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Prognosis Individualized: Survival predictions for WHO grade
II and III gliomas with a machine learning-based web
application
Mert Karabacak1, Pemla Jagtiani 2, Alejandro Carrasquilla 1, Isabelle M. Germano1 and Konstantinos Margetis 1✉

WHO grade II and III gliomas demonstrate diverse biological behaviors resulting in variable survival outcomes. In the context of
glioma prognosis, machine learning (ML) approaches could facilitate the navigation through the maze of factors influencing
survival, aiding clinicians in generating more precise and personalized survival predictions. Here we report the utilization of ML
models in predicting survival at 12, 24, 36, and 60months following grade II and III glioma diagnosis. From the National Cancer
Database, we analyze 10,001 WHO grade II and 11,456 grade III cranial gliomas. Using the area under the receiver operating
characteristic (AUROC) values, we deploy the top-performing models in a web application for individualized predictions. SHapley
Additive exPlanations (SHAP) enhance the interpretability of the models. Top-performing predictive models are the ones built with
LightGBM and Random Forest algorithms. For grade II gliomas, the models yield AUROC values ranging from 0.813 to 0.896 for
predicting mortality across different timeframes, and for grade III gliomas, the models yield AUROCs ranging from 0.855 to 0.878.
ML models provide individualized survival forecasts for grade II and III glioma patients across multiple clinically relevant time points.
The user-friendly web application represents a pioneering digital tool to potentially integrate predictive analytics into neuro-
oncology clinical practice, to empower prognostication and personalize clinical decision-making.
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INTRODUCTION
The age-adjusted incidence of primary malignant central nervous
system (CNS) tumors in the United States is approximately 7.1 per
100,000, according to recent statistics1. The vast majority of these
primary CNS tumors are diffuse glioma1. Glioblastoma, classified as
World Health Organization (WHO) grade IV, constitutes approxi-
mately 55% of gliomas, while the remaining 45% of glial tumors are
composed of several various histologies, including grade II and grade
III astrocytomas, oligodendrogliomas and oligoastrocytomas. These
tumors encompass a diverse spectrum of infiltrative neoplasms
exhibiting a myriad of biological characteristics and clinical behaviors,
leading to a wide range of survival rates2. Due to this heterogeneity,
there can be considerable uncertainty in prognostication and
substantial challenges in assessing individual survival outcomes.
As we focus on prognostic modeling, machine learning (ML)

techniques present several advantages over conventional statis-
tical methods such as nomograms and regression-based models.
Firstly, ML methods excel at processing large, complex, and
heterogeneous datasets, detecting subtle patterns and associa-
tions that might be overlooked by conventional statistical
methods3,4. Secondly, ML algorithms can incorporate a more
extensive range of variables, including clinical, molecular, and
imaging features, which could result in more comprehensive and
individualized prognostic predictions5–7. Lastly, ML models can
manage high-dimensional data without the strict assumptions
required by traditional models. This means that ML is capable of
identifying non-linear relationships and interactions between
variables, providing more nuanced and intricate insights3,4.
In the context of glioma prognosis, ML approaches could

facilitate the navigation through the maze of factors influencing
survival, aiding clinicians in generating more precise and

personalized survival predictions. As such, our objective is to
leverage the power of ML algorithms to develop an accessible,
user-friendly web application that aims to predict survival
outcomes for patients with WHO grade II and III gliomas. By
utilizing ML-based prediction models, we aim to address the
challenges posed by the diversity and complexity inherent to the
prognostication of gliomas and, ultimately, enhance patient care.

RESULTS
Study Population
From the National Cancer Database (NCDB), a total of 10,001
histologically confirmed cranial WHO grade II gliomas and 11,456
histologically confirmed cranial WHO grade III gliomas were
retrieved. The basic characteristics of the patient population before
the application of the time point-specific exclusion criteria are
presented in Table 1, while more detailed characteristics are
presented in Supplementary Table 1. For patients with grade II
glioma, the mean age was 42 ( ± 23), compared to a mean age of 51
( ± 27) for those with grade III glioma. Among the grade II patients,
44.1% were female, while 44.5% of the grade III patients were female.

