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DeepQuality improves infant retinopathy screening
Longhui Li 1,9, Duoru Lin 1,9✉, Zhenzhe Lin1,9, Mingyuan Li1, Zhangkai Lian1, Lanqin Zhao 1, Xiaohang Wu1, Lixue Liu1, Jiali Liu1,
Xiaoyue Wei1, Mingjie Luo1, Danqi Zeng1, Anqi Yan1, Wai Cheng Iao1, Yuanjun Shang1, Fabao Xu2, Wei Xiang3, Muchen He4, Zhe Fu4,
Xueyu Wang4, Yaru Deng4, Xinyan Fan4, Zhijun Ye4, Meirong Wei5, Jianping Zhang5, Baohai Liu6, Jianqiao Li2,10, Xiaoyan Ding1,10 and
Haotian Lin 1,7,8✉

Image quality variation is a prominent cause of performance degradation for intelligent disease diagnostic models in clinical
applications. Image quality issues are particularly prominent in infantile fundus photography due to poor patient cooperation,
which poses a high risk of misdiagnosis. Here, we developed a deep learning-based image quality assessment and enhancement
system (DeepQuality) for infantile fundus images to improve infant retinopathy screening. DeepQuality can accurately detect
various quality defects concerning integrity, illumination, and clarity with area under the curve (AUC) values ranging from 0.933 to
0.995. It can also comprehensively score the overall quality of each fundus photograph. By analyzing 2,015,758 infantile fundus
photographs from real-world settings using DeepQuality, we found that 58.3% of them had varying degrees of quality defects, and
large variations were observed among different regions and categories of hospitals. Additionally, DeepQuality provides quality
enhancement based on the results of quality assessment. After quality enhancement, the performance of retinopathy of
prematurity (ROP) diagnosis of clinicians was significantly improved. Moreover, the integration of DeepQuality and AI diagnostic
models can effectively improve the model performance for detecting ROP. This study may be an important reference for the future
development of other image-based intelligent disease screening systems.
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INTRODUCTION
Expectations for artificial intelligence (AI) to transform conven-
tional healthcare modes across various specialties have been
growing in recent years1,2. Within the field of AI, image-based AI
systems are the closest to clinical implementation due to the
advancement of deep learning techniques3. In routine ophthalmic
clinical practice, fundus photography is the most common
examination modality, and automated identification of various
fundus diseases based on fundus images was also the earliest
focus of medical AI studies4,5. IDx-DR6, an automated screening
software for diabetic retinopathy (DR), is the first certificated AI
diagnostic software based on fundus photography in the world7.
Numerous AI diagnostic models for other fundus diseases based
on fundus photography have also been developed and reported
to have excellent performance8–10. However, most AI-based
models show a significant decline in performance when using
real-world data, thus hindering their clinical applications. The
dataset shift caused by image quality variation has been
recognized as one of the primary reasons for the performance
degradation of the models in clinical practice11. Most previous
studies used a selection of good quality images to develop and
evaluate the models. Nevertheless, a substantial portion of the
images in clinical practice have quality defects.
Image quality issues are particularly prominent in infantile

fundus photography due to poor patient cooperation. It has been
reported that 49.4% of fundus photographs in infants in clinical

practice have quality defects12, which is much higher than the
proportion of 11.7% in adults6 and poses a higher risk of
misdiagnosis. Retinopathy of prematurity (ROP) is the leading
cause of preventable infantile blindness13 and is primarily
diagnosed based on disease characteristics in the fundus. To
improve the efficiency of ROP screening and promote ROP
screening on a broad scale, several AI models based on fundus
photographs for ROP screening have been developed14,15.
However, the prominent quality issues in real-world settings
significantly degrade model performance and thus limit them
from large-scale clinical applications. To date, there are no
licensed AI disease screening technologies based on infantile
fundus photography, likely due to unstable image quality16.
To address the image quality issues, the initial approach was to

manually classify images. This approach is subjective and time-
consuming and is not suitable for high-throughput data scenarios,
such as disease screening. Several automated fundus image
quality assessment models have also been previously pro-
posed17–21. However, there are still several critical limitations that
must be addressed. First, these models mostly divided fundus
images into acceptable or unacceptable quality and could not
pinpoint the specific causes of poor quality, which prevented
photographers from making adjustments accordingly. Moreover,
low-quality images were discarded in most previous studies, but
infantile fundus images are difficult to capture, and simply
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discarding these images would result in a great waste of data
resources.
The aim of this study is to develop DeepQuality, a deep

learning-based infantile fundus image quality assessment and
enhancement system. We showed that DeepQuality provides
systematic quality assessment in terms of integrity, illumination,
and clarity. It can also comprehensively score the image quality of
each fundus photograph. Moreover, DeepQuality can provides
quality enhancement based on the results of quality assessment.
DeepQuality significantly improve ROP diagnostic performance of
both clinicians and AI models. This system may improve infant
retinopathy screening in clinical practice and provide a reference
for the development of other image-based disease diagnostic
systems.

