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The past, current, and future of neonatal intensive care units
with artificial intelligence: a systematic review

Elif Keles '™ and Ulas Bagci®'**

Machine learning and deep learning are two subsets of artificial intelligence that involve teaching computers to learn and make
decisions from any sort of data. Most recent developments in artificial intelligence are coming from deep learning, which has
proven revolutionary in almost all fields, from computer vision to health sciences. The effects of deep learning in medicine have
changed the conventional ways of clinical application significantly. Although some sub-fields of medicine, such as pediatrics, have
been relatively slow in receiving the critical benefits of deep learning, related research in pediatrics has started to accumulate to a
significant level, too. Hence, in this paper, we review recently developed machine learning and deep learning-based solutions for
neonatology applications. We systematically evaluate the roles of both classical machine learning and deep learning in neonatology
applications, define the methodologies, including algorithmic developments, and describe the remaining challenges in the
assessment of neonatal diseases by using PRISMA 2020 guidelines. To date, the primary areas of focus in neonatology regarding Al
applications have included survival analysis, neuroimaging, analysis of vital parameters and biosignals, and retinopathy of
prematurity diagnosis. We have categorically summarized 106 research articles from 1996 to 2022 and discussed their pros and
cons, respectively. In this systematic review, we aimed to further enhance the comprehensiveness of the study. We also discuss
possible directions for new Al models and the future of neonatology with the rising power of Al, suggesting roadmaps for the

integration of Al into neonatal intensive care units.
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INTRODUCTION

The Al tsunami fueled by advances in artificial intelligence (Al) is
constantly changing almost all fields, including healthcare; it is
challenging to track the changes originated by Al as there is not a
single day that Al is not applied to anything new. While Al affects
daily life enormously, many clinicians may not be aware of how
much of the work done with Al technologies may be put into
effect in today’s healthcare system. In this review, we fill this gap,
particularly for physicians in a relatively underexplored area of Al:
neonatology. The origins of Al, specifically machine learning (ML),
can be tracked all the way back to the 1950s, when Alan Turing
invented the so-called “learning machine” as well as military
applications of basic Al'. During his time, computers were huge,
and the cost of increased storage space was astronomical. As a
result, their capabilities, although substantial for their day, were
restricted. Over the decades, incremental advancements in theory
and technological advances steadily increased the power and
versatility of ML2,

How do machine learning (ML) and deep learning (DL) work?
ML falls under the category of AI>. ML's capacity to deal with data
brought it to the attention of computer scientists. ML algorithms
and models can learn from data, analyze, evaluate, and make
predictions or decisions based on learning and data character-
istics. DL is a subset of ML. Different from this larger class of ML
definitions, the underlying concept of DL is inspired by the
functioning of the human brain, particularly the neural networks
responsible for processing and interpreting information. DL
mimics this operation by utilizing artificial neurons in a computer
neural network. In simple terms, DL finds weights for each artificial
neuron that connects to each other from one layer to another
layer. Once the number of layers is high (i.e., deep), more complex

relationships between input and output can be modeled®->. This
enables the network to acquire more intricate representations of
the data as it learns. The utilization of a hierarchical approach
enables DL models to autonomously extract features from the
data, as opposed to depending on human-engineered features as
is customary in conventional ML3. DL is a highly specialized form
of ML that is ideally modified for tasks involving unstructured data,
where the features in the data may be learnable, and exploration
of non-linear associations in the data can be possible®2,

The main difference between ML and DL lies in the complexity
of the models and the size of the datasets they can handle. ML
algorithms can be effective for a wide range of tasks and can be
relatively simple to train and deploy®”°~"". DL algorithms, on the
other hand, require much larger datasets and more complex
models but can achieve exceptional performance on tasks that
involve high-dimensional, complex data’. DL can automatically
identify which aspects are significant, unlike classical ML, which
requires pre-defined elements of interest to analyze the data and
infer a decision'®. Each neuron in DL architectures (i.e., artificial
neural networks (ANN)) has non-linear activation function(s) that
help it learn complex features representative of the provided data
samples®.

ML algorithms, hence, DL, can be categorized as either
supervised, unsupervised, or reinforcement learning based on
the input-output relationship. For example, if output labels
(outcome) are fully available, the algorithm is called “supervised,”
while unsupervised algorithms explore the data without their
reference standards/outcomes/labels in the output®'2 In terms of
applications, both DL and ML are typically used for tasks such as
classification, regression, and clustering®®'%13-'>, DL methods’
success depends on the availability of large-scale data, new
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Fig. 1 Exploring Al Hierarchy and Challenges in Healthcare. a Hierarchical diagram of Al. How do machine learning (ML) and deep learning
(DL) work? ML falls under the category of Al. DL is a subset of ML. b Ongoing hurdles of Al when applied to healthcare applications. Key
concerns related to Al and each concern affects the outcome of Al in Neonatology including; (1) challenges with clinical interpretability; (2)
knowledge gaps in decision-making mechanisms, with the latter requiring human-in-the-loop systems (3) ethical considerations; (4) the lack
of data and annotations, and (5) the absence of Cloud systems allowing for secure data sharing and data privacy.

optimization algorithms, and the availability of GPUs%'°. These
algorithms are designed to autonomously learn and develop as
they gain experience, like humans®. As a result of DL's powerful
representation of the data, it is considered today’s most improved
ML method, providing drastic changes in all fields of medicine and
technology, and it is the driving force behind virtually all progress
in Al today® (Fig. 1).

There are three major problem types in DL in medical imaging:
image segmentation, object detection (i.e., an object can be an
organ or any other anatomical or pathological entity), and image
classification (e.g., diagnosis, prognosis, therapy response assess-
ment)>. Several DL algorithms are frequently employed in medical
research; briefly, those approaches belong to the following family
of algorithms:

Convolutional Neural Networks (CNNs) are predominantly
employed for tasks related to computer vision and signal
processing. CNNs can handle tasks requiring spatial relationships
where the columns and rows are fixed, such as imaging data. CNN
architecture encompasses a sequence of phases (layers) that
facilitate the acquisition of hierarchical features. Initial phases
(layers) extract more local features such as corners, edges, and
lines, later phases (layers) extract more global features. Features
are propagated from one layer to another layer, and feature
representation becomes richer this way. During feature propaga-
tion from one layer to another layer, the features are added
certain nonlinearities and regularizations to make the functional
modeling of input-output more generalizable. Once features
become extremely large, there are operations within the network
architecture to reduce the feature size without losing much
information, called pooling operations. The auto-generated and
propagated features are then utilized at the end of the network
architecture for prediction purposes (segmentation, detection, or
classification)®°.

Recurrent Neural Networks (RNNs) are designed to facilitate the
retention of sequential data, namely text, speech, and time-series
data such as clinical data or electronic health records (EHRs). They
can capture temporal relationships between data components,
which can be helpful for predicting disease progression or
treatment outcomes'''7"'® RNNs use similar architecture compo-
nents that CNNs have. Long Short-Term Memory (LSTM) models
are types of RNNs and are commonly used to overcome their
shortcomings because they can learn long-term dependencies in
data better than conventional RNN architectures. They are utilized
in some classification tasks, including audio'”"'®. LSTM utilizes a
gated memory cell in the network architecture to store information

npj Digital Medicine (2023) 220

from the past; hence, the memory cell can store information for a
long period of time, even if the information is not immediately
relevant to the current task. This allows LSTMs to learn patterns in
data that would be difficult for other types of neural networks to
learn.