Model Performances
The performance evaluation revealed that the top-performing
models for each outcome were constructed using the LightGBM
and Random Forest algorithms. For grade II gliomas, the Random
Forest models yielded area under the receiver operating
characteristics (AUROCs) of 0.888 [95% confidence interval (CI),
0.856–0.912] and (95% CI, 0.815–0.863) for predicting 12- and 60-
month mortality, respectively; and the LightGBM models yielded
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AUROCs of 0.859 (95% CI, 0.804–0.867) and 0.813 (95% CI,
0.777–0.835) for predicting 24- and 36-month mortality, respec-
tively. In the case of grade III gliomas, the LightGBM models
resulted in AUROCs of 0.876 (95% CI, 0.857–0.899) and 0.860 (95%
CI, 0.834–0.87) for predicting 12- and 60-month mortality,
respectively; and the Random Forest models yielded AUROCs of
0.855 (95% CI, 0.839–0.870) and 0.878 (0.857–0.885) for predicting
24- and 36-month mortality, respectively. These results demon-
strate good discriminatory ability (AUROC > 0.8) in distinguishing
patients who died within all of the intervals investigated in our
study from those who did not. Detailed information on the
performance metrics of the top-performing models for each
mortality outcome is presented in Table 2, and the performance
metrics of all the models are found in Supplementary Table 2.
Supplementary Fig. 1 illustrates confusion matrices for the top-
performing models, while Supplementary Figs. 2 through 9 display
confusion matrices for the models constructed with other
algorithms.
Depicted in Figs. 1, 2 are the receiver operating characteristics

(ROCs) and precision-recall curves (PRCs) corresponding to the
quartet of survival outcomes for both grade II and grade III tumors,

respectively. Figure 3 presents multiple radar charts, each
corresponding to one of the four mortality outcomes of interest
for both grade II and III tumors. These charts serve as an
instrument for multidimensional visualization, with each of the
five axes standing for a separate performance indicator. The
placement on each respective axis signifies the model’s perfor-
mance in relation to that particular indicator. Consequently, these
radar charts enable a comparative analysis of model performance
across various metrics.
Figure 4 illustrates SHapley Additive exPlanations (SHAP) bar

plots for the top-performing models, which elucidate the
aggregate influence of individual features on the predictions for
each survival outcome. The length of each bar represents the
mean SHAP value, signifying the intensity of a feature’s effect on
the predicted outcome, with features arranged in order of their
importance, the most critical being at the top. Supplementary
Figs. 10–17 provide SHAP bar plots for all other algorithms
pertaining to each outcome.
Partial dependence plots (PDPs) depict the isolated effect of a

single feature on an ML model’s predicted outcome. The PDPs for
the top-performing models can be found in Supplementary Figs.
18–25. These plots are crucial for interpreting the influence of
individual features on the model’s predictions, revealing the
correlation between a particular feature and the predicted
outcome while concurrently nullifying the effects of other
features.

DISCUSSION
This study introduces a suite of ML models adept at predicting
survival prognoses for WHO grade II and III gliomas at 12, 24, 36,
and 60 months subsequent to diagnosis. To ensure seamless
integration into clinical environments, we devised a web
application potentially enabling clinicians to individualize patient
care and anticipate survival probabilities at specified intervals. This
digital tool potentially streamlines collaborative decision-making
processes with patients, ensuring they are well-informed regard-
ing prospective survival outcomes post-diagnosis. These predic-
tive indicators potentially furnish clinicians with the enhanced
capacity to customize their care strategies, thereby optimizing the
management of risk factors in high-risk patients.
A substantial body of literature exists on the topic of survival

prediction in gliomas using various modalities. For instance, Zhao
et al. utilized Cox Proportional Hazards, Support Vector Machine,
and Random Forest algorithms on an extensive glioma dataset
comprising 3462 patients8. Their objective was to determine the
most efficacious method for survival prediction. Their models
integrated widely-accepted variables commonly found in exten-
sive brain tumor registries, such as age, sex, chemotherapy status,
surgical resection status, radiation therapy status, tumor histology,
and tumor location. Despite their assertion that the models’
predictive capacity was based solely on non-imaging and non-
molecular data—data typically accessible in high-capacity cancer
centers treating gliomas—the translatability of their findings
remains ambiguous. This uncertainty arises because a clear means
for clinicians to derive survival predictions—without a practical
framework or the models’ source code—is absent. With that being
said, the authors reported a survival prediction accuracy
represented by a c-index (analogous to AUROC) that varied
between 0.757 and 0.771, which our models outperformed by a
considerable margin. Conversely, Gittleman et al. presented a
nomogram, which could indeed help clinicians in real-world
settings9. This tool employs clinicopathologic variables to
calculate survival probabilities for WHO grade II and grade III
glioma patients and even provides an online calculator similar to
ours. Yet, the scope of their research is restricted by its limited
generalizability due to the small sample size: 238 patients sourced
from The Cancer Genome Atlas and the Ohio Brain Tumor Study.

Table 1. Basic patient characteristics. For mortality outcomes, in cases
where a patient was logged as alive, but their latest follow-up data
[‘Last Contact or Death (Months from Diagnosis)’] was recorded prior
to the specific survival time point in question, they were omitted from
the pertinent survival analyses.