RESULTS
Data distribution in the workflow
A total of 2,056,260 infantile fundus images were enrolled for
DeepQuality development. Among them, 32,112 fundus images
were labeled according to quality annotation criteria and used to
develop and evaluate the quality assessment module; 2,015,748
fundus images were enrolled to investigate the real-world image
quality distribution; and 8400 fundus images were labeled

according to quality grading and characteristics of ROP, then
used to develop the quality scoring module and perform the ROP
diagnostic test after quality enhancement.

Performance of the multidimensional quality assessment
module
A total of 32,112 fundus images from 4028 infants were from
routine infantile fundus screening cohorts from four centers.
Specifically, 5986 posterior fundus images and 26,766 peripheral
fundus images were used to develop and evaluate the multi-
dimensional quality classification module. This module can
identify the location (posterior or peripheral) of fundus images
and detect quality defects in three dimensions, namely, illumina-
tion, clarity, and integrity. Corresponding examples of different
image quality defects are shown in Supplementary Fig. 1. The
clinical characteristics of the subjects and the distribution of
images at each quality aspect are summarized in Supplementary
Table 1 and Table 1.
With the internal test dataset, DeepQuality achieved an AUC of

0.974 (95% CI: 0.969, 0.979) in distinguishing image location
(posterior or peripheral). For posterior fundus images, DeepQuality
achieved AUCs of 0.908–0.940 and 0.899–0.955 in distinguishing
poor-quality images concerning illumination and clarity. For
peripheral fundus images, DeepQuality achieved AUCs of 0.957

Table 1. Characteristics of the development, internal test, and external test datasets.

Development
dataset
(N= 15,998)

Internal test
dataset
(N= 4001)

External test dataset (N= 12,753) Inter-grader consistency

LZH LYH QLH

GQ PQ GQ PQ GQ PQ GQ PQ GQ PQ

Posterior (N= 5986)

Illumination, macula 2187 584 542 151 761 216 585 247 582 131 0.962

Illumination, optic disc 2599 172 650 43 863 114 711 121 671 42 0.945

Illumination, remaining retina 2488 283 613 80 928 49 763 69 688 25 0.943

Clarity, macula 2265 506 572 121 734 243 582 250 548 165 0.868

Clarity, optic disc 2411 360 597 96 743 234 602 230 522 191 0.870

Clarity, remaining retina 2168 603 525 168 646 331 589 243 475 238 0.875

Peripheral (N= 26,766)

Integrity, whole retina 10,425 2802 2607 701 2785 1066 2281 791 2607 701 0.970

Illumination, whole retina 11,226 2001 2881 427 3311 540 2809 263 2881 427 0.960

Clarity, whole retina 8186 5041 2047 1261 1870 1981 1592 1480 2047 1261 0.874

N number, w week, g gram, GQ good quality, PQ poor quality.

Table 2. Model performance in the external tests.

Model Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC (95% CI)

Location 0.885 (0.879, 0.891) 0.972 (0.969, 0.975) 0.954 (0.950, 0.958) 0.933 (0.929, 0.938)

Posterior Illumination, macula 0.823 (0.808, 0.838) 0.926 (0.916, 0.936) 0.902 (0.890, 0.914) 0.974 (0.968, 0.980)

Illumination, optic disc 0.866 (0.853, 0.879) 0.953 (0.945, 0.961) 0.943 (0.934, 0.952) 0.984 (0.979, 0.989)

Illumination, remaining retina 0.853 (0.839, 0.867) 0.984 (0.979, 0.989) 0.977 (0.971, 0.983) 0.995 (0.992, 0.998)

Clarity, macula 0.881 (0.868, 0.894) 0.914 (0.903, 0.925) 0.905 (0.894, 0.916) 0.981 (0.976, 0.986)

Clarity, optic disc 0.835 (0.821, 0.850) 0.834 (0.820, 0.849) 0.908 (0.897, 0.919) 0.984 (0.979, 0.989)

Clarity, remaining retina 0.821 (0.806, 0.836) 0.845 (0.831, 0.859) 0.837 (0.823, 0.851) 0.952 (0.943, 0.960)

Peripheral Integrity 0.878 (0.872, 0.885) 0.918 (0.913, 0.924) 0.908 (0.902, 0.914) 0.978 (0.975, 0.981)