Generative adversarial networks (GANSs) are a class of DL models
that can be used to generate new data that is like existing data. In
healthcare, GANs have been used to generate synthetic medical
images. There are two CNNs (generator and discriminator); the
first CNN is called the generator, and its primary goal is to make
synthetic images that mimic actual images. The second CNN is
called the discriminator, and its main objective is to identify
between artificially generated images and real images®®. The
generator and discriminator are trained jointly in a process called
adversarial training, where the generator tries to create data that
is so realistic that the discriminator cannot distinguish it from real
data. GANs are used to generate a variety of different types of
data, including images, videos, and text. GANs are used to
enhance image quality, signal reconstruction, and other tasks such
as classification and segmentation too2°-22,

Transfer learning (TL) is a concept derived from cognitive
science that states that information is transferred across related
activities to improve performance on a new task. It is generally
known that people can accomplish similar tasks by building on
prior knowledge?3. TL has been implemented to minimize the
need for annotation by transferring DL models with knowledge
from a previous task and then fine-tuning them in the current
task®®. The majority of medical image classification techniques
employ TL from pretrained models, such as ImageNet, which has
been demonstrated to be inefficient due to the ImageNet
consisting of natural images®®. The approaches that utilized
ImageNet pre-trained images in CNNs revealed that fine-tuning
more layers provided increased accuracy®®. The initial layers of
ImageNet-pretrained networks, which detect low-level image
characteristics, including corners and borders, may not be efficient
for medical images®*2°,

New and more advanced DL algorithms are developed almost
daily. Such methods could be employed for the analysis of
imaging and non-imaging data in order to enhance performance
and reliability. These methods include Capsule Networks, Atten-
tion Mechanisms, and Graph Neural Networks (GNNs)?’~3°, Briefly,
these are:

Capsule Networks are a relatively new form of DL architecture
that aim to address some of the shortcomings of CNNs: pooling
operations (reducing the data size) and a lack of hierarchical
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relations between objects and their parts in the data. Capsules can
capture spatial relationships between features and are more
capable of handling rotations and deformations of image objects
thanks to their vectorial representations in neuronal space.
Capsule Networks have shown potential in image classification
tasks and could have applications in medical imaging analysis?’.
However, its implementation and computational time are two
hurdles that restrict its widespread use.

Attention Mechanisms, represented by Transformers, have
contributed to the development of computer vision and language
processing. Unlike CNNs or RNNs, transformers allow direct
interaction between every pair of components within a sequence,
making them particularly effective at capturing long-term relation-
ships??3°. More specifically, a self-attention mechanism in
Transformers is an important piece of the DL model as it can
dynamically focus on different parts of the input data sequence
when producing an output, providing better context under-
standing than CNN based systems.

Graph Neural Networks (GNNs) are a form of data structure that
describes a collection of objects (nodes) and their relationships
(edges). There are three forms of tasks, including node-level, edge-
level, and graph level®'. Graphs may be used to denote a wide
range of systems, including molecular interaction networks, and
bioinformatics®'-33, GNNs have demonstrated potential in both
imaging and non-imaging data analysis®>*,

Physics-driven systems are needed in imaging field. Several
studies have demonstrated the effectiveness of DL methods in the
medical imaging field>>=3°. As the field of DL continues to evolve,
it is likely that new methods and architectures will emerge to
address the unique challenges and constraints of various types of
data. One of the most common problems faced with DL-based
MRI construction®®. Specific algorithms for this problem can be
essentially categorized into two groups: data driven and physics
driven algorithms. In purely data-driven approaches, a mapping is
learned between the aliased image and the image without
artifacts®. Acquiring fully sampled (artifact-free) datasets is
impractical in many clinical imaging studies when organs are in
motion, such as the heart, and lung. Recently developed models
can employ these under sampled MRI acquisitions as input and
generate output images consistent with fully-sampled (artifact
free) acquisitions3’—°,

What is the Hybrid Intelligence? A highly desirable way of
incorporating advances in Al is to let Al and human intellect work
together to solve issues, and this is referred to as “hybrid
intelligence”® (e.g., one may call this “mixed intelligence” or
“human-in-the-loop Al systems”). This phenomenon involves the
development of Al systems that serve to supplement and amplify
human decision-making processes, as opposed to completely
replacing them>. The concept involves integrating the respective
competencies of artificial intelligence and human beings in order
to attain superior outcomes that would otherwise be unachie-
vable*'. Al algorithms possess the ability to process extensive
amounts of data, recognize patterns, and generate predictions
rapidly and precisely. Meanwhile, humans can contribute their
expertise, understanding, and intuition to the discussion to offer
context, analyze outcomes, and render decisions*?. The hybrid
intelligence strategy can help decision-makers in a variety of fields
make decisions that are more precise, effective, and efficient by
combining these qualities®>**344, Human in the loop and hybrid
intelligence systems are promising for time-consuming tasks in
healthcare and neonatology.

Where do we stand currently? Al in medicine has been
employed for over a decade, and it has often been considered
that clinical implementation is not completely adapted to daily
practice in most of the clinical field>*“. In recent years,
increasingly complex computer algorithms and updated hardware
technologies for processing and storing enormous datasets have
contributed to this achievement®”4%4 It has only been within the
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last decade that these systems have begun to display their full
potential®®. The field of Al research appears to have been taken
up with differing degrees of enthusiasm across disciplines. When
analyzing the thirty years of research into Al, DL, and ML
conducted by several medical subfields between the years 1988
and 2018, one-third of publications in DL yielded to radiology, and
most of them are within the imaging sciences (radiology,
pathology, and cell imaging)*®. Software systems work by utilizing
biomedical images with predictive/diagnostic/prognostic features
and integrating clinical or pre-clinical data. These systems are
designed with ML algorithms*®. Such breakthrough methods in DL
are nowadays extensively applied in pathology, dermatology,
ophthalmology, neurology, and psychiatry®47°, Al has its own
difficulties with the increasing utilization of healthcare (Fig. 1b).

What are the needs in clinics? Clinicians are concerned about
the healthcare system’s integration with Al: there is an exponential
need for diagnostic testing, early detection, and alarm tools to
provide diagnosis and novel treatments without invasive tests and
procedures®’. Clinicians have higher expectations of Al in their
daily practices than before. Al is expected to decrease the need for
multiple diagnostic invasive tests and increase diagnostic accuracy
with less invasive (or non-invasive) tests. Such Al systems can
easily recognize imaging patterns on test images (i.e., unseen or
not utilized efficiently in daily routines), allowing them to detect
and diagnose various diseases. These methods could improve
detection and diagnosis in different fields of medicine.

The overall goal of this systematic review is to explain Al's
potential use and benefits in the field of neonatology. We intend to
enlighten the potential role of Al in the future in neonatal care. We
postulate that Al would be best used as a hybrid intelligence (i.e.,
human-in-the-loop or mixed intelligence) to make neonatal care
more feasible, increase the accuracy of diagnosis, and predict the
outcome and diseases in advance. The rest of the paper is
organized as follows: In results, we explain the published Al
applications in neonatology along with Al evaluation metrics to fully
understand their efficacy in neonatology and provide a compre-
hensive overview of DL applications in neonatology. In discussion,
we examine the difficulties of Al utilization in neonatology and
future research discussions. In the methods section, we outline the
systematic review procedures, including the examination of existing
literature and the development of our search strategy.

