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A real-world clinical validation for AI-based MRI monitoring
in multiple sclerosis
Michael Barnett 1,2,3,16, Dongang Wang1,2,16, Heidi Beadnall2,3, Antje Bischof 4, David Brunacci5, Helmut Butzkueven6,7,
J. William L. Brown 8, Mariano Cabezas2, Tilak Das9, Tej Dugal1,10, Daniel Guilfoyle3, Alexander Klistorner1,2,11, Stephen Krieger12,
Kain Kyle1,2, Linda Ly1, Lynette Masters13, Andy Shieh1, Zihao Tang 1,2, Anneke van der Walt5,6, Kayla Ward 3, Heinz Wiendl4,
Geng Zhan1,2, Robert Zivadinov14, Yael Barnett1,15,17 and Chenyu Wang 1,2,17✉

Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging
(MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically
silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be
insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical
validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a
clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with
minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity
and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of
neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not
appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that
returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in
radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled
deployment of these tools will open a path to precision management for patients with MS.
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INTRODUCTION
Multiple sclerosis (MS) is the most common inflammatory
demyelinating and neurodegenerative condition of the central
nervous system, afflicting some 2.8 million persons globally1.
Characterized by both focal lesions and by more diffuse
neurodegeneration in the brain and spinal cord, MS results in
significant physical and cognitive disability and, in many cases,
premature withdrawal from the workforce.
Highly effective disease-modifying therapy (DMT) dramatically

reduces the risk of relapse associated worsening (RAW), but has
limited impact on progression independent of relapse activity
(PIRA), the principal driver of increasing disability in patients with
established, treated disease2–4. Inflammatory activity, the patho-
logical substrate for RAW, and response to DMT are monitored by
regular clinical assessment and repeated magnetic resonance
imaging (MRI), usually on an annual basis5. MRI is also the most
important tool for neurologists to assess disease activity that does
not manifest with overt clinical change, but potentially injures vast
numbers of axons and disrupts complex integrated brain net-
works. Specifically, the development of new or enlarging
hyperintensities on FLAIR MRI and/or new contrast-enhancing
lesions (CELs) on T1-w MRI generally suggests inadequate
suppression of inflammatory activity and may prompt the clinician

to change the patient’s DMT5. PIRA is more difficult to characterize
by MRI, but at the group level disability worsening correlates well
with whole brain volume change6,7. In the absence of available
DMTs that specifically target neurodegeneration, MRI evidence of
accelerated brain atrophy, which at the individual level can be
confounded by biological, disease- and treatment-related fluctua-
tions, is generally not used in isolation to drive treatment change.
However, there is broad agreement that the modern management
of MS should target “NEDA-3”, or No Evidence of Disease Activity
(no clinical relapses, no MRI activity, no disability worsening)8.
The radiologist therefore plays a critical role, not only in the

diagnosis of MS, but in the monitoring of the disease and its
response to DMT. Traditionally, detailed slice-by-slice examination
of current and prior study FLAIR images is required to accurately
exclude the development of new or enlarging lesions, a
painstaking process that has become increasingly burdensome
with the advent of 3D imaging, which generates up to 300 slices in
a single volume. Lack of current and prior 3D FLAIR volume co-
registration in many picture archiving and communications
systems (PACS) can also hamper the accurate detection of small
new lesions or minor lesion enlargement, particularly when
concentric, between studies. While the volume of new (or
enlarging) lesions may impact treatment strategy, this is not
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measured or reported in routine clinical radiology practice. An
estimation of the severity of the overall FLAIR lesion burden, which
provides prognostic information, is also dependent on the
experience of the reporting radiologist and can only be semi-
quantitatively assessed. Severe brain volume loss (BVL) versus age-
matched healthy controls, which may also be of prognostic
significance, can be detected by experienced radiologists with
visual inspection but cannot be accurately quantitated without
additional tools, which are generally confined to research settings.
Moderate changes (of the magnitude expected in many patients
with MS) are difficult, if not impossible, to recognize by visual
inspection alone9,10. Similarly, longitudinal change in brain volume
during the typical 12-month interval between MRI scans is usually
small and not detectable by visual inspection. While short-term
changes in brain volume are difficult to interpret in individual
patients, a consistent adverse trajectory over multiple clinical
epochs or more severe brain atrophy (>0.8% percent BVL per
annum) over a single epoch, may influence or support clinical
decisions to escalate or switch DMT5.
Recognition that clinical radiology reports for patients with MS