Illumination 0.921 (0.916, 0.926) 0.945 (0.940, 0.950) 0.942 (0.937, 0.947) 0.989 (0.987, 0.991)

Clarity 0.879 (0.873, 0.886) 0.869 (0.862, 0.876) 0.874 (0.867, 0.881) 0.975 (0.972, 0.978)

CI confidence interval, Location posterior or peripheral, AUC area under the receiver operating characteristic curve.
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(0.951, 0.964), 0.957 (0.950, 0.964), and 0.927 (0.918, 0.935) in
distinguishing poor-quality images concerning illumination,
clarity, and integrity, respectively. The detailed performance of
the internal test is summarized in Supplementary Table 2 and
Supplementary Fig. 2.
In the overall external test dataset including data from three

centers, DeepQuality achieved an AUC of 0.933 (0.929, 0.938) in
distinguishing image locations (Table 2 and Fig. 1a). For detecting
poor illumination in posterior fundus images, the AUCs of
DeepQuality were 0.974 (0.968, 0.980), 0.984 (0.979, 0.989), and
0.995 (0.992, 0.998) for the macular area, optic disc, and remaining
retina, respectively. For detecting poor clarity in posterior fundus
images, the AUCs of DeepQuality were 0.981 (0.976, 0.986), 0.984
(0.979, 0.989), and 0.952 (0.943, 0.960) for the macular area, optic
disc, and remaining retina, respectively. For peripheral fundus
images, the AUCs of DeepQuality were 0.978 (0.975, 0.981), 0.989

(0.987, 0.991), and 0.975 (0.972, 0.978) for detecting poor integrity,
poor illumination, and poor clarity, respectively. The detailed
performance information of DeepQuality in the LZH, LYH, and QLH
datasets is presented in Supplementary Tables 3–5 and Supple-
mentary Figs. 3–5.
Heatmaps were used to visualize the regions with the greatest

contribution to each model’s prediction. Typical heatmap
examples for each model are presented in Fig. 1b. The results
showed that heatmaps for each model accurately specified the
quality defects corresponding to poor integrity, poor illumination,
and poor clarity.

Performance of the quality scoring module
IQCS was calculated based on a linear weighting of the
probabilities of poor illumination, poor clarity, and poor integrity
output by the quality classification module. There were different

Fig. 1 Performance of the quality assessment module. a In the external test dataset, the assessment module achieved an AUC of 0.933 for
distinguishing the location of fundus images. For posterior images, the assessment module achieved AUCs of 0.952–0.995 for detecting
various quality defects. For peripheral images, the assessment module achieved AUCs of 0.975–0.989 for detecting various quality defects.
b For each of the ten models in the quality assessment module, the original images (left) and corresponding heatmaps (right) are shown. The
heatmaps show that the models are focused precisely on the exact regions with quality defects. The correlation matrix shows the Spearman’s
rank correlation coefficients between the IQCS ranking, individual experts’ ranking, and consensus ranking in posterior images (c) and
peripheral images (d). e, f Distributions of IQCS in infantile fundus images with different quality grades. e For posterior images, the results are
shown for 589 excellent quality images, 446 eligible quality images, and 110 ineligible images. f For peripheral images, the results are shown
for 573 excellent quality images, 5776 eligible quality images, and 1015 ineligible images. The dashed lines represent the hypothetical
thresholds. Post posterior, Peri peripheral, IQCS image quality comprehensive score, Con. consensus, Ex. experts.
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formulas for the IQCS of posterior images and peripheral images.
We evaluated the quality assessment capability of the IQCS
through a quality rank test. As shown in Fig. 1c, for posterior
fundus images, the Spearman’s rank correlation coefficients

between the ranks assigned by IQCS and experts ranged from
0.828 to 0.924. As shown in Fig. 1d, for peripheral fundus images,
the Spearman’s rank correlation coefficients between the ranks
assigned by the IQCS and the experts ranged from 0.829 to 0.957.
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These results suggested that there was very high agreement on
the relative image quality ranking between the IQCS and experts.
To investigate the appropriate threshold for IQCS in ROP

screening scenarios, a dataset consisting of fundus images from
the routine ROP screening cohorts from ZOC and QLH was
constructed. After quality grading, a total of 1162 excellent quality
images, 6223 eligible quality images, and 1015 ineligible quality
images were included and analyzed by the quality quantification
module (detailed information is presented in Supplementary
Tables 6 and 7). The density distribution curve (Fig. 1e, f) shows
that the IQCS of images with excellent quality, eligible quality, and
ineligible quality are concentrated in the 0.8–1.0, 0.2–0.8, and
0–0.2 ranges, respectively. After grid search, the optimal thresh-
olds of IQCS were set as 0.2 and 0.8, which could distinguish
excellent quality, eligible quality, and ineligible quality images
with accuracies of 0.842 and 0.858 for posterior and peripheral
fundus images, respectively. Further information on the grid
search is shown in Supplementary Table 8.