Total (n= 21457)

Variables Mean ( ± SD), Median
(IQR), or n (%)

Age 47.0 ( ± 26.0)

Sex Male 12002 (55.7%)

Female 9555 (44.3%)

Histology Anaplastic astrocytoma 8102 (37.6%)

Diffuse astrocytoma 4291 (19.9%)

Oligodendroglioma 4129 (19.2%)

Anaplastic
oligodendroglioma

2138 (9.9%)

Oligoastrocytoma 1449 (6.7%)

Anaplastic
oligoastrocytoma

1216 (5.6%)

Pleomorphic
xanthoastrocytoma

232 (1.1%)

WHO Grade Grade II 10001 (46.6%)

Grade III 11456 (53.4%)

12-Month
Mortality*

Yes 3496 (16.7%)

No 17413 (83.3%)

24-Month
Mortality*

Yes 5695 (27.9%)

No 14710 (72.1%)

36-Month
Mortality*

Yes 6984 (35.9%)

No 12524 (64.1%)

60-Month
Mortality*

Yes 8366 (52.8%)

No 7492 (57.2%)

The numbers of included patients for each mortality outcome were
delineated as follows: 9748 for 12-month mortality in grade II patients;
11161 for 12-month mortality in grade III patients; 9462 for 24-month
mortality in grade II patients; 10943 for 24-month mortality in grade III
patients; 8938 for 36-month mortality in grade II patients; 10572 for 36-
month mortality in grade III patients; 6763 for 60-month mortality in grade
II patients; and 9095 for 60-month mortality in grade III patients (SD,
standard deviation; IQR, interquartile range n, number).
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In comparison, our analyses drew from a more extensive dataset
extracted from the NCDB, a database inclusive of data from over
1500 Commission on Cancer (CoC) accredited institutions.
Several different approaches have been proposed to predict

survival for glioma patients by leveraging modalities beyond
clinicopathologic variables, such as imaging and genomic data. Li
et al. aimed to develop a radiomics-based model with preopera-
tive T2-weighted MRIs of glioma patients, to prognosticate overall
survival10. While this study did present a radiomics model with the
distinct advantage of relying solely on preoperative data, it did not
sufficiently elucidate how this model might be seamlessly
integrated into clinical practice to inform prognosis and guide
decision-making. Conversely, Xu et al. introduced an integrated
methodology, amalgamating radiomics with clinical variables to
establish a prognostic nomogram11. This nomogram is accessible
for clinical application; however, it requires an input termed
‘Deep-radiomics Signature’. Even though Xu et al. asserted the
reproducibility of their methodology in clinical practice, the means
by which an individual clinician might procure this ‘Deep-
radiomics Signature’ for nomogram use remains ambiguous. The
literature offering predictive models based on genomic informa-
tion is even broader, with numerous studies suggesting various
gene signatures as predictive markers for survival outcomes in
glioma patients12–16. While these gene signatures may offer
valuable insights into the molecular underpinnings of the disease,
their applicability is often restricted. This limitation arises because
many of the genomic profiling techniques employed to formulate
these signatures are infrequently incorporated into the standard
care regimen for glioma patients. Consequently, these gene
signature methodologies are predominantly relegated to the
realm of feasibility studies and are seldom adopted in real-world
clinical scenarios.
When it comes to interpreting the algorithm performances, Our

findings that Random Forest and LightGBM models achieved the
best performance aligns with previous studies showing the
strengths of tree-based ensemble methods for clinical prediction
tasks17–19. Both Random Forest and LightGBM build a large
number of decision trees and leverage bagging and boosting
techniques to improve prediction accuracy and limit overfit-
ting20,21. The use of bagging in Random Forests, where each tree
is trained on a random subset of features and samples, allows for
effectively capturing non-linear relationships and complex inter-
actions between predictors21. LightGBM enhances this further
through gradient-based boosting, which selectively focuses on
training examples with larger errors to minimize loss20. For Grade
II tumors, Random Forest performed better for short-term (12-
month) and long-term (60-month) mortality, while LightGBM was
superior for medium-term (24- and 36-month) predictions. In
contrast, for Grade III tumors, LightGBM was optimal for short and
long-term predictions, while Random Forest excelled at medium-
term forecasts. These differences may relate to variances in the
complexity and progression patterns of low- versus high-grade
gliomas22, causing each algorithm to have relative advantages at

different prognostic time points. Overall, the high performance
achieved by both approaches underscores the value of ensemble
tree-based methods for risk stratification in glioma using
demographic, clinical, and genomic variables.
The ML models, along with the corresponding web application,