can be enhanced by quantitative information has been accom-
panied, in the last 5 years, by the development of artificial
intelligence (AI) algorithms for medical imaging that can automate
both the detection and segmentation of the brain, brain
substructures and different types of brain pathology, including
MS lesions11–14. While there are a small number of existing
commercial (regulatory-approved) image analysis tools that have
been designed to assist radiologists and clinicians who treat
patients with MS, thorough real-world clinical validation is
limited15. Here, we report a comprehensive clinical evaluation of
iQ-SolutionsTM (MS Report), hereafter referred to as iQ-MS, in a
large cohort of MS scan pairs that were independently reported in
clinical practice by expert radiologists; and, separately, were
quantitatively and blindly assessed by trained neuroimaging
analysts in a core reading imaging laboratory using standard
procedures (SOPs) used in regulatory trials. Specifically, we
hypothesized that the AI tool would more sensitively and
accurately detect MRI evidence of disease activity compared with
conventional radiology reports; and produce cross-sectional and
longitudinal brain volumetric measurements comparable with
those generated by conventional imaging tools implemented by
the core lab.
iQ-Solutions™ analyses brain MRI scans in Digital Imaging and

Communications in Medicine (DICOM) format using a collection of
AI algorithms based on deep neural network technology, and was
developed using more than 8500 brain scans that had been
expertly annotated by trained neuroimaging analysts. iQ-
SolutionsTM produces an MS-specific report that includes cross-
sectional and longitudinal whole brain, brain substructure and

lesion metrics relevant to the condition (Table 1). The AI tool
returns visualizations of relevant segmentations to the PACS for
radiologist review (Fig. 1).
For any analysis to proceed, images are automatically quality-

checked to ensure that pre-contrast 3D-T1 and 3D FLAIR
sequences, each containing ≥30 slices with a thickness of
≤3mm, are available. All cross-sectional segmentation algorithms
(Table 1) were developed with 3D-UNet16 as the core network for
extracting image features, followed by a solitary convolutional
layer as the prediction head. Cross-validation was conducted
through comparison (based on case-wise and voxel-wise DICE
scores) with ground-truth masks produced by trained neuroima-
ging analysts. Similarly, lesion activity between timepoints
(namely, the development of new and enlarging lesions) is
measured by iQ-Solutions using an algorithm based on a modified
3D-Unet and trained with manually annotated 3D-FLAIR images,
as described previously17. iQ-MS reports enlarging lesions as new
lesional voxels that are connected to an existing lesion (on the
prior study) within its 26-voxel neighbourhood.
For brain and substructure volumetric analyses, a lesion-

inpainting model, LG-Net, was applied to 3DT1 images to
ameliorate segmentation bias generated by the presence of MS
lesions, as previously described18. For longitudinal brain and brain
substructure volumetric change, iQ-Solutions performs a number
of checks for image consistency between the two scan timepoints
(Supplementary Method). Longitudinal metrics are reported, but
returned to the user with a protocol inconsistency warning.
Longitudinal whole brain volume change is measured by iQ-MS
with the integrated DeepBVC algorithm19. Automated estimation
of substructure (whole gray matter, thalamus) volume change is
produced by a combination of AI-based segmentation and the
application of a Jacobian integration method20.
iQ-MS presents volumetric data for individual patients as

normalized values; and as centiles referenced to a hypothetical
age-matched healthy control. iQ-MS additionally reports brain
volumetrics and MS lesion volumes benchmarked to a hypothe-
tical person with MS of similar age, disease duration and disability,
to provide a more clinically meaningful, experiential reference.
Reference cohorts were created using MRI scans from more than
3000 healthy controls and an independent sample of 839 people
with MS, analyzed with the same methods.

RESULTS
Study demographics
Of 400 unique scan pairs included in the study, three failed iQ-MS
processing due to missing slices in the 3D FLAIR sequence (n= 2)
or unknown technical reasons (n= 1) and were excluded from
further analysis. The remaining 397 scan pairs were acquired with

Table 1. iQ-SolutionsTM MS Report output: metricsa.

