two orders of magnitude, from over 9 h
on average to 9min (median). This supports the findings of
previous work using ML to enhance a clinical team’s capability to
satisfactorily address the crises of high-risk individuals (Crisis Text
Line, and Xu et al., 2021). For example, Crisis Text Line used a
machine learning model to reduce wait times for high risk texters
from 8min (median, 75th percentile: 35 min) down to 3min
(median, 75th percentile: 11 min). One key advantage of CMD-1 is
that it was integrated within the patient’s clinical workflow,
allowing clinicians to be notified of patient crises as they happen.
Indeed, we have shown that notifying clinicians of patient crises

Table 2. Model performance for the validation set (n= 481) and prospective test set (n= 102,471).

Metric Retrospective test set Prospective test set

AUC 0.82 (95% CI: 0.78–0.86) 0.975 (95% CI: 0.966–0.984)

Probability threshold for binary classification 0.01 0.01

Sensitivity 0.99 (95% CI: 0.955–0.998) 0.975 (95% CI: 0.958–0.986)

Specificity 0.12 (95% CI: 0.085–0.158) 0.970 (95% CI: 0.966–0.973)

PPV 0.35 (95% CI: 0.309-0.4) 0.66 (95% CI: 0.626–0.692)

NPV 0.95 (95% CI: 0.831–0.994) 0.99 (95% CI: 0.997–0.999)

Calibration slope 0.48 (p < 0.001) 0.96 (p < 0.001)

Calibration intercept 0.43 (p < 0.001) –1.43 (p < 0.001)

For measures of classification accuracy, the indicated probability threshold was applied. The Wald test was used to calculate p-values for calibration slope and
intercept.
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can lead to more timely follow-up care13. Crisis response systems
that are integrated within provider organizations have the
potential to impact key aspects of patient care. Future work
might investigate the impact of CMD-1 and response times on
downstream health outcomes such as hospitalization or ED
utilization.
Despite growing interest in ML applications in healthcare in

recent years, ML models are rarely deployed in health systems,
with most studies presenting model development without
translation to clinical care14. Deploying a ML model into clinical
workflows requires technical considerations (e.g., model accuracy),
operational considerations (e.g., model interpretability, user

experience), and technological infrastructure (e.g., data storage
capabilities, ability to generate predictions in near-real time)15,16.
In developing CMD-1, a cross-functional team of clinicians worked
together to address these considerations. Clinicians and data
scientists collaborated to define a meaningful outcome and select
an appropriate probability threshold for classification. Clinicians
and data engineers collaborated to design a simple, effective user
interface for the CMD-1 Slack posts. Data scientists and data
engineers collaborated to embed the ML model within a robust
data infrastructure that enabled near real-time predictions and
data capture.
The superior performance of CMD-1 in the prospective test set

compared to the retrospective test set warranted further
investigation. We hypothesized that the higher AUC (0.98 vs.
0.82) and higher specificity (0.97 vs. 0.12) in the prospective test
set compared to the retrospective test set was due to differences
in both the data sampling methodology as well as class
imbalance. To increase the prevalence of true crises in the training
and retrospective test sets, we included all messages sent in the
seven days prior to a true crisis, as recorded in a crisis event
tracker. While this enabled us to enrich our training set with true
crisis messages, the included non-crisis messages were not
representative of non-crisis messages in the deployment setting.
We hypothesized that the non-crisis messages preceding crisis
events were more difficult to distinguish from crisis messages than
non-crisis messages not associated with crisis events, and that this
explained the lower AUC and specificity during retrospective
evaluation. For example, the message “I want nothing. I used to
want things, now I don’t want anything… I sense a danger”, which
preceded a crisis, was likely more difficult to accurately classify as
a non-crisis than the message “Thanks for helping me meet with
someone,” which did not precede a crisis. The fact that non-crisis
messages in the prospective test set were shorter than those in
the training and retrospective test sets lends further support to
this idea.
To confirm this hypothesis, we show that the median predicted

probability for non-crisis messages in the retrospective test set
was 0.079 [IQR: 0.026–0.170], while the median predicted
probability for non-crisis messages in the prospective test set

Fig. 1 Model performance and response time metrics for the prospective test set (n= 120,471 total messages from 10/1/22–10/31/22).
A Discrimination metrics by day along with the total number of messages sent per day. B Response time statistics across three sequential time
points: (1) message sent by patient, (2) CMD-1 post to crisis specialist team, and (3) crisis specialist triage. Median (solid lines) and 25th–75th
percentile range (shaded) are shown.