We review the past, current, and future of Al-based diagnostic
and monitoring tools that might aid neonatologists’ patient
management and follow-up. We discuss several Al designs for
electronic health records, image, and signal processing, analyze
the merits and limits of newly created decision support systems,
and illuminate future views clinicians and neonatologists might
use in their normal diagnostic activities. Al has made significant
breakthroughs to solve issues with conventional imaging
approaches by identifying clinical variables and imaging aspects
not easily visible to human eyes. Improved diagnostic skills could
prevent missed diagnoses and aid in diagnostic decision-making.
The overview of our study is structured as illustrated in Fig. 2.
Briefly, our objectives in this systematic review are:

® to explain the various Al models and evaluation metrics
thoroughly explained and describe the principal features of
the Al models,

® to categorize neonatology-related Al applications into macro-
domains, to explain their sub-domains and the important
elements of the applicable Al models,

® to examine the state-of-the-art in studies, particularly from the
past several years, with an emphasis on the use of ML in
encompassing all neonatology,

® to present a comprehensive overview and classification of DL
applications utilized and in neonatology,

® to analyze and debate the current and open difficulties
associated with Al in neonatology, as well as future research
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Fig.2 An overview of the structure of this paper. It is provided an overview of our paper’s structure and objectives: 1. Explaining Al Models
and Evaluation Metrics: 2. Evaluating ML applied studies in Neonatology 3. Evaluating DL applied studies in Neonatology 4. Analyzing

Challenges and Future Directions.
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Fig. 3 An overview of Al applications in neonatology. Unstructured data such as medical images, vital signals, genetic expressions, EHRs,
and signal data contribute to the wide variety of medical information. Analyzing and interpreting different data streams in neonatology
requires a comprehensive strategy because each has unique characteristics and complications.

directions, to offer the clinician a comprehensive perspective
of the actual situation.

Al covers a broad concept for the application of computing
algorithms that can categorize, predict, or generate valuable
conclusions from enormous datasets*®. Algorithms such as Naive
Bayes, Genetic Algorithms, Fuzzy Logic, Clustering, Neural Net-
works (NN), Support Vector Machines (SVM), Decision Trees, and
Random Forests (RF) have been used for more than three decades
for detection, diagnosis, classification, and risk assessment in
medicine as ML methods®'°. Conventional ML approaches for
image classification involve using hand-engineered features,
which are visual descriptions and annotations learned from
radiologists, that are encoded into algorithms.

Images, signals, genetic expressions, EHR, and vital signs are
examples of the various unstructured data sources that comprise
medical data (Fig. 3). Due to the complexity of their structures, DL
frameworks may take advantage of this heterogeneity by attaining
high abstraction levels in data analysis.
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While ML requires manual/hand-crafted selection of information
from incoming data and related transformation procedures, DL
performs these tasks more efficiently and with higher effi-
cacy®'%45, DL is able to discover these components by analyzing
a large number of samples with a high degree of automation’. The
literature on these ML approaches is extensive before the
development of DL>745,

It is essential for clinicians to understand how the suggested ML
model should enhance patient care. Since it is impossible for a
single metric to capture all the desirable attributes of a model, it is
customarily necessary to describe the performance of a model
using several different metrics. Unfortunately, many end-users do
not have an easy time comprehending these measurements. In
addition, it might be difficult to objectively compare models from
different research models, and there is currently no method or
tool available that can compare models based on the same
performance measures®'. In this part, the common ML and DL
evaluation metrics are explained so neonatologists could adapt
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Table 1. Evaluation metrics in artificial intelligence.

Term Definition

True Positive (TP)
True Negative (TN)
False Positive (FP)
False Negative (FN)
Accuracy (ACC)

Recall (REC)

Specificity (SPEC)
samples.

Precision (PREC)

Positive Predictive Value (PPV)
Negative Predictive Value (NPV)
F1 score (F1)

Cross Validation
validation components.

AUROC (Area under ROC curve -

algorithm’s value.
Overfitting
Underfitting
Dice Similarity Coefficient

The number of positive samples that have been correctly identified.
The number of samples that were accurately identified as negative.
The number of samples that were incorrectly identified as positive.

The number of samples that were incorrectly identified as negative.

The proportion of correctly identified samples to the total sample count in the assessment dataset.
The accuracy is limited to the range [0, 1], where 1 represents properly predicting all positive and negative
samples and 0 represents successfully predicting none of the positive or negative samples.

The sensitivity or True Positive Rate (TPR) is the proportion of correctly categorized positive samples to all
samples allocated to the positive class. It is computed as the ratio of correctly classified positive samples to all
samples assigned to the positive class.

The negative class form of recall (sensitivity) and reflects the proportion of properly categorized negative

The ratio of correctly classified samples to all samples assigned to the class.

The proportion of correctly classified positive samples to all positive samples.

The ratio of samples accurately identified as negative to all samples classified as negative.

The harmonic mean of precision and recall, which eliminates excessive levels of either.

A validation technique often employed during the training phase of modeling, without no duplication among

A function of the effect of various sensitivities (true-positive rate) on false-positive rate. It is limited to the

AUCQ) range [0, 1], where 1 represents properly predicting all cases of all and 0 represents predicting the none of
cases.
ROC By displaying the effect of variable levels of sensitivity on specificity, it is possible to create a curve that

illustrates the performance of a particular predictive algorithm, allowing readers to easily capture the

Modeling failure indicating extensive training and poor performance on tests.
Modeling failure indicating inadequate training and inadequate test performance.

Used for image analysis. It is limited to the range [0, 1], where 1 represents properly segmenting of all images
and 0 represents successfully segmenting none of images.

them into their research and understand of upcoming articles and
research design®'~2,

Al is commonly utilized everywhere, from daily life to high-risk
applications in medicine. Although slower compared to other
fields, numerous studies began to appear in the literature
investigating the use of Al in neonatology. These studies have
used various imaging modalities, electronic health records, and
ML algorithms, some of which have barely gone through the
clinical workflow. Though there is no systematic review and future
discussions in particular in this field>3>. Many studies were
dedicated to introducing these systems into neonatology.
However, the success of these studies has been limited. Lately,
research in this field has been moving in a more favorable
direction due to exciting new advances in DL. Metrics for
evaluations in those studies were the standard metrics such as
sensitivity (true-positive rate), specificity (true-negative rate), false-
positive rate, false-negative rate, receiver operating characteristics
(ROCQ), area under the ROC curves (AUC), and accuracy (Table 1).

RESULTS

This systematic review was guided by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) proto-
col’®. The search was completed on 11st of July 2022. The initial
search yielded many articles (approximately 9000), and we utilized
a systematic approach to identify and select relevant articles based
on their alignment with the research focus, study design, and
relevance to the topic. We checked the article abstracts, and we
identified 987 studies. Our search yielded 106 research articles
between 1996 and 2022 (Fig. 4). Risk of bias summary analysis was
done by the QUADAS-2 tool (Figs. 5 and 6)°7>°.
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Our findings are summarized in two groups of tables: Tables 2-5
summarize the Al methods from the pre-deep learning era (“Pre-
DL Era”) in neonatal intensive care units according to the type of
data and applications. Tables 6, 7, on the other hand, include
studies from the DL Era. Applications include classification (i.e.,
prediction and diagnosis), detection (i.e, localization), and
segmentation (i.e., pixel level classification in medical images).