we introduce with this study, provide quantitative, personalized
survival probability projections for WHO grade II and III glioma
patients. This signifies a substantial leap beyond the traditional
practice of stating generalized risks derived from studies
averaging across heterogeneous populations. Another common
practice often involves communicating risks qualitatively, perhaps
supplemented by a quantitative assessment based on the
clinician’s professional experience. However, depending exclu-
sively on personal experience is limited by the inherently
restricted patient population and potential biases of subjective
risk appraisal. The predictions rendered by our models can be
used to ascertain a patient’s prognosis at various intervals
following their diagnosis, thereby enriching patient care. These
predictive models can assist clinicians in pinpointing patients’ risk
of poor survival outcomes, prioritizing their treatment, and
strategizing their care pathways. For instance, these models can
forewarn potential survival probabilities at specified time intervals,
informing decisions about future care plans. Moreover, patients or
their families at higher risk for poor survival outcomes can be
offered intensive informed consent within a shared decision-
making context. Beyond its potential application in shared
decision-making processes, this approach presents opportunities
for use in quality assurance. For instance, a pattern of poor survival
outcomes in low-risk patients could have quality assurance
implications, thereby prompting a reevaluation of care strategies.
Consequently, our models could support the formulation of
policies and procedures aimed at enhancing survival outcomes for
low-risk patients, optimizing resource usage, and improving
prognosis.
Our approach offers not only a precise and clinically viable

methodology for predicting the survival outcomes for glioma
patients but also enhances the interpretability of the predictions.
The SHAP bar plots (Supplementary Figs. 10–17) provide
comprehensive global explanations. In the realm of ML and
model interpretations, global explanations aim to provide an
overarching understanding of a model’s behavior across all its
inputs. Rather than focusing on individual predictions, global
explanations assess the entire dataset, revealing general patterns,
tendencies, and relationships the model has learned. Conversely,
the SHAP plots integrated into our web application deliver
detailed local explanations, a feature that sets our approach apart.
This enables users to gain specific insights into how individual
predictions are influenced by distinct variables, allowing for a
personalized, fine-grained understanding that has not been
commonly available in previous models or applications. The
integration of SHAP plots not only offers an additional layer of
interpretability but also augments the trustworthiness of our
model, especially when combined with clinical judgment. By

Table 2. Performance metrics of the models (CI, confidence interval; AUPRC, area under the precision-recall curve; AUROC, area under the receiver
operating characteristics curve).

Grade Outcome Algorithm Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUPRC (95% CI) AUROC (95% CI) Brier Score (95% CI)

Grade II 12-Month Mortality Random Forest 0.838 (0.822–0.854) 0.814 (0.797–0.831) 0.816 (0.799–0.833) 0.383 (0.361–0.405) 0.888 (0.856–0.912) 0.054 (0.044–0.064)

Grade II 24-Month Mortality LightGBM 0.712 (0.692–0.732) 0.839 (0.822–0.856) 0.823 (0.806–0.84) 0.523 (0.5–0.546) 0.859 (0.804–0.867) 0.083 (0.071–0.095)

Grade II 36-Month Mortality LightGBM 0.653 (0.631–0.675) 0.836 (0.819–0.853) 0.803 (0.785–0.821) 0.564 (0.541–0.587) 0.813 (0.777–0.835) 0.111 (0.096–0.126)

Grade II 60-Month Mortality Random Forest 0.684 (0.659–0.709) 0.835 (0.815–0.855) 0.787 (0.765–0.809) 0.748 (0.725–0.771) 0.846 (0.815–0.863) 0.142 (0.123–0.161)

Grade III 12-Month Mortality LightGBM 0.768 (0.75–0.786) 0.811 (0.795–0.827) 0.8 (0.783–0.817) 0.725 (0.706–0.744) 0.876 (0.857–0.889) 0.119 (0.106–0.132)

Grade III 24-Month Mortality Random Forest 0.722 (0.703–0.741) 0.81 (0.794–0.826) 0.796 (0.779–0.813) 0.775 (0.758–0.792) 0.855 (0.839–0.87) 0.153 (0.138–0.168)

Grade III 36-Month Mortality Random Forest 0.763 (0.745–0.781) 0.827 (0.811–0.843) 0.874 (0.86–0.888) 0.794 (0.777–0.811) 0.878 (0.857–0.885) 0.146 (0.131–0.161)

Grade III 60-Month Mortality LightGBM 0.816 (0.798–0.834) 0.748 (0.728–0.768) 0.93 (0.918–0.942) 0.795 (0.776–0.814) 0.86 (0.834–0.87) 0.142 (0.126–0.158)
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assessing the predictor variables through SHAP, clinicians can
confirm or challenge the model’s outputs based on their expertise,
bridging the gap between machine-generated insights and
human intuition. This synergy between SHAP and clinical
assessment can significantly improve the model’s acceptance
and reliance in real-world scenarios, underscoring its potential to
assist clinicians in their decision-making processes.