Large-scale quality assessments for real-world infantile fundus
images
The quality analysis of 2,015,748 infant fundus images showed
that 39.12% of the images had poor integrity, 35.17% had poor
illumination, and 39.95% had poor clarity (Supplementary Table 9).
The IQCS mean and standard deviation were 0.345 ± 0.312.
Moreover, infant fundus image sets from ophthalmic hospitals
had lower proportions of poor integrity (21.2% vs. 45.6%), poor
illumination (16.0% vs. 35.2%), and poor clarity (24.1% vs. 33.8%)
images than those from maternity and children’s hospitals (MCHs).
There were also significant variations in the proportion of quality
defects between MCHs in different regions, which ranged from
40.52 to 46.67%. The results of the quality scoring module analysis
(Supplementary Table 10) showed that the IQCS distributions

varied significantly between ophthalmic and nonophthalmic
hospitals. The proportions of infant fundus photographs with
IQCS greater than 0.8 in ophthalmic hospitals were 27.8 to 66.4%
higher than those from MCH 1 and MCH 2. The IQCS also varies
greatly between MCHs in different regions. The IQCSs of the
ophthalmic hospital, MCH 1, and MCH 2 were 0.768 ± 0.285,
0.597 ± 0.311, and 0.357 ± 0.294, respectively. The AUCs ranged
from 0.857 to 0.947 in the randomized inspection of 2000 fundus
images extracted from large-scale real-world dataset (Supplemen-
tary Table 11).

Quality enhancement module for ROP diagnosis improvement
After excluding ineligible images, a total of 2201 ROP images and
5184 normal images were included for ROP diagnosis tests
(Supplementary Table 12). For the test with clinicians, 70 ROP
images and 30 normal images were randomly selected. In this
dataset of raw images, 59 images had an IQCS ranging from 0.2
to 0.8, and 41 images had an IQCS ≥ 0.8. After quality
enhancement, the overall IQCS was improved from
0.455 ± 0.189 to 0.828 ± 0.124 (Fig. 2a), representing an 82%
increase and a narrower SD. The ridge-like elevation lesions and
plus-disease of ROP were much more visible after quality
enhancement (Fig. 2b, c). Clinicians in the enhanced image
group exhibited higher sensitivity (0.896 ± 0.057 vs.
0.493 ± 0.046, an increase of 81.6%) and accuracy (0.880 ± 0.065
vs. 0.618 ± 0.053, an increase of 42.4%) for ROP diagnosis than
those in the raw image group (Fig. 2d).
For the test with AI diagnostic models, the distribution of retinal

images in ROP classification is summarized in Supplementary
Table 12. The performance of deep learning-based ROP diagnostic
models using InceptionV3 and DenseNet is demonstrated in Table
3. The results showed that the ROP diagnostic model trained with
enhanced images performed better than the corresponding

Fig. 2 Performance of the quality enhancement module. a Comparison of IQCS in infantile fundus images before and after quality
enhancement. Each line represents the change in IQCS before and after enhancement of one fundus image. b, c Typical examples of raw
fundus images and the corresponding enhanced fundus images for ROP. Compared to the raw image, the corresponding enhanced image
demonstrates better visibility of retinal lesions and vessels. b White arrows indicate peripheral retinal ridge-like elevation lesions, which
suggest a stage 2 ROP lesion. c Red dashed circle indicates that the retinal vessels were tortuous and dilated, which suggests plus-disease of
ROP. d Clinicians were assigned to diagnose ROP according to 100 raw images and corresponding enhanced images. The accuracy, sensitivity
and specificity were compared. The p value was calculated using the independent two-sample t-test. The error bars represent the standard
deviation of the clinicians in the corresponding groups. The performance of ROP diagnosis models developed and evaluated by raw images
and corresponding enhanced images using InceptionV3 (e) and DenseNet (h) were compared. t-Distributed stochastic neighbor embedding
visualization of features extracted from an intermediate layer of trained models for ROP diagnosis using InceptionV3 (f, g) and DenseNet (i, j)
architectures. This visualization demonstrates the capacity of different models to distinguish ROP images and normal images. Orange points
represent normal images, and blue points represent ROP images. There was greater intergroup distance and lower intragroup distance in
models with the quality enhancement module, which indicated greater performance for ROP diagnosis. ROP retinopathy of prematurity.
**p < 0.01; ***p < 0.001.

Table 3. Model performance comparisons for ROP detection before and after image quality enhancement.