ML applications in neonatal mortality

Neonatal mortality is a major factor in child mortality. Neonatal
fatalities account for 47 percent of all mortality in children under
the age of five, according to the World Health Organization®. It is,
therefore, a priority to minimize worldwide infant mortality by
2030°",

ML investigated infant mortality, its reasons, and its mortality
prediction®2®8, |n a recent review, 1.26 million infants born from
22 weeks to 40 weeks of gestational age were enrolled®’.
Predictions were made as early as 5min of life and as late as
7 days. An average of four models per investigation were neural
networks, random forests, and logistic regression (58.3%)°”. Two
studies (18.2%) completed external validation, although five
(45.5%) published calibration plots®’. Eight studies reported
AUC, and five supplied sensitivity and specificity®”. The AUC was
58.3-97.0%°’. Sensitivities averaged 63 to 80%, and specificities 78
to 98%°’. Linear regression analysis was the best overall model
despite having 17 features®’. This analysis highlighted the most
prevalent Al neonatal mortality measures and predictions. Despite
the advancement in neonatal care, it is crucial that preterm infants
remain highly susceptible to mortality due to immaturity of organ
systems and increased susceptibility to early and late sepsis®°.
Addressing these permanent risks necessitates the utilization of

npj Digital Medicine (2023) 220



npj

E. Keles and U. Bagci

Study Identification through Database Searching
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identified
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l _
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(n=226)
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scope of our review content were excluded (n=120)
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review (n=106)
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Fig. 4 ldentification of studies through database searches. Initial research conducted on 11th of July 2022, yielded 9000 articles, of which
987 article abstracts were screened. Of those, 106 research articles published between 1996 and 2022 were eligible for inclusion in this
systematic review. The PRISMA flow diagram illustrates the study selection process in more detail.

ML to predict mortality®3-56870 Early studies employed ANN and
fuzzy linguistic models and achieved an AUC of 85-95% and
accuracy of 90%°%%%8, New studies in a large preterm populations
and extremely low birthweight infants found an AUC of
68.9-93.3%%71. There are some shortcomings in these studies;
for example, none of them used vital parameters to represent
dynamic changes, and hence, there was no improvement in
clinical practice in neonatology. Unsurprisingly, gestational age,
birthweight, and APGAR scores were shown as the most important
variables in the models®*”2. Future research is suggested to focus
on external evaluation, calibration, and implementation of
healthcare applications®”.

Neonatal sepsis, which includes both early onset sepsis and late
onset sepsis, is a significant factor contributing to neonatal
mortality and morbidity’®. Neonatal sepsis diagnosis and anti-
biotic initiation present considerable obstacles in the field of
neonatal care, underscoring the importance of implementing
comprehensive interventions to alleviate their profound negative
consequences. The studies have predicted early sepsis from heart
rate variability with an accuracy of 64-94%’“. Another secondary
analysis of multicenter data revealed that clinical biomarkers
weighed the ML decision by integrating all clinical and lab
variables and achieved an AUC of 73-83%"°.

ML applications in neurodevelopmental outcome

Recent advancements in neonatal healthcare have resulted in a
decrease in the incidence of severe prenatal brain injury and an
increase in the survival rates of preterm babies’. However, even
though routine radiological imaging does not reveal any signs of
brain damage, this population is nonetheless at significant risk of
having a negative outcome in terms of neurodevelopment’”=8°, |t
is essential to discover early indicators of abnormalities in brain
development that might serve as a guide for the treatment of
preterm children at a greater risk of having negative neurodeve-
lopmental consequences®'®2,

The most common reason for neurodevelopmental impairment
is intraventricular hemorrhage (IVH) in preterm infants®. Two
studies predicted IVH in preterm infants. Both studies have not
deployed the ultrasound images in their analysis, they only
predicted IVH according to the clinical variables848>,

Morphological studies have demonstrated that preterm birth is
linked to smaller brain volume, cortical folding, axonal integrity,
and microstructural connectivity®®®’, Studies concentrating on
functional markers of brain maturation, such as those derived
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from resting-state functional connectivity (rsFC) analyses of blood-
oxygen-level dependent (BOLD) fluctuations, have revealed
further impacts of prematurity on the developing connectome,
ranging from decreased network-specific connectivity82888°,
Many studies investigated brain connectivity in preterm
infants®29-°2 and brain structural analysis in neonates®> and
neonatal brain segmentation® with the help of ML methods.
Similarly, one of the most important outcomes of neurodevelop-
ment at 2-year-old-age is neurocognitive evaluations. The studies
evaluated the morphological changes in the brain in relation to
neurocognitive outcome® =7 and brain age prediction®®®°, It has
been found that near-term regional white matter (WM) micro-
structure on diffusion tensor imaging (DTI) predicted neurodeve-
lopment in preterm infants using exhaustive feature selection with
cross-validation® and multivariate models of near-term structural
MRI and WM microstructure on DTl might help identify preterm
infants at risk for language impairment and guide early interven-
tion®>%7 (Table 4). One of the studies that evaluated the effects of
PPAR gene activity on brain development with ML methods'%°
revealed a strong association between abnormal brain connectiv-
ity and implicating PPAR gene signaling in abnormal white matter
development. Inhibited brain growth in individuals exposed to
early extrauterine stress is controlled by genetic variables, and
PPARG signaling has a formerly unknown role in cerebral
development'® (Table 2).

Alternative to morphological studies, neuromonitorization is
shown to be an important tool for which ML methods have been
frequently employed, for example, in automatic seizure detection
from video EEG'?'~'%% and EEG biosignals in infants and neonates
with HIE'®198 The detection of artifacts'®''?, sleep states'®?,
rhythmic patterns''', burst suppression in extremely preterm
infants''21"3 from EEG records were studied with ML methods.
EEG records are often used for HIE grading''* too. It has been
shown in those studies that EEG recordings of different neonate
datasets found an AUC of 89% to 96%'%*'%>'15 accuracy
78-87%""*11® regarding seizure detection with different ML
methods (Table 3).

ML applications in predictions of prematurity complications
(BPD, PDA, and ROP)

Another important cause of mortality and morbidity in the NICU is
PDA (Patent Ductus Arteriosus). The ductus arteriosus is typically
present during the fetal stage, when the circulation in the lungs
and body is regularly supplied by the mother; in newborns, the
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ductus arteriosus closes functionally by 72 h of age'"'”. 20-50% of
infants with a gestational age (GA) 32 weeks have the ductus
arteriosus on day 3 of life''®, while up to 60% of neonates with a
GA 29 weeks have the ductus arteriosus. The presence of PDA in
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preterm neonates is associated with higher mortality and
morbidity, and physicians should evaluate if PDA closure might
enhance the likelihood of survival vs. the burden of adverse
effects''97122,

ML methods were utilized on PDA detection from EHR'?* and
auscultation records'** such that 47 perinatal factors were
analyzed with 5 different ML methods in 10390 very low birth
weight infants’ predicted PDA with an accuracy of 76%'2® and 250
auscultation records were analyzed with XGBoost and found to
have an accuracy of 74%'%* (Table 3).