In the global SHAP analyses of each mortality outcome, age
emerged as the paramount predictor variable across all outcomes,
except one, predicted by the top-performing models. This
observation aligns with previous research that identified age as
a salient prognostic indicator. For instance, Capelle et al.
ascertained that individuals aged 55 and older presented an
independent predictor of an adverse prognosis at the time of

Fig. 1 Algorithms’ receiver operating characteristics for predicting mortality at different time points for patients with WHO grade II and
III gliomas. Shown are the receiver operating characteristic curves of the models built with different algorithms for a 12-month, b 24-month,
c 36-month, and d 60-month mortality for patients with WHO grade II gliomas and for e 12-month, f 24-month, g 36-month, and h 60-month
mortality for patients with WHO grade III gliomas. AUROC area under the receiver operating characteristic curve.

Fig. 2 Algorithms’ precision–recall curves for predicting mortality at different time points for patients with WHO grade II and III gliomas.
Shown are precision–recall curves of the models built with different algorithms for a 12-month, b 24-month, c 36-month, and d 60-month
mortality for patients with WHO grade II gliomas and for e 12-month, f 24-month, g 36-month, and h 60-month mortality for patients with
WHO grade III gliomas. AUPRC area under the precision–recall curve.
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radiological diagnosis for WHO Grade II gliomas23. Similarly, Corell
et al. discovered that the overall survival rate declined significantly
for grade II glioma patients aged 60 and above, noting that
negative preoperative prognostic factors (e.g., functional status
and neurological deficit) become more prevalent with advancing
age24. Histology emerged as another crucial predictor variable for
both grade II and grade III tumors. According to the 2012–2016
edition of the Central Brain Tumor Registry of the United States
(CBTRUS) Statistical Report, the 1-, 2-, and 5-year survival rates for
diffuse astrocytomas stood at 74.7%, 64.1%, and 51.6%, respec-
tively25. In contrast, the rates for oligodendrogliomas were 94.5%,
60.6%, and 82.7%. Regarding the grade III variants of these
histologies, anaplastic astrocytomas demonstrated 1-, 2-, and
5-year survival rates of 64.3%, 46%, and 30.2%, respectively,
whereas the rates for anaplastic oligodendrogliomas were 85.8%,
74.3%, and 60.2%. In a study conducted by Guo et al., results from
their institutional cohort indicated that the median overall survival
duration for grade II astrocytomas was 55.4 months, compared to
56.5 months for grade II oligodendrogliomas26. This difference did
not exhibit statistical significance (p= 0.088). For grade III
astrocytomas, the median survival duration was recorded as
53.6 months, while for grade III oligodendrogliomas, it was
45.8 months, again without reaching statistical significance. We
found that the extent of resection was another influential variable
among all outcomes. Jakola et al. conducted a study wherein
grade II glioma patients were categorized into two cohorts: one
underwent a biopsy with a subsequent wait-scan approach, while
the other was subjected to an early resection27. The latter group
exhibited a marked improvement in overall survival by an average
of 7.1 years. Another study, after accounting for variables such as
age, tumor location, and tumor subtype, affirmed that the extent
of resection still holds significant sway over overall survival rates
for grade II gliomas28. Parallel results concerning each of the
predictor variables that were deemed to be important according
to the SHAP analyses are documented extensively in the literature,
elaborating on the specific elements influencing survival out-
comes for both grade II and III gliomas. However, there exist
contradictions within the literature. For instance, Jin et al. revealed
a discernible uptick in both all-cause and tumor-specific mortality
with age across seven age groups in their study scrutinizing risk

factors for oligodendrogliomas across various age cohorts utilizing
the Surveillance, Epidemiology, and End Results (SEER) database29.
Contrarily, Jia et al., leveraging the same SEER database,
ascertained a non-linear relationship between age and glioma
prognosis30. Such disparate conclusions, even when sourced from
an identical database like SEER, underscore a salient advantage of
ML techniques: the capability to discern intricate, non-linear
associations in datasets. Such complexities often prove more
arduous to express and interpret via traditional methods like
logistic regression.
The interpretations and implications of this study must be

considered in light of certain limitations, predominantly asso-
ciated with the inherent shortcomings and biases of retrospective
database analyses31–33. The absence of molecular markers, such as
the IDH molecular status, as well as the lack of clinical data,
including imaging and information regarding the method used to
determine the degree of tumor resection, and other patient
performance status factors that could potentially influence the
performance of the model, are notable limitations. The IDH
mutation has been started to be collected from the year 2018,
thus we could not include that as a variable since our analysis
spanned 2010 to 201734. The span of our analysis could have been
increased to include the diagnoses after 2017; however, that
would create a systematic bias in the missing data, which would
impact the generalizability and robustness of the prediction
models. As the amount and quality of data collected by national or
international cancer registries continue to grow, future studies
should take more predictive variables that could have clinical or
molecular implications. The survival outcome data is confined to
overall survival, thereby barring the analysis of WHO grade II and
III gliomas’ progression-free survival or malignant transformation
rates. Moreover, information regarding tumor management is
limited to initial treatment regimens, rendering the impact of
subsequent treatments unaccounted for. Pertinent details such as
symptomatology, incidental presentation, involvement of elo-
quent structures, surgical considerations, and methods of the
extent of resection (EOR) determination are conspicuously absent
in the NCDB. While the NCDB collects data for roughly 70% of all
new cancer diagnoses, it exclusively includes hospitals accredited
by the CoC, which encompasses only about 30% of the