Model architecture Metrics (95% CI) Model using raw images Model using enhanced images p value

InceptionV3 Sensitivity 0.508 (0.560, 0.600) 0.670 (0.651, 0.689) <0.0001*

Specificity 0.966 (0.959, 0.974) 0991 (0.987, 0.995) <0.0001*

Accuracy 0.827 (0.812, 0.842) 0.875 (0.862, 0.889) <0.0001*

AUC 0.875 (0.861, 0.889) 0.962 (0.954, 0.970) <0.0001*

DenseNet Sensitivity 0.436 (0.416, 0.456) 0.540 (0.520, 0.561) <0.0001*

Specificity 0.992 (0.988, 0.996) 0.989 (0.985, 0.993) 0.5689

Accuracy 0.791 (0.775, 0.808) 0.827 (0.812, 0.843) 0.0022*

AUC 0.939 (0.929, 0.949) 0.961 (0.953, 0.969) <0.0001*

p values for sensitivity, specificity, and accuracy were calculated using a two-proportion z test. The p value for AUC was calculated using the DeLong test.
AUC area under the receiver operating characteristic curve, ROP retinopathy of prematurity.
*p < 0.05.
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model trained with raw images. In models with the InceptionV3
architecture, significant improvement was found in terms of
sensitivity (0.508 vs. 0.670, p < 0.0001), specificity (0.966 vs. 0.991,
p < 0.0001), accuracy (0.827 vs. 0.875, p < 0.0001) and AUC (0.845
vs. 0.962, p < 0.0001) after quality enhancement (Fig. 2e). In
models with the DenseNet architecture, sensitivity (0.436 vs. 0.540,
p < 0.0001), accuracy (0.791 vs. 0.827, p= 0.0022), and AUC (0.939

vs. 0.961, p < 0.0001) were significantly improved after quality
enhancement (Fig. 2h). In addition, t-distributed stochastic
neighbor embedding (t-SNE) was employed to visualize the
features learned by the DL models (Fig. 2f, g, i, j). The results of
t-SNE showed that the point clusters of normal and ROP images
had greater intergroup distances and lower intragroup distances
after quality enhancement.

Fig. 3 Overall workflow of DeepQuality development. a The development of quality assessment module. Infantile fundus images from four
centers were collected and annotated to develop and evaluate quality assessment and scoring modules. b The real-world investigation and
quality enhancement module. We investigated the image quality of infantile fundus photographs in real-world settings by DeepQuality. The
quality enhancement module, which could enhance the quality based on the results of the quality assessment, was developed. The diagnostic
performances of clinicians and AI diagnostic systems based on the raw and corresponding enhanced images were compared. IQCS image
quality comprehensive score, SD Shandong Province, GX Guangxi Province, GD Guangdong Province, AI artificial intelligence.
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DISCUSSION
DeepQuality, the first deep learning-based system for systematic
quality assessment and quality enhancement of infant fundus
images, was developed in this study. The quality assessment
module of DeepQuality could classify fundus image quality in
terms of illumination, clarity, and integrity. In both the internal test
and multiple external tests, nearly all of the AUCs of quality
assessment were greater than 0.9, demonstrating the precision
and generalizability of the system. DeepQuality could also
comprehensively score overall image quality based on IQCS. The
rankings of overall quality by IQCS and retinal experts were highly
correlated (Spearman’s rank correlation >0.8). With the assistance
of DeepQuality, we verified that 58.3% of infant fundus images
had quality issues in a real-world dataset containing over two
million images. Significant discrepancies in image quality were
observed among different hospitals. Given such a large proportion
of quality issues, DeepQuality also provided quality enhancement
based on the results of quality assessment. In the ROP diagnosis
tests, both clinicians and AI diagnostic models performed better
after quality enhancement.
Several previous studies have constructed deep learning-based

models for automated fundus image quality assessment. Mahapa-
tra et al. developed the first retinal image quality assessment
system based on deep learning with an accuracy of 0.98 in
distinguishing gradable and ungradable fundus images18. Li et al.
constructed a deep learning-based image filtering system (DLIFS)
for detecting poor-quality ultrawide-field fundus images with
AUCs greater than 0.99 in three external datasets22. Compared
with these studies, DeepQuality has several advantages. First,
DeepQuality provides a multidimensional quality assessment that
includes illumination, clarity, and integrity, making it more specific
and clinically relevant. Therefore, operators can know the specific
cause of poor quality and make adjustments accordingly. Second,
most previous studies developed image quality assessment
systems for fundus images in adults23,24. Few prior studies have
focused on deep learning systems for the systematic assessment
of infantile fundus image quality. Third, our system can evaluate
both posterior and peripheral fundus images, while previous
studies only focused on posterior fundus images. The mode
proposed in the current study is more ideal for infantile fundus
screening scenarios, given that many significant features of
infantile fundus disease appear in the peripheral retina and that
peripheral fundus images are more likely to suffer from quality
issues.
Analysis of real-world infantile fundus photographs with