Cross-sectional metrics Longitudinal changes from previous scan

FLAIR lesion number and volume Longitudinal protocol warnings (T1 and FLAIR)c

FLAIR lesion volume patientb centile New FLAIR lesion number and volume

T1-w contrast enhancing lesion number and volume Enlarging FLAIR lesion number and volume

Normalized whole brain volume Annualized percentage brain volume change

Normalized whole brain volume centilea,d

Normalized thalamus volume

Normalized thalamus volume HC centiled

aiQ-MS experiential MS reference dataset only available in the tool’s research mode.
bCompared with iQ-MS underlying MS reference dataset.
cProvided in research mode when scanner/protocol inconsistencies detected (Supplementary data).
dCompared with iQ-MS underlying healthy control dataset.
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a mean interval 12 months (range 6–29 months) from 282 unique
patients (F:M= 198:84) with a disease duration of 13.1 years
(range 0.71–41.83 years) and median EDSS was 1.5 (range 0–7.0,
n= 315) at the time of the study (follow-up) scan (see

Supplementary Table 1 for details). Incidental findings were
present (as determined by the radiology report) in 10.6% of study
scans (n= 397, Table 2). The vast majority of study scans (387/397)
were performed on one of three scanners, each located in
different MRI centers: GE MR750 3T (GE Healthcare, Milwaukee,
USA) (n= 174), Philips Ingenia 3 T (Philips Inc, Amsterdam, The
Netherlands) (n= 159) and Siemens Skyra 3T (SIEMENS Healthi-
neers, Erlangen, Germany) (n= 54). 318/397 scan pairs were
acquired on the same scanner with a longitudinally stable
protocol defined by iQ-MS (Supplementary methods). The scan
workflow for inclusion of scans for all analyses is illustrated in
Supplementary Fig. 1.

Lesion metrics. Total FLAIR lesion volume determined by iQ-MS
was automatically converted to a centile against an (independent)
MS patient population built into the tool, and compared against a
numerical rating scale/centile assigned to categorical variables in
the clinical radiology report, as shown in Table 3. Lesion burden,
described in the radiology report of 267/397 unique study (follow-
up) scans, matched the equivalent iQ-MS centile in 183/267
(68.5%) of scans; of the remaining scans, the iQ-MS lesion burden
fell in a higher centile range in 69/84 (82.1%) of cases. There was a
high correlation for both mean FLAIR lesion number (iQ-Solutions:
47.8 [SD 39.0], range 0–223; core lab: 56.0 [SD 44.7], range 1–269;
R2= 0.96, p < 0.001) and volume (iQ-Solutions: 6.4 mls [SD 10.3],
range 0–66.7; core lab: 7.9 mls [SD 11.0], range 0–73.1, R2= 0.96,
p < 0.001) as detected by iQ-Solutions and the core reading lab.
The FLAIR lesion burden also correlated moderately with normal-
ized brain volume (NBV) generated by both iQ-MS (R2= 0.31,
p < 0.001) and the core reading laboratory (R2= 0.24, p < 0.001).
Disability, as measured by EDSS, correlated only weakly with
cerebral FLAIR lesion burden as determined by both methods
(R2= 0.16, p < 0.001 and R2= 0.15, p < 0.001 respectively), though
significance of the correlation persisted after correction for age,
sex, disease duration, and brain volume.
Table 4 shows the number of scan pairs in which new/enlarging

FLAIR lesions or CELs were identified; and the mean new and
enlarging lesion numbers for each of the three analysis methods,

Table 2. Distinct incidental findings on MS clinical radiology reports.

Incidental finding Number of Scans (%)

Meningioma 8 (2)

Stroke 4 (1)

Focal gliosis 4 (1)

Cavernoma 3 (0.8)

Vestibular schwannoma 2 (0.5)

Nasolabial cyst 2 (0.5)

Intrasellar lesion 2 (0.5)

Developmental venous anomaly 2 (0.5)

Arteriovenous malformation 2 (0.5)

Pineal cyst 1 (0.3)

Neuroglial cyst 1 (0.3)

Left parotid lesion 1 (0.3)

Focal hyperostosis 1 (0.3)

Dural calcification 1 (0.3)

Dilated perivascular space 1 (0.3)

Cryptococcoma 1 (0.3)

Cortical dysplasia 1 (0.3)

Choroid plexus cyst 1 (0.3)

Cerebral artery aneurysm 1 (0.3)

Cerebellar ectopia 1 (0.3)

Cerebral contusion 1 (0.3)

Arachnoid cyst 1 (0.3)

Total 42 (10.6)