Fig. 3 Radar plots showing the prediction performance of the models built with different algorithms across multiple metrics for
predicting mortality at different time points for patients with WHO grade II and III gliomas. Shown are the radar plots of the models built
with different algorithms for a 12-month, b 24-month, c 36-month, and d 60-month mortality for patients with WHO grade II gliomas and for
e 12-month, f 24-month, g 36-month, and h 60-month mortality for patients with WHO grade III gliomas. AUROC area under the receiver
operating characteristic curve, AUPRC area under the precision–recall curve.
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approximately 5000 hospitals in the United States. This may
engender a selection bias within the study population due to
potential racial disparities in the utilization of high-volume CoC-
accredited hospitals. Another caveat with the NCDB is its
representation of mortality data, which pertains to ‘all-cause’
mortality rather than disease-specific mortality. Notably, these
findings have not been externally validated, indicating the
necessity for subsequent validation to strengthen the study’s
conclusions.
This study demonstrates the utility of ML models in generating

clinically useful individualized survival predictions for patients with
WHO grade II and III gliomas. In contrast to traditional statistical
approaches, these models can effectively capture intricate
relationships and patterns in heterogeneous data that influence
prognosis. The almost excellent discrimination exhibited by our
models across multiple time points highlights their capability to
provide precise, tailored forecasts that can inform clinical decision-
making. The accessible web application represents a pioneering
step in potentially integrating predictive analytics into routine
neuro-oncology practice. By forecasting survival probabilities at

specified intervals, this digital tool can inform patient-centered
decision-making, risk stratification, and personalized management
strategies. Clinicians can potentially utilize these prognostic
estimates to have well-informed conversations with patients
regarding likely outcomes, prioritize high-risk patients, and
strategize care pathways accordingly. Overall, this work under-
scores the aptitude of machine learning for data-driven prog-
nostication in neuro-oncology and demonstrates its immense
potential to augment clinical care. The proposed models and web
application address the challenges posed by the inherent
heterogeneity of low-grade gliomas and pave the way for more
precise, individualized prognostic estimates to optimize patient
outcomes. Going forward, external validation of these models,
along with impact analysis in clinical settings, will further elucidate
the role of ML in advancing personalized medicine for neuro-
oncology patients.

METHODS
The study design is summarized via a flowchart in Fig. 5.

Fig. 4 The 15 most important features and their mean SHAP values of the models built with different algorithms for predicting mortality
at different time points for patients with WHO grade II and III gliomas. Shown are the top features for a Random Forest model predicting
12-month mortality, b LightGBM model predicting 24-month mortality, c LightGBM model predicting 36-month mortality, d Random Forest
model predicting 60-month mortality for patients with WHO grade II gliomas; and for e LightGBM model predicting 12-month mortality,
f Random Forest model predicting 24-month mortality, g Random Forest model predicting 36-month mortality, and h LightGBM model
predicting 60-month mortality for patients with WHO grade III gliomas. SHAP SHapley Additive exPlanations.
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Ethical Approval
No institutional review board (IRB) approval or informed consent
was required due to the use of de-identified patient data. The
study was deemed exempt by the Icahn School of Medicine at
Mount Sinai’s IRB.

Data Source
The data for this study were sourced from the 2020 version of the
NCDB. The NCDB is an expansive, prospectively maintained
repository collaboratively developed by the CoC of the American
College of Surgeons and the American Cancer Society. This
sophisticated database encompasses information from over 1500
CoC-accredited institutions, accounting for approximately 70% of
all cancer diagnoses within the United States, thereby providing
an extensive breadth of data for analysis35.

Guidelines
Transparent Reporting of Multivariable Prediction Models for
Individual Prognosis or Diagnosis (TRIPOD)36 and Journal of
Medical Internet Research (JMIR) Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research37 were followed.

Study Population
The NCDB-Brain Participant User File (PUF) was filtered for adults
at least 18 years of age diagnosed with histologically confirmed
cranial WHO grade II and III gliomas between 2010 and 2017. The
initial temporal boundary of 2010 was chosen to reflect the
advancements made in the treatment of gliomas over the
preceding decade, whereas the terminal boundary of 2017 was
selected to confine the study population. This latter limitation
served to minimize the exclusion of patients due to the lack of
extensive follow-up data. We used the International Classification
of Disease for Oncology, third edition (ICD-O-3) histologic codes
for diffuse astrocytoma [9400 (grade II)], anaplastic astrocytoma
[9401 (grade III)], pleomorphic xanthoastrocytoma [9424 (grade
II)], pilomyxoid astrocytoma [9425 (grade II)], oligodendroglioma
[9450 (grade II)], anaplastic oligodendroglioma [9451 (grade III)],
oligoastrocytoma [9382 (grade II)], and anaplastic oligoastrocy-
toma [9382 grade III)]; and ICD-O-3 topographical codes
C71.0–C71.9 to define our patient population.