DeepQuality showed that more than half of the images had
quality issues. Moreover, there are significant differences in the
proportion and causes of poor image quality among hospitals of
different categories and regions. These variations may be due to
different photography proficiency, equipment conditions, pupil
dilatation, and infant cooperation. Poor quality and variation can
lead to dataset shifts among hospitals, which in turn could affect
the performance of AI diagnostic models. DeepQuality could
provide quality enhancements for images with poor illumination
and poor clarity with digital technology. After quality enhance-
ment, images exhibited a higher IQCS with a narrower standard
deviation. This indicates a significant improvement and decreased
variation in image quality.
To investigate whether image quality enhancement could

benefit the diagnosis of infantile fundus disease, comparisons of
ROP diagnosis were conducted. The results showed that
ophthalmologists present better ROP diagnostic performance
after quality enhancement, with an 81.6% increase in sensitivity
and a 42.4% increase in accuracy. Moreover, the AI diagnostic
models trained with enhanced images exhibited better perfor-
mance than those trained with the corresponding raw images
(with AUCs of 0.96 vs. 0.88). These results indicated that

DeepQuality has great potential to improve the performance of
ROP diagnostic models in real-world settings. According to the
clinical consensus25, the diagnosis of ROP is based on the degree
of dilatation and tortuosity of the retinal vessels, as well as the
appearance of structures at the vascular-avascular juncture.
Quality enhancement makes the retinal ridge and tortuous vessels
of ROP more visible and easier to identify. A prepositive image
quality assessment and enhancement system is necessary to
ensure the performance of AI diagnostic models in infant
retinopathy screening.
There are some limitations in this study. First, quality enhance-

ment does not solve all quality defects. In this study, illumination
and clarity defects can be enhanced by digital methods, while
integrity issues still need to be addressed by rephotographing the
fundus. Moreover, only images with mild and moderate quality
issues (with IQCS ranging from 0.2 to 0.8) can be improved, and
images with severe quality defects (IQCS < 0.2) should be
discarded. Second, we developed a quality assessment and
enhancement system and proved its utility in retrospective
datasets. However, the effectiveness of DeepQuality in real-
world settings still needs to be prospectively validated. Third,
DeepQuality is theoretically useful for other infantile fundus
diseases, such as choroidal coloboma, retinoblastoma, and optic
nerve developmental abnormalities, but only ROP was investi-
gated in this study. The assistance of DeepQuality to other
infantile fundus diseases will be explored in our future studies.
In summary, DeepQuality performed well in the multidimen-

sional quality assessment of infantile fundus images in terms of
illumination, clarity, and integrity. DeepQuality also provided
comprehensive scoring for the overall quality of each image. More
importantly, images with quality issues could be effectively
enhanced by DeepQuality, which significantly improved ROP
diagnosis. The integration of DeepQuality and AI diagnostic
models can effectively improve the accuracy and robustness of
models in real-world infant retinopathy screening. Given the
pervasiveness of image quality issues across various medical
specialties, this study may be an important reference for the
development of other image-based AI disease screening systems.

METHODS
Study design
The overall study design is shown in Fig. 3. We constructed a
dataset with infantile fundus images acquired from the newborn
fundus screening cohorts of Zhongshan Ophthalmic Center (ZOC),
Maternal and Children’s Hospital of Liuzhou (LZH), Maternal and
Children’s Hospital of Linyi (LYH), and Qilu Hospital (QLH) to
develop and evaluate DeepQuality. These images were captured
using Retcam (Natus Medical Inc., Pleasanton, USA) and PanoCam
(Visunex Medical Systems Inc., San Ramon, USA). DeepQuality was
designed to be a system consisting of the following three
modules: quality assessment, quality scoring, and quality enhance-
ment modules.
The study was approved by the Institutional Review Board of

Zhongshan Ophthalmic Center at Sun Yat-sen University (IRB-ZOC-
SYSU, ID: 2023KYP1029). All procedures were conducted in
accordance with the tenets of the Declaration of Helsinki.
Informed consent is waived because data are collected retro-
spectively and personal information is desensitized.