Bronchopulmonary dysplasia (BPD) is a leading cause of infant
death and morbidity in preterm births. While various biomarkers
have been linked to the development of respiratory distress
syndrome (RDS), no clinically relevant prognostic tests are
available for BPD at birth'?®>, There are ML studies aiming to
predict BPD from birth’%'2%, gastric aspirate content'® and
genetic data'®” and it has been shown that BPD could be
predicted with an accuracy of up to 86% in the best-case
scenario’® (Table 5), analysis of responsible genes with ML could
predict BPD development with an AUC of 90%'?” (Table 3) and
combination of gastric aspirate after birth and clinical information
analysis with SYM predicted BPD development with a sensitivity of
88%'% (Table 5).

In relation to published studies in BPD with ML-based
predictions, long-term invasive ventilation is considered one of
the most important risk factors for BPD, nosocomial infections,
and increased hospital stay. There are ML-based studies aiming to
predict extubation failure’®-13° and optimum weaning time'3'
using long-term invasive ventilation information. It has been
shown in those studies that predicted extubation failure with an
accuracy of 83.2% to 87%'2%-13° (Tables 2 and 3).

Retinopathy of prematurity (ROP) is another area of interest in
the application of machine learning in neonatology'32. ROP is a
serious complication of prematurity that affects the blood vessels
in the retina and is a leading cause of childhood blindness in high
and middle-income countries, including the United States, among
very low-birthweight (1500 g), very preterm (28-32 weeks), and
extremely preterm infants (less than 28 weeks)'*2, Due to a
shortage of ophthalmologists available to treat ROP patients, there
has been increased interest in the use of telemedicine and
artificial intelligence as solutions for diagnosing ROP'32, Some ML
methods, such as Gaussian mixture models, were employed to
diagnose and classify ROP from retinal fundus images in
studies’%133134  and it has been reported that the i-ROP'>*
system classified pre-plus and plus disease with 95% accuracy.
This was close to the performance of the three individual experts
(96%, 94%, and 92%, respectively), and much higher than the
mean performance of 31 nonexperts (81%)'** (Table 2).

Other ML applications in neonatal diseases

EHR and medical records were featured in ML algorithms for the
diagnosis of congenital heart defects'*®, HIE (Hypoxic Ischemic
Encephalopathy)'6, IVH (Intraventricular Hemorrhage)®*#5, neo-
natal jaundice'3”'38, prediction of NEC (Necrotizing Enterocoli-
tis)'3°, prediction of neurodevelopmental outcome in ELBW
(extremely low birth weight) infants®>'4%141 " prediction of
neonatal surgical site infections'*?, and prediction of rehospitali-
zation'® (Table 5).

Electronically captured physiologic data are evaluated as signal
data, and they were analyzed with ML to detect artifact
patterns'#*, late onset sepsis'*®, and predict infant morbidity'4S.
Electronically captured vital parameters (respiratory rate, heart
rate) of 138 infants (<34 weeks’ gestation, birth weight <2000
gram) in the first 3h of life predicted an accuracy of overall
morbidity and an AUC of 91%'4® (Table 5).

In addition to physiologic data, clinical data up to 12 h after
cardiac surgery in HLHS (hypoplastic left heart syndrome) and TGA
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(transposition of great arteries) infants were analyzed to predict
PVL (periventricular leukomalacia) occurrence after surgery'*’. The
F-score results for infants with HLHS and those without HLHS were
88% and 100%, respectively'*” (Table 5). Voice records were used
to diagnose respiratory phases in infant cry'*®, to classify neonatal
diseases in infant cry'*®, and to evaluate asphyxia from infant cry
voice records'*°. Voice records of 35 infants were analyzed with
ANN, and accuracy was found 85%'4°. Cry records of 14 infants in
their 1st year of life were analyzed with SYM and GMM, and
phases of respiration and crying rate were quantified with an
accuracy of 86%'“® (Table 3).

SVM was the most commonly used method in the diagnosis of
metabolic disorders of newborns, including MMA (methylmalonic
acidemia)'’, PKU (phenylketonuria)'®>'>3, MCADD (medium-
chain acyl CoA dehydrogenase deficiency)'>2. During the Bavarian
newborn screening program, dried blood samples were analyzed
with ML and increased the positive predictive value for PKU
(71.9% versus 16,2) and for MCADD (88.4% versus 54.6%)'>>
(Table 3).

Neonatology with deep learning

The main uses of DL in clinical image analysis are categorized into
three categories: classification, detection, and segmentation.
Classification involves identifying a specific feature in an image,
detection involves locating multiple features within an image; and

segmentation involves dividing an image into multiple
parts7,9,1 54-160

Neuroradiological evaluation with Al in neonatology

Neonatal neuroimaging can establish early indicators of neurode-
velopmental abnormality to provide early intervention during a
time of maximal neuroplasticity and fast cognitive and motor
development’®9¢, DL methods can assist in an earlier diagnosis
than clinical signs would indicate.

The imaging of an infant’s brain using MRI can be challenging
due to lower tissue contrast, substantial tissue inhomogeneities,
regionally heterogeneous image appearance, immense age-
related intensity variations, and severe partial volume impact
due to the smaller brain size. Since most of the existing tools were
created for adult brain MRI data, infant-specific computational
neuroanatomy tools are recently being developed. A typical
pipeline for early prediction of neurodevelopmental disorders
from infant structural MRI (sMRI) is made up of three basic phases.
(1) Image preprocessing, tissue segmentation, regional labeling,
and extraction of image-based characteristics (2) Surface recon-
struction, surface correspondence, surface parcellation, and
extraction of surface-based features (3) Feature preprocessing,
feature extraction, Al model training, and prediction of unseen
subjects’®'. The segmentation of a newborn brain is difficult due
to the decreased SNR (signal to noise ratio) resulting from the
shorter scanning duration enforced by predicted motion restric-
tions and the diminutive size of the neonatal brain. In addition, the
cerebrospinal fluid (CSF)-gray matter border has an intensity
profile comparable to that of the mostly unmyelinated white
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matter (WM), resulting in significant partial volume effects. In
addition, the high variability resulting from the fast growth of the
brain and the continuing myelination of WM imposes additional
constraints on the creation of effective segmentation techniques.
Several non-DL-based approaches for properly segmenting new-
born brains have been presented over the years. These methods
may be broadly classified as parametric'®?7'%%, classification'¢®,
multi-atlas fusion'6%1%7, and deformable models'®®'%°. The Dice
Similarity Coefficient metric is used for image segmentation
evaluation; the higher the dice, the higher the segmentation
accuracy'® (Table 1).

In the NeoBrainS12 2012 MICCAI Grand-Challenge (https://
neobrains12.isi.uu.nl), TIW and T2W images were presented with
manually segmented structures to assess strategies for segment-
ing neonatal tissue'%2. Most methods were found to be accurate,
but classification-based approaches were particularly precise and
sensitive. However, segmentation of myelinated vs. unmyelinated
WM remains a difficulty since the majority of approaches'6? failed
to consistently obtain reliable results.