Predictor Variables and Outcomes of Interest
Our study employed a range of predictor variables that span
sociodemographic, clinicopathologic, and treatment-related attri-
butes: 1) sociodemographics: age, sex, ethnicity, Spanish/Hispanic
origin, primary payor, facility type, and facility location; 2) clinical
presentation: Charlson-Deyo Score (as a measure of comorbid-
ities), and Karnofsky Performance Scale; 3) diagnostic information:
diagnostic biopsy (whether a diagnostic biopsy was taken before a
possible resective surgery), tumor laterality, localization, focality
(unifocal or multifocal), size (as ordinal), and histology; 4)
molecular markers: 1p19q co-deletion, MGMT methylation, and
Ki-67 labeling index; and 5) treatment modalities: resective
surgery, extent of resection, radiation treatment, chemotherapy
and immunotherapy. Ethnicity and Spanish/Hispanic origin vari-
ables were collected and reported by the NCDB, along with other
variables. For detailed information regarding the data items a data
dictionary can be found at https://www.facs.org/media/brilfbgu/
puf-2020-data-dictionary.pdf. For categorical variables, the missing
values were filled with ‘Unknown’ or ‘Unknown/Other’. The only
continuous variable in the data, age, had no missing values.
We built separate prediction models to predict patient survival

outcomes for WHO grade II and grade III glioma patients at four
distinct time points post-diagnosis: 12, 24, 36, and 60 months. The
mortality outcomes were extrapolated by combining ‘Vital Status’
and ‘Last Contact or Death (Months from Diagnosis)’ variables.
Patients with missing data in the ‘Vital Status’ and ‘Last Contact or
Death (Months from Diagnosis)’ data items were excluded. To
elaborate, when identifying patients who died within 12 months
following their diagnosis, we filtered our data for cases where the
‘Vital Status’ was recorded as ‘Dead’, with the ‘Last Contact or
Death (Months from Diagnosis)’ being less than twelve months.
These individuals have then ascribed a 12-month mortality status
of ‘Yes’. Conversely, patients with a ‘Vital Status’ listed as ‘Alive’
and a ‘Last Contact or Death (Months from Diagnosis)’ beyond
12 months or ‘Vital Status’ listed as ‘Dead’ but ‘Last Contact or
Death (Months from Diagnosis)’ was more than 12 months were
given a 12-month mortality status of ‘No’. In cases where a patient
was logged as alive, but their latest follow-up data [‘Last Contact
or Death (Months from Diagnosis)’] was recorded prior to the
specific survival time point in question, they were omitted from
the pertinent survival analyses. We followed the same approach
for survival outcomes at 24, 36, and 60 months for both grade II
and grade III patients.

Fig. 5 Flowchart of the study design (ACS-NCDB, American College of Surgeons – National Cancer Database; ML, machine learning).
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Model Development and Evaluation
In this study, five distinct supervised ML algorithms were employed:
TabPFN, TabNet, XGBoost, LightGBM, and Random Forest. Pre-
dictive models built with supervised ML algorithms are trained to
utilize data sets for which the actual outcomes are known. These
models can then assimilate this data, allowing for the provision of
accurate predictions when encountering new, unexplored data.
Each of these algorithms was selected due to its unique abilities
and has demonstrated a high-level performance in differentiating
or categorizing data, the capability to handle a multitude of
variables simultaneously, and versatility in adjustments.
TabPFN represents a type of transformer-based algorithm that

demonstrates the ability to decode complex patterns within point
cloud data, which are essentially data points organized in a spatial
configuration38. TabNet is an exemplification of a deep learning
model that offers a self-explanatory and interpretation-oriented
structure, competent in managing various forms of structured
data39. Both XGBoost and LightGBM are gradient-boosting
frameworks that exhibit high efficiency in addressing classification
problems20,40. The Random Forest algorithm operates by con-
structing a multitude of decision trees, with the final decision
being derived from the collective decision of these trees21.
For each of these algorithms (except TabPFN), hyperparameter

optimization was carried out employing the Optuna library41.
Optuna, an adaptable framework for hyperparameter optimiza-
tion, enables the automatic adaptation of parameters. The
purpose of this optimization process was to identify the
parameters that produce the model with the highest performance,
as indicated by the AUROC. The hyperparameter spaces for each
are provided in Supplementary Table 3.
To guarantee ample data for the stages of model development,

validation, and evaluation, the data set for each of the outcomes
of interest were divided into three subsets using a 60:20:20
distribution for training, validation, and test sets, respectively. The
training sets were used to train the ML models, the validations set
were utilized for hyperparameter tuning and calibration, and the
test sets were used to evaluate the models’ performance.
Before the initiation of model training, the Synthetic Minority