Table 3. Model performance for patients aged 18–21 within the
prospective test set.

Metric Value

Total N distinct messages sent 5579

Total N distinct messages passing terms
filter

525

N true crisis events (%) 0.72%

AUC 0.98 (95% CI: 0.9756–0.9936)

Probability threshold for binary
classification

0.01

Sensitivity 0.98 (95% CI: 0.871–0.999)

Specificity 0.97 (95% CI: 0.944–0.979)

PPV 0.70 (95% CI: 0.566–0.816)

NPV 1.00 (95% CI: 0.988-1)

Calibration slope 1.21 (p < 0.001)

Calibration intercept –1.34 (p < 0.001)

The Wald test was used to calculate p-values for calibration slope and
intercept.
For measures of classification accuracy, the probability threshold of 0.01
was applied.
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was 0.019 [IQR: 0.0027–0.069], which is much closer to the model’s
decision boundary of 0.01 (SI Table 5).
In addition, the difference between retrospective and prospec-

tive test set values caused by data sampling methodology was
exacerbated by the increased proportion of non-crisis messages in
the prospective test set. To further confirm this hypothesis, we
conducted a sensitivity analysis where we randomly down-
sampled the proportion of non-crisis messages in the prospective
test set so that the event rate matched that of the retrospective
test set. Over 100 iterations, the median AUC on the modified
prospective test set with down-sampled true negatives was 0.82
[IQR: 0.82–0.82], which nearly exactly matches the AUC of 0.82 in
the retrospective test set (SI Fig. 3). This suggests that the
performance of CMD-1 was comparable in both retrospective and
prospective test sets, and that differences in AUC could largely be
attributed to differences in the proportion of and type of non-
crisis messages. Other contributing factors to the differences in
model performance may include changes in the patient popula-
tion between April and October 2022. For example, compared to
patients in the retrospective test set, patients in the prospective
test set were more likely to be male, to have generalized anxiety
disorder, and to have been in treatment longer.
One limitation of our approach is our use of the crisis terms

filter. As discussed above, the terms filter excluded messages from
being evaluated by the NLP model if they did not contain at least
one phrase from the filter. While our filter was broad and curated
manually by experts, some messages that may otherwise be
flagged as crises could be filtered out by the terms filter. One way
to quantify this would be an ablative study—removing one term
from the terms list at a time and quantify changes in our
experimental outcomes. Using this, one can estimate the number
of messages that would be flagged as crises after adding more
terms to the filter.
Another limitation is the size of our training set and the fact that

we artificially enriched the training set for true crises. As described
in “Methods” section, due to the low prevalence of crisis messages
(<1%), we enriched the training set and retrospective test set for
crisis messages for efficiency of data labeling. The training set was
721 messages, and the prevalence of crisis messages in the
prospective test set was 0.6% compared to 32% in the training
and retrospective test sets. Applying a prediction model to a
dataset with a different event rate than the dataset used to train
the model can result in mis-calibrated predicted risks, thus
impacting downstream classification17. Further, class imbalance
corrections like random under-sampling of non-events without

subsequent recalibration has been shown to lead to miscalibra-
tion. There are two reasons why these risks of miscalibration were
mitigated when deploying CMD-1. First, CMD-1 is a classifier and
not a continuous risk prediction model, meaning that the impact
of miscalibration on model discrimination is limited to predicted
risks close to the classification threshold. This is reinforced by the
strong sensitivity and specificity of the model on the prospective
test set. Second, deploying CMD-1 in a population where the
event rate is lower than that of the training dataset would be
expected to lead to inflated predicted risks and therefore more
false positives, not more false negatives. This is acceptable given
our 20 to 1 preference for false positives over false negatives for
this use case.
The moderate PPV of CMD-1 could also be considered a

limitation. With approximately four out of every 10 messages
surfaced being a false positive, there is ample opportunity to
improve the accuracy of CMD-1 to decrease wasted human effort
of triaging false positives. Exploring the performance of other
word embeddings like word2vec or other prediction functions like
support vector machines, random forest, or deep learning
architectures such as large language models could improve the
PPV of CMD-1 without sacrificing sensitivity.
Overall, CMD-1 serves as a promising model for ML-enabled

solutions to drive improvements in mental healthcare delivery. By
using technology to automate a manual task, CMD-1 increases
operational efficiency and reduces wait times for patients. With
demand for mental health services far exceeding supply, providers
must leverage technology and data to increase access to care and
make the best use of available human capacity.

METHOD
This study followed the Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (T RIPOD)
guidelines.