Future research in neonatal brain segmentation will involve a
more thorough neural segmentation network. Current studies are
intended to highlight efficient networks capable of producing
accurate and dependable segmentations while comparing them
to existing conventional computer vision techniques. In the
perspective of comparing previous efforts on newborn brain
segmentation, the small sample size of high-quality labeled data
must also be recognized as a significant restriction'®®. The field of
artificial intelligence in neonatology has progressed slowly due to
a shortage of open-source algorithms and the availability of
datasets.

Future research should also focus on improving the accuracy of
DL for diagnosing germinal matrix hemorrhage and figuring out
how DL can help a radiologist’'s workflow by comparing how well
sonographers identify studies that look suspicious. More studies
could also look at how well DL works for accurately grading
germinal matrix hemorrhages and maybe even small hemor-
rhages that a radiologist can see on an MRI but not on a head
ultrasound. This could be useful in improving the diagnostic
capabilities of head ultrasound in various clinical scenarios'’.

Evaluation of prematurity complications with DL in
neonatology

In the above discussion, we have addressed the primary
applications of DL in relation to disease prediction. These include
DL for analyzing conditions such as PDA (patent ductus
arteriosus)'®®, IVH (intraventricular ventricular hemorrhage)'>>1>7
BPD (bronchopulmonary dysplasia)’’®, ROP (retinopathy of pre-
maturity)'”'"'73, retinal hemorrhage'’* diagnosis. This also
includes DL applications for analyzing MR images'>®'”> and
combined with EHR data'’®'”” for predicting neurocognitive
outcome and mortality. Additionally, DL has potential applications
in treatment planning and discharge from the NICU'”%, including
customized medicine and follow-up®%7-12° (Tables 6 and 7).

’
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Digital imaging and analysis with Al are promising and cost-
effective tools for detecting infants with severe ROP who may
need therapy'3%'7117217°  Despite limitations such as image
quality, interpretation variability, equipment costs, and compat-
ibility issues with EHR systems, Al has been shown to be effective
in detecting ROP'8. Studies comparing BIO (Binocular Indirect
Ophthalmoscope) to telemedicine have shown that both methods
have equivalent sensitivity for identifying zone disease, plus
disease, and ROP. However, BIO was found to be slightly better at
identifying zone Il and stage 3 ROP'8"182, DL algorithms were
applied to 5511 retinal images, achieving an AUC of 94%
(diagnosis of normal) and 98% (diagnosis of plus disease),
outperforming 6 out of 8 ROP experts'”". In another study, DL
was used to quantify the clinical progression of ROP by assigning
ROP vascular severity scores'’2. A consecutive study with a large
dataset showed in 4175 retinal images from 32 NICUs, resulting in
an AUC of 98% for detecting therapy required ROP with DL'73. The
use of Al in ROP screening programs may increase access to care
for secondary prevention of ROP and enable the evaluation of
disease epidemiology'”® (Table 6).

Signal detection for sleep protection in the NICU is another
ongoing discussion. DL has been used to analyze infant EEGs and
identify sleep states. Interruptions of sleep states have been linked
to problems in neuronal development'®, Automated sleep state
detection from EEG records'® '8 and from ECG monitoring
parameters'®® were demonstrated with DL. The underperfor-
mance of the all-state classification (kappa score 0.33 to 0.44) was
likely owing to the difficulties in differentiating small changes
between states and a lack of enough training data for minority
classes'®® (Table 6).

DL has been found to be effective in real-time evaluation of
cardiac MRI for congenital heart disease'®”. Studies have shown
that DL can accurately calculate ventricular volumes from images
rebuilt using residual UNet, which are not statistically different
from the gold standard, cardiac MRI. This technology has the
potential to be particularly beneficial for infants and critically ill
individuals who are unable to hold their breath during the
imaging process'®” (Table 6).

DL-based 3D CNN algorithms have been used to demonstrate
the automated classification of brain dysmaturation from neonatal
brain MRI'®, In a study, brain MRIs of 90 term neonates with
congenital heart diseases and 40 term healthy controls were
analyzed using this method, which achieved an accuracy of 98%.
This technique could be useful in detecting brain dysmaturation in
neonates with congenital heart diseases'®® (Table 6).

DL algorithms have been used to classify neonatal diseases
from thermal images'®¥ 92 These studies analyzed neonatal
thermograms to determine the health status of infants and
achieved good AUC scores'®7192, However, these studies didn’t
include any clinical information (Table 6).

Two large scale studies showed breakthrough results regarding
the effect of nutrition practices in NICU'”° and wireless sensors in
NICU™3, A nutrition study revealed that nutrition practices were
associated with discharge weight and BPD'7°. This exemplifies
how unbiased ML techniques may be used to effectively bring
about clinical practice changes'’®. Novel, wireless sensors can
improve monitoring, prevent iatrogenic injuries, and encourage
family-centered care'®3. Early validation results show performance
equal to standard-of-care monitoring systems in high-income
nations. Furthermore, the use of reusable sensors and compat-
ibility with low-cost mobile phones may reduce monitoring.

DISCUSSION

The studies in neonatology with Al were categorized according to
the following criteria.
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(i) The studies were performed with ML or DL,
(ii) imaging data or non-imaging data were used,
(iii) according to the aim of the study: diagnosis or other
predictions.

Most of the studies in neonatology were performed with ML
methods in the pre-DL era. We have listed 12 studies with ML and
imaging data for diagnosis. There are 33 studies that used non-
imaging data for diagnosis purposes. Imaging data studies cover
BA diagnosis from stool color'®*, postoperative enteral nutrition of
neonatal high intestinal obstruction'®>, functional brain connectiv-
ity in preterm infants®290194190 ROP diagnosis'**'34, neonatal
seizure detection from video records'®!, newborn jaundice screen-
ing'®’. Non-imaging studies for diagnosis include the diagnosis of
congenital heart defects', baby cry analysis'*®'>°, inborn
metabolic disorder diagnosis and screening'”''%3, HIE grad-
ing104,106,114,136,196’ EEG analysis102,104,106,107,1107113,115,184,197,198,
PDA diagnosis'?>'24, vital sign analysis and artifact detection'#,
extubation and weaning analysis'?°='311%4, BPD diagnosis'?’. ML
studies with imaging data for prediction are focused on
neurodevelopmental outcome prognosis from brain
MRIs?3-97:127.164199 M| -based non-imaging data for prediction
encompassed mortality risk®>%>8, NEC prognosis'*®, morbid-
ity66,14él BPD1 25,126.

When it comes to DL applications, there has been less research
conducted compared to ML applications. The focus of DL with
imaging and non-imaging data focused on brain segmenta-
tion'°9162175177.188 " |yH diagnosis'>’, EEG analysis'®*%>, neuro-
cognitive outcome'”®, PDA and ROP diagnosis'’'~'73, Upcoming
articles and research will surely be from the DL field, though.