Over-sampling Technique (SMOTE) was applied to the training
sets42. SMOTE addresses any imbalanced class distributions within
a dataset by generating artificial samples from the lesser-
represented class, thus increasing the instances of samples in
the under-represented class rather than replicating existing
samples. This method effectively enhances the volume of samples
in the under-represented class, hence increasing the performance
of the ML models.
The performances of the models were evaluated both visually

and numerically. The visual assessment was completed using the
ROC and PRC. The ROCs, graphically, are designed to represent the
diagnostic proficiency of binary classifiers throughout a range of
discrimination thresholds43. They achieve this by plotting the ‘true
positive rate’ [true positives (TP)/(TP+false negatives [FN])] against
the ‘false positive rate’ [FP/(TP+ FP)] at a spectrum of threshold
settings, thereby providing a consolidated indicator of perfor-
mance irrespective of the classification thresholds. PRCs are
graphical demonstrations of ‘precision’ [also known as positive
predictive value, TP/(TP+ FP)] juxtaposed against ‘recall’ [which is
the same as true positive rate or sensitivity, TP/(TP+ FN)]. These
curves are deemed especially valuable when working with
datasets that exhibit a class imbalance due to their ability to
elucidate the trade-off existing between precision and recall at
various thresholds.
The numerical evaluation involved metrics such as sensitivity,

specificity, accuracy, area under the PRC (AUPRC), and AUROC.
Furthermore, we assessed the calibration of our models utilizing
the Brier score, which is the average squared difference between
predicted and actual probabilities44,45. A well-calibrated model will

have a Brier score close to zero, indicating no difference between
the predicted and actual probabilities. Confusion matrices were
also generated for interpreting the performance of our models by
presenting a clear depiction of correct and incorrect
classifications made.
Top-performing models were selected for deployment in our

web-based application according to their AUROC scores. AUROC is
a widely accepted performance indicator for ML models,
particularly pertinent in binary classification tasks46. It quantifies
a model’s ability to discern between positive and negative
instances across various classification thresholds. The utility of
AUROC as our primary metric is threefold. First, it is unaffected by
class imbalance, making it suitable for datasets with uneven class
distributions. Second, it takes into consideration all classification
thresholds, offering a comprehensive evaluation of model
performance at different points. Third, by encapsulating the
model’s performance into a singular score, AUROC simplifies the
comparison of different models or algorithms. Therefore, it
provides a reliable representation of the model’s ability to
differentiate, thus rendering it a suitable metric for model
evaluation and selection across various applications.
To enhance the interpretability of our models, we employed

SHAP to ascertain the relative significance of predictor variables47.
Additionally, PDPs were utilized to illustrate the impact of
individual variables on the predictions made by the top-
performing models48.

Web Application
We developed a web application that empowers healthcare
professionals to generate predictions for individual patients. The
top-performing models, according to their AUROC scores as
explained above, for each outcome have been incorporated into
this application. The hyperparameters used in the web application
are provided in Supplementary Table 4. Hugging Face serves as a
platform that promotes the sharing of ML models among individuals
and is where our implementation code for these models is accessible.
The functionality of the web application is demonstrated in a video
(Supplementary Video 1). It can be reached at this URL: https://
huggingface.co/spaces/MSHS-Neurosurgery-Research/G2G3-Glioma.

Descriptive Statistics
Descriptive statistics were reported as means (with ± standard
deviations) for continuous variables with normal distributions,
medians (with interquartile ranges) for non-normally distributed
continuous variables, and numbers (with % percentages) for
categorical variables. Differences between grade II and grade III
patient cohorts were tested using independent t-tests for normally
distributed continuous variables with equal variances, Welch’s t-
tests for normally distributed continuous variables with unequal
variances, Mann-Whitney U tests for non-normally distributed
continuous variables, and Pearson’s chi-squared tests for catego-
rical variables. Normality was assessed using the Shapiro-Wilk test.
Levene’s test evaluated the equality of variances. Differences were
considered statistically significant at p < 0.001.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Restrictions apply to the availability of the data. Data were obtained from the NCDB, a
prospectively maintained repository collaboratively developed by the CoC of the
American College of Surgeons and the American Cancer Society. None of these
institutions have verified and are not responsible for the statistical validity of the data
analysis or the conclusions derived by the authors.
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CODE AVAILABILITY
The source code for preprocessing and analyzing the data is available on GitHub
(https://github.com/mertkarabacak/NCDB-G2G3_Glioma).
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