Image quality annotation
Fundus images were first classified into posterior or peripheral
images according to the integrity of the macula and optic disc.
Then, all the images were labeled according to quality annotation
criteria. Detailed definitions and typical examples of each quality
factor are demonstrated in Supplementary Fig. 1. The proposed
quality factors (integrity, illumination, and clarity) are well-
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established quality assessment aspects for fundus images in
clinical practice26. For each quality factor, images were manually
classified according to the criteria into two categories: “good” and
“poor”. Two certified retinal experts with at least 5 years of clinical
experience in pediatric ophthalmology were recruited to label all
anonymized images independently. To ensure the reliability of
image annotation, reference standards were determined only
when both retinal experts reached consensus. All disputed images
were submitted to another senior retinal expert with more than 10
years of clinical experience for arbitration.

Development of the multidimensional quality assessment
module of DeepQuality
Infantile fundus images collected from ZOC from January 2016 to
December 2016 were randomly divided into the training set,
development set, and internal test set at a ratio of 3:1:1. There was
no patient overlap between these sets. All images were downsized
to 299 × 299 pixels, and the pixel values were normalized to the
interval [0, 1].
We used InceptionV3, a prominent deep convolutional neural

network (CNN) architecture, to train our models. Corresponding to
the annotation criteria (Supplementary Fig. 1), the image quality
classification module of DeepQuality was composed of 1 model
for differentiating the location (posterior and peripheral) of fundus
images, 6 models for classifying different quality aspects of
posterior fundus images, and 3 models for classifying different
quality aspects of peripheral fundus images. Each model had one
input and two outputs; the input of the model was a retinal image,
and the outputs were a binary classification result and the
corresponding probability of whether the quality of the input
image was poor in the targeted aspect.
The Adam optimizer was used throughout the entire training

procedure. The initial learning rate was set to 0.001, and the
learning rate was decreased by a factor of 2 when the accuracy on
the validation set stopped improving for 3 epochs to allow for fine
learning. All the parameters were initialized with the default
ImageNet weights. We trained the model for 50 epochs with a
batch size of 64 and chose the model with optimal performance
on the validation set. The development environment was based
on Ubuntu 16.04.6 with an NVIDIA Tesla V100 PCle 32 GB. The
versions of Python, TensorFlow, and Keras are 3.6.13, 1.13.1, and
2.3.1, respectively.

External test of the quality assessment module
The performance of the quality assessment module of DeepQu-
ality was externally tested using fundus images collected from
LZH, LYH, and QLH from January 2022 to June 2022. The detailed
information is summarized in Table 1.

Visualization heatmap
The area of the image that the model focused on was highlighted
using the Gradient-weighted Class Activation Map (Grad-CAM)
visualization technique. Grad-CAM produces an activation heat-
map based on a gradient. A greater value in the heatmap indicates
a more important area for the model’s predictions. By adopting
this technique, we can intuitively recognize the location of
information used by the model to make decisions.

Quality scoring module of DeepQuality
The overall quality of an image is determined by multiple factors,
such as illumination, clarity, and integrity. To obtain a flexible
evaluation metric for image quality, we defined the Image Quality
Comprehensive Score (IQCS) to quantitatively reflect overall image
quality. IQCS was calculated based on a linear weighting of the
output probabilities of the quality assessment module. For
posterior and peripheral fundus images, the IQCS is the ensemble

of their respective quality aspects, and the detailed calculation of
IQCS is presented in Eq. (1):

IQCS ¼ 1�
Xk
i¼1

wipi (1)

where k denotes the number of quality aspects. For posterior
fundus images, k is 6 (macular clarity, macular illumination, optic-
disc clarity, optic-disc illumination, remaining retina clarity, and
remaining retina illumination), and for peripheral fundus images, k
is 3 (illumination, clarity, and integrity). pi is the probability of
predicting that an image is “poor” in terms of the ith quality
aspect, and wi indicates the weight of each aspect such thatPk

i¼1 wi ¼ 1.
In this study, the weight parameters were set such that

w1=w2=…wn and the IQCS ranged from 0 to 1, with a greater
value indicating better overall quality and vice versa.

Ranking test and threshold optimization for IQCS
To investigate the performance of the IQCS, two independent
ranked test datasets, which consisted of 30 posterior and 30
peripheral fundus images, were constructed. For each ranked
dataset, images were ranked in quality from best to worst by six
retinal experts. A web-based interface, which presented experts
with two images and prompted experts to “select the higher
quality for the infant fundus screening”, was designed. After 15
rounds of pairwise comparisons, individual expert rankings of
image quality were constructed with the ELO scoring scheme. The
consensus ranking was based on the average ELO scores.
To investigate the effectiveness of the IQCS in ROP screening

scenarios, we collected fundus images from routine ROP screening
cohorts and constructed an ROP screening dataset. The gradability
of fundus images was annotated according to new criteria.
Detailed definitions of the annotation criteria are shown in
Supplementary Table 5. Briefly, infantile fundus images were
classified into excellent quality, eligible quality, and ineligible
quality, in order of worsening quality defects and diminishing
confidence of clinicians in their diagnosis of ROP. We attempted to
find the optimal threshold for IQCS to distinguish the three quality
categories via grid search. Briefly, the initial value of the lower
threshold was 0.05 with a possible range of [0.05, 0.9]; the initial
value of the upper threshold was 0.1, with a possible range of [0.1,
0.95]; and the upper and lower thresholds were then iterated to
cover the entire range in steps of 0.05. The classification accuracy
was calculated for all pairs of upper and lower thresholds, and the
final pair with the highest accuracy was set as the IQCS threshold.