Data source
Cerebral is a national tele-mental health provider that receives
thousands of patient messages daily via a HIPAA-compliant chat
system available through a web and mobile application. This
allows patients to connect with their care team on a variety of
topics such as appointment rescheduling, medications, and more.
It also serves as a form of contact for patients who are
experiencing a crisis. To develop our model, we considered
messages in Cerebral’s database that were sent by patients via the

Fig. 2 An example Slack post made by the CMD-1 alerter to crisis specialists. The post contains the text of the predicted crisis message,
unique message and patient identifiers, a link to the patient’s EMR chart, the time the message was sent by the patient, the label
(“appropriately flagged” or “inappropriately flagged”) recorded by the crisis specialist, and emoticons used by crisis specialists.
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chat system between 04/01/2021 and 10/31/2022. Model devel-
opment and validation was performed using three datasets. The
training set and retrospective test set included messages sent
between 04/01/2021 and 04/01/2022 (random 60:40 split between
training set and retrospective test set). The prospective test set
included messages sent between 10/01/2022 and 10/31/2022.

Ethics approval
All patients provided written consent to receive telehealth services
at Cerebral, which is a prerequisite to receiving care and accessing
the chat system. This study was an analysis of routinely collected
electronic health record data, and posed no additional risk to
patients. The Stanford University IRB determined that this study
does not qualify as human subjects research, and as such did not
warrant further review.

Inclusion criteria and crisis terms filter
Crisis messages were rare in the total population of messages sent
from 04/01/2021 through 04/01/2022 ( < 1%). To increase the
efficiency of data labeling, we excluded messages that did not
contain phrases that were commonly found in crisis messages. We
developed a crisis terms filter that contained 275 common words
and phrases found in crisis text messages, such as “feel terrible,”
“hopelessness,” and “negative thoughts” (Supplementary Informa-
tion “Crisis term list”). Words in the terms filter were lemmatized to
maximize sensitivity. Lemmatization groups the inflected forms of
a word into one entity (e.g., “ran,” ”runs,” “run” → “run”). Messages
that did not match a term in the crisis terms filter were excluded
from the training set and retrospective test set. Additionally, when
the machine learning model was deployed on the prospective test
set, only messages that passed through the crisis terms filter were
passed to the model for prediction. As more crisis messages were
identified throughout the labeling process (described below) the
terms filter was updated.
Starting with all 10,063,900 messages sent in the electronic

medical record (EMR) chat between 04/01/2021 and 04/01/2022,
we randomly sampled 200,000 for ease of data processing. We
then excluded 145,737 messages sent by care team members,
yielding 54,263 messages sent by patients. We then applied the
crisis term filter, which excluded 50,213 messages, yielding 4050
messages that included a term associated with a crisis. We then
excluded duplicate messages, yielding 3969 messages that were
eligible for labeling. In general, duplicate messages tended to be
shorter (e.g., “hello?,” “ok,” “yes,” “no”) than the average message
length.
From the 3969 messages eligible for labeling, the labeled

messages that made up the training and retrospective test sets
were selected in two stages. First, a random sample of 596
messages sent between 04/01/2021 and 10/31/2022 were labeled.
Of these only 17 (2.8%) were crisis messages. To increase the
proportion of crisis messages in the labeled set, we used a tracker
of patient crises maintained by the Crisis Response team. This
tracker documented instances of all patient crises that were self-
reported by patients and escalated to the Crisis Response team.
We cross-referenced the data in this tracker with EMR chat
message data to identify messages sent by patients in crisis that—
we hypothesized—were more likely to indicate a crisis. For
example, if the tracker mentioned that a patient reported a crisis
on 5/1/21 at 5 pm ET, we labeled all chat messages sent by that
patient up to seven days before 5/1/21 at 5 pm ET. Using this
approach, we labeled an additional 606 messages, of which 365
(60%) were crises. Taken together, the labeled set included
596+ 606= 1202 messages, of which 382 (32%) were true crises.
Of these, 721 (60%) were randomly sampled for the training set
and 481 (40%) were randomly sampled for the retrospective test
set (Fig. 3). Before deploying the model on the prospective test
set, the model was re-trained on all labeled data (1202 messages).

As part of prospective validation, we deployed the model
between 10/01/2022 and 10/31/2022. Out of all 504,709 messages
sent between those dates, we excluded messages sent by care
team members, yielding 102,471 messages sent by patients. These
messages comprised the prospective test set. Because the
prospective validation was designed to evaluate the performance
of both the crisis terms filter and the machine learning model,
messages that did not pass through the crisis terms filter were not
excluded from the prospective test set. Given the prospective
model deployment, duplicate messages were not excluded (Fig. 3).