Fig. 1 iQ-SolutionsTM PACS integration. iQ-MS automatically returns a co-registered baseline (prior study) 3D FLAIR series together with a
lesion-annotated 3D FLAIR, here showing a case with both new (blue) and enlarging (green) lesions. A 3D-T1 series is also returned with both
whole brain (yellow) and thalamus (pink) annotations. From left to right images : Co-registered FLAIR from patient’s last scan; FLAIR image of
the current MRI exam; Lesion masks overlaid on current FLAIR image; Brain and Thalamus masks overlaid on current 3DT1 image.
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and for the expert consensus. In total, case-level discrepant results
were found in 53/397 case pairs for the presence of new and
enlarging lesions; and in 10/180 cases for the presence of CELs. At
the lesion number level, discrepancies were present in 51/397 cases
(new lesions), 57/397 cases (enlarging lesions), 13/180 cases (CELs),
74/397 cases (new or enlarging lesions), and 78/397 cases (new or
enlarging lesions or CELs) among any of the three analysis methods.
The outputs and relevant segmentations of all 78 cases exhibiting
any discrepancy were manually reviewed (MB, YB) to develop the
expert consensus. Visual analysis of twenty randomly selected case-
level discrepant pairs (and their analysis outputs) by an independent
expert neuro-radiologist (DB), blinded to the expert consensus,
corroborated the results of the expert consensus in all cases.
Using the expert consensus as ground truth, iQ-MS more

sensitively detected new or enlarging FLAIR (93.3%) lesions and
T1-w CELs (85.7%) than either the radiology report (58.3% and
57.1%, respectively) or core MRI reading lab (85.0% and 71.4%,
respectively). When the analysis was restricted to scan pairs with a
longitudinally stable scanner/protocol (see Supplementary meth-
ods, n= 318), iQ-Solutions and the core MRI reading center
detected new/enlarging lesions with equivalent sensitivity
(91.7%), and there was a modest improvement in the sensitivity
of the radiology report (60%). Specificity for the detection of FLAIR
new/enlarging and T1-w CELs were high for iQ-MS (97.6%, 97.1%,
respectively), the radiology report (98.8%, 98.8% respectively) and
the core MRI reading lab (96.4%, 99.4%); and improved even further
when analysis was restricted to scan pairs with a longitudinally
stable scanner/protocol (Table 4). For a subset of scans reported by
fellowship-trained neuroradiologists (n= 268), iQ-MS, radiology
reports and the core lab detected MS disease activity in long-
itudinally stable scans with a sensitivity of 91.0%, 76.0%, and 87.9%.
At the lesion level, iQ-Solutions failed to detect an average of 0.02

new lesions per scan using the expert consensus as the gold
standard, whereas the core lab and radiology reports failed to detect
an average of 0.05 and 0.07 new lesions per scan, respectively. For
enlarging lesions, the average number of missed lesions per scan for
the three techniques was 0.02, 0.09, and 0.16 respectively.

Brain volumetrics. Of the 397 cross-sectional study scans analyzed
for brain volume by iQ-MS, 36 cases failed quality control imposed
by the core reading lab’s SOP (Supplementary methods) and were
deemed unsuitable for analysis by SIENAX. Comparisons between
the methods were therefore restricted to remaining 361 cases.
Mean cross-sectional brain volume, reported by iQ-MS and the core
MRI reading lab (using SIENAX) are shown in Table 5, together with
relevant healthy control centile data. NBV was considered to be
within normal limits at or above the healthy control 25th centile for

both iQ-MS and SIENAX. NBV below this cut-off were identified by
these tools in 54.3% and 74.9% of scans respectively; and more
severe brain volume loss (≤10th centile) was identified in 32.5% and
38.5% of patients respectively. NBV derived from SIENAX exhibited
a greater degree of variance than iQ-MS. Despite these differences,
there was a good correlation between NBV derived by the two tools
(R2= 0.671, p < 0.001); and NBV correlated, albeit relatively weakly,
with EDSS for both (iQ-MS R2= 0.23, p < 0.001; SIENAX R2= 0.14,
p < 0.001). Similar observations were made for normalized gray
matter and thalamic volumes measured by both iQ-MS and the
core MRI reading lab’s implementation of FIRST (Table 5). In a
univariate general linear model including NBV, normalized thalamic
volume, lesion volume and sex, only NBV (p < 0.001) and normal-
ized thalamic volume (p= 0.012) were significant contributors to
the overall model’s power to predict EDSS (R2= 0.28, p < 0.001).
However, the addition of age substantially improved the model’s
power (R2= 0.35, p < 0.001) and rendered the contribution of NBV
non-significant (p= 0.352), while preserving the significance of
normalized thalamic volume (p < 0.001) as a significant predictor of
EDSS, in keeping with the known association of this structure with
MS disease progression21. An analogous pattern was observed
using metrics derived from the core lab. Notably, radiology reports
only described the presence or absence of brain volume loss in
99/397 study scans, of which 23% were reported to have some
degree of brain volume loss, though this was not categorized in
vast majority, preventing meaningful statistical comparison. None
of the radiology reports described thalamic volume change.
Mean interval brain atrophy was calculated for all pairs that