A real-world investigation on the quality of infantile fundus
images
Infantile fundus photographs from one ophthalmic hospital and
two maternity and child healthcare hospitals were collected from
January 2017 to December 2021. Then, we used DeepQuality to
compare the proportions of poor illumination, poor clarity, and
poor completeness of infant and child fundus images from
different hospital sources. The distribution of IQCS among
different hospitals was also investigated.

Quality enhancement module of DeepQuality
For images with various quality defects, we developed a targeted
quality enhancement module to improve the image quality. After
the evaluation of the quality classification module and quantifica-
tion modules, if the IQCS of the image is lower than the set
threshold and the illumination of the image is classified as “poor”,
we use the gamma transform to improve it (Eq. (2)). Moreover, to
reduce the noise introduced by brightening the image and to
preserve the edge information, the γ-transformed image is

L. Li et al.

8

npj Digital Medicine (2023)   192 Published in partnership with Seoul National University Bundang Hospital



processed by a bilateral filter (Eq. (3)). If the clarity of the image is
identified as “poor”, we use the CLAHE27 algorithm for the red and
green channels to improve clarity:

Y ¼ I
255

� �r

� 255 (2)

Gamma transform: I refers to the pixel value of the original
image, Y is the value after the gamma transform, r is the transform
coefficient, only the red and green channels are transformed, and
the transform coefficients are 0.7 and 0.9.

Ip ¼ 1
Wp

X
q2S

Gσs jjp�qjjð ÞGσr jIp�Iqjð ÞIp (3)

Bilateral filter: the radius of the S domain is 10 pixels, the space
sigma (σs) in the Gaussian function is 30, and the range sigma
(σr) is 40.

Comparisons for ROP diagnosis with or without the quality
enhancement module
According to the International Committee for the Classification of
ROP, the clinical features of ROP can be summarized as follows: (1)
Basic lesions: an abnormal reaction to the end of immature vessels
at the vascular-avascular juncture, with 5 stages. (2) Plus disease:
abnormal dilatation and tortuosity of vessels in the posterior pole
of the retina, including plus and pre-plus disease. In this study,
images of stage 4 and stage 5 were not included. Two residents
with 5 years of experience in ophthalmology annotated each
fundus image by combining the results of binocular indirect
ophthalmoscopy. If any of the abovementioned features were
present in the image, it was labeled “ROP”, suggesting the need
for further assessment. Conversely, an image without any visible
features was labeled “Normal”. For each image, if the labels of the
two residents agreed, the labels were accepted, and if they
disagreed, another attending ophthalmologist with 10 years of
clinical experience was consulted. The ROP screening database
was constructed after this step.
After image annotation, 70 “ROP” images and 30 “Normal”

images were randomly selected from the ROP screening dataset
and formed an independent subset for clinician testing. Further-
more, images were processed by the quality enhancement
module. Eight licensed ophthalmologists with similar clinical
experience were recruited and randomly divided into two groups.
One group performed the diagnosis task with raw images.
Another group performed the diagnosis task with enhanced
images. The accuracy, sensitivity, and specificity of the two groups
were compared.
To investigate the assistance of quality enhancement on the

model performance, we developed and evaluated ROP diagnostic
models with raw images and corresponding enhanced images
from ROP screening dataset (Supplementary Table 12), respec-
tively. The performances were compared between different
models. Two types of CNN architectures, InceptionV3 and
DenseNet, were tested in this study. For both CNN architectures,
the hyperparameters were fixed to explore the effectiveness of the
quality enhancement module.

Statistical analysis
The performance of the quality classification module in distin-
guishing poor-quality images in terms of each quality aspect was
evaluated by sensitivity and specificity with 95% confidence
intervals (CIs). Receiver operating characteristic (ROC) curves were
plotted to show the performance of the quality classification
module to assess image quality. Spearman’s rank correlation was
used to evaluate the similarity between the IQCS and the
consensus ranking of the images by the retinal experts. p < 0.05

(two-tailed) was considered to indicate statistical significance.
Data were analyzed using Python 3.6.13.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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