Outcome
The outcome was a binary indicator of whether a message
warranted further attention from a crisis specialist. A message
warranted further attention if it indicated possible suicidal
ideation, homicidal ideation, domestic violence, or non-suicidal
self-injury.

● Suicidal ideation was defined as “thoughts about or a
preoccupation with killing oneself, often as a symptom of a
major depressive episode”18.

● Homicidal ideation was defined as “Thinking about ending or
making plans to end another’s life”19.

● Domestic violence was defined as “a pattern of abusive
behavior in any relationship that is used by one partner to
gain or maintain power and control over another intimate
partner… Domestic violence can be physical, sexual, emo-
tional, economic, psychological, or technological actions or
threats of actions or other patterns of coercive behavior that
influence another person within an intimate partner relation-
ship”20.

● Non-suicidal self-injury was defined as “The direct, deliberate
destruction of one’s own body tissue in the absence of suicidal
intent”21.

Examples of messages that would warrant further attention
include: “I have so many suicidal thoughts” and “I want to end it
now”. Messages that were ambiguous were considered to warrant

Fig. 3 Cohort inclusion criteria. Flow diagram depicting inclusion
criteria for the training set, retrospective test set, and prospective
test set.
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further attention. Examples of ambiguous messages include “I
need help” and “I’m so depressed”.
Data labeling on the training set and retrospective test set was

performed by three labelers who were trained by crisis specialists,
and data points where labelers were uncertain were reviewed by
crisis specialists. Labeler inter-rater reliability calculated on 300
random messages was high, with perfect concordance on 92.8%
of messages. Discrepant messages were adjudicated by crisis
specialists. In total, there were 1202 labeled messages used for
model development (721 training set and 481 retrospective test
set).
Data labeling on the prospective test set for true positives, false

positives, and false negatives was performed by crisis specialists.
For messages that the model surfaced (true positives and false
positives) labels were recorded by crisis specialists using the Slack
user interface of CMD-1 (described below, Fig. 4). For messages
that the model did not surface (true negatives and false
negatives), those that were crisis messages (false negatives) were
eventually surfaced to crisis specialists through usual channels
(e.g., patient chat support personnel would raise the message to a
crisis specialist) and the crisis specialist would record the false
negative in a spreadsheet. We expected this method of labeling
false negatives to be high fidelity as all crisis messages are
required by policy to be routed to the crisis specialist team. All
messages that were not surfaced by CMD-1 and that were not

recorded by crisis specialists as false negatives were presumed to
be true negatives.

Predictors
Machine learning modeling was performed on messages that
passed through the crisis terms filter. Modeling was performed at
the level of individual messages (a particular patient may have
sent multiple messages). Features were derived entirely from the
text of the messages. TF-IDF22 (term-frequency-inverse-document-
frequency) scores were calculated for unigrams, bigrams, trigrams,
4-grams, and 5-grams. Briefly, TF-IDF is a method used to quantify
the relative frequency of an n-gram (an n-word phrase) in a corpus
of documents. For example, the TF-IDF score for the unigram
“hurt” in a patient’s message report is proportional to the
frequency of the word “hurt” in that patient’s pathology report
(term frequency) divided by the frequency of the word “hurt”
across all messages across all patients (inverse document
frequency).

Statistical analysis
Model development. The model was trained on messages from
04/01/2021 to 04/01/2022 (training set, 721 messages), tested
retrospectively on messages from 04/01/2021 to 04/01/2022
(retrospective test set, 481 messages), and tested prospectively
on message from 10/01/2022 to 10/31/2022 (prospective test set,
120,471 messages). L1-regularized logistic regression (Lasso) was
used for feature selection and prediction. Hyperparameters
(regularization for Lasso and sparsity for document term matrix)
were tuned using 10-fold cross-validation on 60% of the training
set to minimize misclassification cost (Equation (1)). Selected
features were examined for sensibility and clinical meaningfulness
(Supplementary Information Table 1).

cost ¼ Cfp � Nfp þ Cfn � Nfn þ Cu � Nu (1)