It is worth noting that there have also been several articles and
studies published on the topic of the application of Al in
neonatology. However, the majority of these studies do not
contain enough details, are difficult to evaluate side-by-side, and
do not give the clinician a thorough picture of the applications of
Al in the eneral healthcare
System66,67,93,95—97,99,1 25-127,140,142,147,169,174,177,185,1 88,200—205'

There are several limitations in the application of Al in
neonatology, including a lack of prospective design, a lack of
clinical integration, a small sample size, and single center
evaluations. DL has shown promise in bioscience and biosignals,
extracting information from clinical images, and combining
unstructured and structured data in EHR. However, there are
some issues that limit the success of DL in medicine, which can be
grouped into six categories. In the following paragraphs, we'll
examine the key concerns related to DL, which have been divided
into six components:

(1) Difficulties in clinical integration, including the selection and
validation of models;

(2) the need for expertise in decision mechanisms, including
the requirement for human involvement in the process;

(3) lack of data and annotations, including the quality and
nature of medical data; distribution of data in the input
database; and lack of open-source algorithms and reprodu-
cibility;

(4) lack of explanations and reasoning, including the lack of
explainable Al to address the “black-box” problem;

(5) lack of collaboration efforts across multi-institutions; and

(6) ethical concerns*-6210206,

Difficulties in clinical integration

Despite the accuracy that Al has reached in healthcare in recent
years, there are several restrictions that make it difficult to
translate into treatment pathways. First, physicians’ suspicion of
Al-based systems stems from the lack of qualified randomized
clinical trials, particularly in the field of pediatrics, showing the
reliability and/or improved effectiveness of Al systems compared

npj Digital Medicine (2023) 220

to traditional systems in diagnosing neonatal diseases and
suggesting appropriate therapies. The studies’ pros and cons are
discussed in tables and relevant sections. Studies are mainly
focused on imaging-based or signal-based studies in terms of one
variable or disease. Neonatologists and pediatricians need
evidence-based proven algorithm studies. There are only six
prospective clinical trials in neonatology with Al'972°7-211 The one
is detecting neonatal seizures with conventional EEG in the NICU
which is supported by the European Union Cost Program in 8
European NICU'. Neonates with a corrected gestational age
between 36 and 44 weeks who had seizures or were at high risk of
having seizures and needed EEG monitoring were given conven-
tional EEG with ANSeR (Algorithm for Neonatal Seizure Recogni-
tion) coupled with an EEG monitor that displayed a seizure
probability trend in real time (algorithm group) or continuous EEG
monitoring alone (non-algorithm group)'®’. The algorithm is not
available, and the code is not shared. Another one is a study
showing the physiologic effects of music in premature infants2®,
Even so, it could not be founded on any Al analysis in this study.
The third study, “Rebooting Infant Pain Assessment: Using
Machine Learning to Exponentially Improve Neonatal Intensive
Care Unit Practice (BabyAl),” is newly posted and recruiting®®. The
fourth study, “Using sensor-fusion and machine learning algo-
rithms to assess acute pain in non-verbal infants: a study
protocol,” aims to collect data from 15 subjects: preterm infants,
term infants within the first month of age in NICU admission and
their follow-up data at 3rd and 6th months of age. They record
pain signals using facial electromyography(EMG), ECG, electro-
dermal activity, oxygen saturation, and EEG in real time, and they
will analyze the data with ML methods to evaluate pain in
neonates. The data is in iPAS (NCT03330496) and is updated as
recruitment completed?'®. However, no result has been sub-
mitted. The fifth study, “Prediction of Extubation Readiness in
Extreme Preterm Infants by the Automated Analysis of Cardior-
espiratory Behavior: APEX study”'" records revealed that the
recruitment was completed in 266 infants. Still, no results have
been released yet (NCT01909947). To sum up, there is only one
prospective multicenter randomized Al study that has been
published with its results.

There is an unmet need to plan clinically integrated prospective
and real-time data collection studies in neonatology. The clinical
situation of infants changed rapidly, and real-time designed
studies would be significant by analyzing multimodal data and
including imaging and non-imaging components.

The need for expertise in the decision mechanisms

In terms of neonatologists determining whether to implement a
system’s recommendation, it may be required for that system to
present supporting evidence®°6125202  Many suggested Al
solutions in the medical field are not expected to be an alternative
to the doctor’s decision or expertise but rather to serve as helpful
assistance. When it comes to struggling neonatal survival without
sequela, Al may be a game changer in neonatology. The broad
range of neonatal diseases and different clinical presentations of
neonates according to gestational age and postnatal age make
accurate diagnosis even harder for neonatologists. Al would be
effective for early disease detection and would assist clinicians in
responding promptly and fostering therapy outcomes.
Neonatology has multidisciplinary collaborations in the man-
agement of patients, and Al has the potential to achieve levels of
efficacy that were previously unimaginable in neonatology if more
resources and support from physicians were allocated to it.
Neonatology collaborates and closely works with other specialties
of pediatrics, including perinatology, pediatric surgery, radiology,
pediatric cardiology, pediatric neurology, pediatric infectious
disease, neurosurgery, cardiovascular surgery, and other subspe-
cialties of pediatrics. Those multidisciplinary workflows require
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patient follow-up and family involvement. Al-based predictive
analysis tools might address potential risks and neurologic
problems in the future. Al supported monitoring systems could
analyze real time data from monitors and detect changes
simultaneously. These tools could be helpful not only for routine
NICU care but also for “family centered care”?'?>?'3 implications.
Although neonatologists could be at the center of decision
making and giving information to parents, Al could be actively
used in NICUs. Hybrid intelligence would provide a follow-up
platform for abrupt and subtle clinical changes in infants’ clinical
situations.

Given that many medical professionals have a limited under-
standing of DL, it may be difficult to establish contact and
communication between data scientists and medical specialists.
Many medical professionals, including pediatricians and neonatol-
ogists in our instance, are unfamiliar with Al and its applications
due to a lack of exposure to the field as an end user. However, the
authors also acknowledge the increasing efforts in building
bridges among many scientists and institutions, with conferences,
workshops, and courses, that clinicians have successfully started to
lead Al efforts, even with software coding schools by
clinicians?'4-218,

Neonatal critical conditions will be monitored by the human in
the loop systems in the near future, and Al empowered risk
classification systems may help clinicians prioritize critical care and
allocate supplies precisely. Hence, Al could not replace neonatol-
ogists, but there would be a clinical decision support system in the
critical and calls for prompt response environment of NICU.

Lack of imaging data and annotations and reproducibility
problems

There is a rising interest in building deep learning approaches to
predict neurological abnormalities using connectome data;
however, their usage in preterm populations has been lim-
ited®'88-21_ Similar to most DL applications, the training of such
models often requires the use of big datasets'’; however, large
neuroimaging datasets are either not accessible or difficult and
expensive to acquire, especially in the pediatric world. Since the
success of DL methods currently relies on well-labeled data and
high-capacity models requiring several iterative updates across
many labeled examples and obtaining millions of labeled
examples, is an extreme challenge, there is not enough jump in
the neonatal Al applications.

As a side note, accurate labeling always requires physician effort
and time, which overcomplicates the current challenges. Unfortu-
nately, there is no established collaboration between physicians
and data scientists at a large scale that can ease some of the
challenges (data gathering/sharing and labeling). Nonetheless,
once these problems are addressed, DL can be used in prevention
and diagnosis programs for optimal results, radically transforming
clinical practice. In the following, we envision the potential of DL
to transform other imaging modalities in the context of
neonatology and child health.