passed longitudinal analysis criteria defined by the iQ-Solutions
automated protocol QC/analysis (n= 318, see Supplementary
methods for details). Of these pairs, a further 23 failed quality
control imposed by the core reading lab’s relevant SOP (see
Supplementary methods for details) and were deemed unsuitable
for analysis by SIENA. Comparisons between the methods were
therefore restricted to remaining 295 scan pairs. Mean annualized
PBVC was similar for both methods (iQ-MS: −0.32% [SD −0.73%];
SIENA: −0.36% [SD −0.71%]). There was a strong correlation
(R2= 0.86, p < 0.001) between annualized PBVC determined by the
two methods (Fig. 2). Using a pathological cut-off of 0.4% PBVC22,
brain atrophy was detected in 134/295 (45.4%) of study scans using
both quantitative methods; and severe brain atrophy (>0.8% per
year) was also equivalently detected in 64/295 (21.7%) of scans.
However, at the individual scan level, classification of annualized
atrophy as severe (>0.8%) was discordant in 24/295 cases. Of these
cases, a difference of more than 0.2% was observed in 15/24
between iQ-Solutions (greater atrophy in eight patients) and SIENA
(greater atrophy in seven patients). Qualitative assessment of brain

Table 3. Clinical radiology report FLAIR lesion burden descriptors.

Clinical descriptor Numerical assignment Final assignment Equivalent iQMSTM Burden (patienta

centile)

• No cerebral lesions 0 Mild <25%

• Single lesion 1

• Very scant 2

• Very mild, scant 3

• Relatively scant, mild, relatively mild, small, few, a few, several 4

• Mild to moderate 5 Moderate 25–75%

• Moderate 6

• Moderately extensive, significant, moderate to heavy, moderate
to marked, numerous

7 Severe >75%

• Extensive, Severe 8

aCompared with iQ-MS underlying MS reference dataset.
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volume change in scan pairs was described in 236/295 radiology
reports; no interval atrophy was reported in any of the assessed
scan pairs.
Interval iQ-MS PBVC was weakly correlated with both new

(R=−0.11, p < 0.05) and enlarging (R=−0.13, p < 0.01) lesion

volume; and survived partial correlation correction for age, sex and
disease duration. SIENA-derived PBVC was not correlated with any
of these variables. There was also a weak correlation of PBVC, as
derived by both methods, with EDSS that survived correction for
age, sex and disease duration (Table 6).

Table 5. Comparison of brain volumetrics.

iQ-SolutionsTM Core MRI Lab Radiology Report

Cross-sectional volumetrics, n= 361 unique scan pairs

Mean Normalized* Brain Volume [SD] (ml) 1460.4 [56.2] 1427.4 [77.0] —

Mean Normalized Thalamic Volume [SD] (ml) 18.2 [2.1] 19.2 [2.2] —

Mean Normalized Gray Matter Volume [SD] (ml) 772.3 [38.3] 755.5 [48.9] —

NBV HC Centile@ (%), ≥25th 44.9 13.0 19.1 (“No BVL”)

NBV HC Centile@ (%), 10th–25th 20.2 27.4 5.8 (“BVL”)

NBV HC Centile@ (%), ≤10th 34.9 59.6 75.1 (Unknown)

Normalized Brain Volume Correlation R2= 0.67,
p < 0.001

—

Normalized Thalamic Volume Correlation R2= 0.80,
p < 0.001

—

Normalized Gray Matter Volume Correlation R2= 0.69,
p < 0.001

—

Longitudinal volumetrics, n= 295 unique scan pairs

Mean Interval PBVC Change [SD] (%) −0.32 [−0.73] −0.36 [−0.71] —

PBVC Correlation R2= 0.86,
p < 0.001

—

Interval PBVC Severity (Loss) n (%), < 0.4% 161 (54.6%) 161 (54.6%) 80% (“No atrophy”)

Interval PBVC Severity (Loss) n (%), 0.4–0.8% 70 (23.7%) 70 (23.7%) 20% (Unknown)

Interval PBVC Severity (Loss) n (%), >0.8% 64 (21.7%) 64 (21.7%)

Interval Thalamic Volume Change [SD] (%) −0.33 [1.75] — —

Interval Gray Matter Volume Change [SD] (%) −0.15 [1.02] — —

NBV normalized brain volume, PBVC percent brain volume change.