Where FP is false positive and FN is false negative.
Here, cost refers not to monetary cost, but rather the real-world

utilities corresponding to FPs and FNs. In this case, the cost of an
FP is the cost of incorrectly surfacing a non-crisis message (e.g.,
increased review burden on crisis specialists) and the cost of an FN
is the cost of incorrectly missing a true crisis message (e.g.,
delayed intervention for a patient in distress). It is critical that the
probability threshold for classification models be selected to
reflect the end user’s relative tolerance for FPs vs. FNs. To this end,
we surveyed six relevant stakeholders (clinicians, business leaders,
data scientists) using a regret-based approach to assess the
relative costs of false positives and false negatives. The survey
asked the respondent to quantify how many false positives
(messages incorrectly surfaced by model) they would be willing to
review manually to avoid a false negative (true crisis message not
surfaced by model). The survey results were used to inform a
discussion among stakeholders, and ultimately a FP : FN cost ratio
of 1:20 was selected, meaning false negatives were 20 times more
undesirable than false positives.
The probability threshold for binary classification was selected

by finding the threshold that produced the minimum misclassi-
fication cost. This is mathematically equivalent to using the
threshold of 1 / (1+ 20/1)= 0.048 in a well calibrated model23.
Messages with predicted probabilities greater than the probability
threshold were labeled as crisis messages, and messages with
predicted probabilities below the probability threshold were
labeled as non-crisis messages.

Performance evaluation. Performance of the crisis terms filter in
the prospective test set was calculated using sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV). Area under the receiver operator curve (AUC), sensitivity,
specificity, PPV, and NPV were used to evaluate model

Fig. 4 Diagram depicting the flow of patient messages through
the CMD-1 system in model deployment. All patient messages first
passed through a regular-expressions-based crisis terms filter. The
model was applied to recent messages every 10min, triggered by
the “alerter,” a script run using AWS Lambda. Predicted crisis
messages are posted by the alerter to Slack where they are reviewed
and labeled by crisis specialists. The labels assigned by crisis
specialists are captured in a database by the “listener,” a script run
using AWS Lambda.
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discrimination. 95% confidence intervals were calculated using
Clopper-Pearson24 for sensitivity, specificity, PPV, and NPV, and for
AUC using the approach developed by DeLong et al.25. For the
prospective test set, discrimination metrics were calculated by
day, by week, and for the overall test set. Calibration in the mean
and measures of weak and moderate calibration (calibration slope,
calibration intercept, and calibration curves) were calculated for
the retrospective and prospective test sets.
As part of a failure analysis, we manually reviewed all false

negatives. False negatives that did not pass through the crisis
terms filter were reviewed for phrases that could be added to the
crisis terms filter. False positives were not reviewed.

Subgroup analysis. As a subgroup analysis, we investigated
model performance in the prospective test set for patients aged
18–21 years. This group represents the youngest patient popula-
tion treated at Cerebral, and is of particular clinical interest for
many reasons. First, young people may use different language
patterns (slang, vernacular) compared to older patients, which
may affect the ability of the model to recognize crisis messages for
this subgroup. Second, young people have a higher risk of suicidal
thinking and suicide attempts26, and therefore represent an
important vulnerable population.

Analysis of response times. Since CMD-1 was designed to improve
response times to patients in crisis, we considered three time points
for all messages in the prospective test set. The first time point was
when the message was received from the patient (henceforth
referred to as the “message sent” time). The second time point was
when CMD-1 surfaced the message in the Slack channel (henceforth
referred to as the “CMD post” time). The third time point was when a
crisis specialist marked the surfaced message as “appropriately
flagged” or “inappropriately flagged”, indicating that they had
reviewed the message and triaged it appropriately (henceforth
referred to as the “crisis specialist triage” time). We measured time
from message sent to CMD post, CMD post to crisis specialist triage,
and message sent to crisis specialist triage. Summary statistics like
median and interquartile range (IQR) were calculated.

Workflow and user interface
The model was deployed to a production environment where it
could receive messages in near-real time, generate predictions, and
surface predictions to the crisis specialist team (Fig. 3). The model
was deployed in two parts: an “alerter” and a “listener”. The alerter
consisted of a script that ran every ten minutes on AWS Lambda.
Within the alerter script, messages sent in the EMR over the last ten
minutes were retrieved and processed with the NLP model.
Messages with a high predicted probability of being a crisis were
posted to slack using the slack API27 for the crisis response team to
assess. Each post from the alerter contains information about the
predicted crisis message, including the text of the message, a link
to the patient’s EMR profile, and the time the message was sent
(Fig. 4). The post also contains buttons that crisis specialists can use
to tag the message as “appropriately flagged” if it is a true positive
or “inappropriately flagged” if it is a false positive. Pushing these
buttons triggered the listener, deployed inside a different AWS
Lambda, which then stored these data in a database and can be
used for downstream model performance analysis and retraining.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Due to laws governing patient privacy, individual-level data is not available upon
request.
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