The requirement for a massive volume of data is a significant
barrier, as mentioned earlier. The quantity of data needed by an Al
or ML system can grow in proportion to the sophistication of its
underlying architecture; deep neural networks (DNN), for example,
have particularly high volume of data needs. It's not enough that
the needed data just be sufficient; they also need to be of good
quality in terms of data cleaning and data variability (both ANN
and DNN tend to avoid overfitting data if the variability is high). It
may be difficult to collect a substantial amount of clean, verified,
and varied data for several uses in neonatology. For this reason,
there is a data repository shared with neonatal researchers,
including EHR2°2 and clinical variables. Some approaches for
addressing the lack of labeled, annotated, verified, and clean
datasets include: (1) building and training a model with a very
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shallow network (only a few thousand parameters) and (2) data
augmentation. Data augmentation techniques are not helpful in
the medical imaging field or medical setting?'®.

In the field of neonatal imaging, high-quality labeling and
medical imaging data are exceedingly uncommon. One of the
other comparable available neonatal datasets the authors are
aware of has just ten individuals'6622%221 This pattern holds even
in more recent research, as detailed by the majority of studies
involving little more than 20 individuals'®”. Regardless of sample
size and technology, it is crucial to be able to generalize to new
data in the field of image segmentation, especially considering the
wide range of MRI contrasts and variations between scanners and
sequences between institutions. Moreover, it is generally known
that models based on DL have weak generalization skills on
unseen data. This is especially crucial for the future translation of
research into reality since (1) there is a shift between images
obtained in various situations, and (2) the model must be
retrained as these images become accessible. Adopting a strategy
of continuous learning is the most practical way to handle this
challenge. This method involves progressively retraining deep
models while preventing any virtual memory loss on previously
viewed data sets that may not be available during retraining. This
field of endeavor will advance'®.

Most of the studies did not release their algorithms as open
source to the libraries. Even though algorithms are available, it
should be known whether separate training and testing datasets
exist. There is a strong expectation that studies should have
clarified which validation method has been chosen. In terms of
comparing algorithm success, reproducibility is a crucial point.
Methodological bias is another issue with this system. Research is
frequently based on databases and guidelines from other nations
that may or may not have patient populations similar to ours®. A
database that only contains data that is applicable to the specific
problem that must be solved; however, obtaining the relevant
information may be difficult due to the number of databases.

Lack of explanations and reasoning

The trustworthiness of algorithms is another obstacle??2. The most
widely used deep learning models use a black-box methodology,
in which the model simply receives input and outputs a prediction
without explaining its thought process. In high-stakes medical
settings, this can be dangerous. Some models, on the other hand,
incorporate human judgment (human-in-the-loop) or provide
interpretability maps or explainability layers to illuminate the
decision-making process. Especially in the field of neonatology,
where Al is expected to have a significant impact, this
trustworthiness is essential for its widespread adoption.

Lack of collaboration efforts (multi-institutions) and privacy
concerns

New collaborations have been forged because of this information;
early detection and treatment of diseases that affect children, who
make up a large portion of the world’s population, will change
treatment and follow-up status. Monitoring systems and knowing
mortality and treatment activity with multi-site data will help.
Considering the necessity for consent to the processing of
personal health data by Al systems as an example of a subject
related to the protection of privacy and security®®. Efforts
involving multiple institutions can facilitate training, but there
are privacy concerns associated with the cross-site sharing of
imaging data. Federated learning (FL) was introduced recently to
address privacy concerns by facilitating distributed training
without the transfer of imaging data®?3. Existing FL techniques
utilize conditional reconstruction models to map from under
sampled to fully-sampled acquisitions using explicit knowledge of
the accelerated imaging operator??3, Nevertheless, the data from
various institutions is typically heterogeneous, which may
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diminish the efficacy of models trained using federated learning.
SplitAVG is proposed as a novel heterogeneity-aware FL method to
surmount the performance declines in federated learning caused
by data heterogeneity®>*.

Al ethics

While Al has great promise for enhancing healthcare, it also
presents significant ethical concerns. Ethical concerns in health Al
include informed consent, bias, safety, transparency, patient
privacy, and allocation, and their solutions are complicated to
negotiate??®, In neonatology, crucial decision-making is frequently
accompanied by a complicated and challenging ethical compo-
nent. Interdisciplinary approaches are required for progress®2°,
The border of viability, life sustaining treatments®?” and the
different regulations worldwide made Al utilization in neonatology
more complicated. How an ethics framework is implemented in an
Al in neonatology has not been reported yet, and there is a need
for transparency for trustworthy Al.

The applications of Al in real-world contexts have the potential
to result in a few potential benefits, including increased speed of
execution; potential reduction in costs, both direct and indirect;
improved diagnostic accuracy; increased healthcare delivery
efficiency (“algorithms work without a break”); and the potential
of supplying access to clinical information even to persons who
would not normally be able to utilize healthcare due to
geographic or economic constraints®,

To achieve an accurate diagnosis, it is planned to limit the
number of extra invasive procedures. New DL technologies and
easy-to-implement platforms will enable regular and complete
follow-up of health data for patients unable to access their records
owing to a physician shortage, hence reducing health costs.

The future of neonatal intensive care units and healthcare will
likely be profoundly impacted by Al. This article’s objective is to
provide neonatologists in the Al era with a reference guide to the
information they might require. We defined Al, its levels, its
techniques, and the distinctions between the approaches used in
the medical field, and we examined the possible advantages,
pitfalls, and challenges of Al. While also attempting to present a
picture of its potential future implementation in standard neonatal
practice. Al and pediatrics require clinicians’ support, and due to
the fact that Al researchers with clinicians need to work together
and cooperatively. As a result, Al in neonatal care is highly
demanded, and there is a fundamental need for a human
(pediatrician) to be involved in the Al-backed up applications, in
contrast to systems that are more technically advanced and
involve fewer healthcare professionals.

METHODS

Literature review and search strategy

We used PubMed™, IEEEXplore™, Google Scholar™, and Science-
Direct™ to search for publications relating to Al, ML, and DL
applications towards neonatology. We have done a varying
combination of the keywords (i.e, one from technical keywords
and one from clinical keywords) for the search. Clinical keywords
were “infant,” “neonate,” “prematurity,” “preterm infant,” “hypoxic
ischemic  encephalopathy,” “neonatology,” “intraventricular
hemorrhage,” “infant brain segmentation,” “NICU mortality,”
“infant morbidity,” “ bronchopulmonary dysplasia,” “retinopathy
of prematurity.” The inclusion criteria were (i) publication date
between 1996-2022 and, (ii) being an artificial intelligence in
neonatology study, (iii) written in English, (iv) published in a
scholarly peer-reviewed journal, and (v) conducted an assessment
of Al applications in neonatology objectively. Technical keywords
were Al, DL, ML, and CNN. Review papers, commentaries, letters to
the editor and papers with only technical improvement without
any clinical background, animal studies, and papers that used
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statistical models like linear regression, studies written in any
language other than English, dissertation thesis, posters, biomar-
ker prediction studies, simulation-based studies, studies with
infants are older than 28 days of life, perinatal death, and obstetric
care studies were excluded. The preliminary investigation yielded
a substantial collection of articles, amounting to approximately
9000 in total. Through a meticulous examination of the abstracts
of the papers, a subset of 987 research was found (Fig. 4).
Ultimately, 106 studies were selected for inclusion in our
systematic review (Supplementary file). The evaluation encom-
passed diverse aspects, including sample size, methodology, data
type, evaluation metrics, advantages, and limitations of the studies
(Tables 2-7).
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