Table 4. Comparison of lesion metrics.

iQ-SolutionsTM Core MRI Lab Radiology Report Consensus Review n

Mean FLAIR Lesion Number [SD], Range 47.8 [39], 0–223 56.0 [44.7], 1–269 — — 397

Mean FLAIR Lesion Volume [SD], Range 6.4 [10.3], 0–66.7 7.9 [11.0], 0–73.1 — —

Lesion Number Correlation R2= 0.964,
p < 0.001

— —

Lesion Volume Correlation R2= 0.962,
P < 0.001

— —

Cases with New or Enlarging Lesions (all | stable protocol*) 64 | 50 63 | 51 39 | 31 60 | 48 397 | 318

Mean New Lesion number (all | stable protocol) 0.24 | 0.22 0.17 | 0.19 0.18 | 0.20 0.20 | 0.22

Mean Enlarging Lesion number (all | stable protocol) 0.36 | 0.33 0.17 | 0.16 0.05 | 0.04 0.20 | 0.20

Sensitivity: New and Enlarging Lesions (all | stable protocol) 93.3 | 91.7 85.0 | 91.7 58.3 | 60.4 —

Specificity: New and Enlarging Lesions (all | stable protocol) 97.6 | 97.8 96.4 | 97.4 98.8 | 99.3 —

Accuracy: New and Enlarging Lesions (all | stable protocol) 0.97 | 0.97 0.95 | 0.97 0.93 | 0.93 —

Precision: New and Enlarging Lesions (all | stable protocol) 0.88 | 0.88 0.81 | 0.86 0.90 | 0.94 —

F1 score: New and Enlarging Lesions (all | stable protocol) 0.90 | 0.90 0.83 | 0.89 0.71 | 0.73 —

Mean New/Enlarging Lesion Volume (ml) [SD], Range (all) 0.04 [0.24], 0–3.05 — — — 397

Study Scans with Gd+ Lesions 11 6 6 7 180

Mean Gd+ Lesion Number 0.09 [0.39], 0–3.00 0.038889 0.06 0.056738

Sensitivity: Gd+ Lesions 85.7 71.4 57.1 —

Specificity: Gd+ Lesions 97.1 99.4 98.8 —

Mean Gd+ Lesion Volume (ml) [SD], Range 0 [0.02], 0–0.19 0 [0.01], 0–0.13 — —
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DISCUSSION
We demonstrate superior performance of the fully automatic,
deep learning-based tool, iQ-MS, for detection of new, enlarging
and contrast-enhancing lesions, the principal indicators of
subclinical MS disease activity, compared with qualitative radi-
ology reporting. We also show at least equivalent performance of
the AI tool with semi-automated quantitative lesion activity and
volumetric assessments undertaken by an experienced, ISO-9001
certified core imaging laboratory.
The detection of clinically silent new MRI lesions is an important

determinant of treatment strategy5 that may, in its own right, lead
to escalation of immunotherapy. Most modern therapeutic
paradigms target No Evidence of Disease Activity (NEDA)8, which
encompasses both clinical and radiological disease quiescence.
Here, we report a case-level sensitivity of 93.3%, relative to a
consensus ground truth, for detecting MS disease activity in multi-
center, real-world MRI scans acquired ~12 months apart, an
interval consistent with recommended routine clinical practice for
monitoring MS and treatment efficacy. For this metric, the fully
automatic AI based tool substantially outperformed clinical
radiology reports (sensitivity 58.3%), despite only a minor sacrifice
in specificity (97.6% vs 98.8%); and was at least equivalent to the

core imaging laboratory (sensitivity 91.7% in longitudinally
consistent scans for both methods). Not surprisingly, when a
subset of scans reported by fellowship-trained neuroradiologists
was analyzed, the sensitivity of radiology reports for MS disease
activity rose substantially (77%), but remained essentially stable at
92.3% for iQ-MS (data not shown).
At the lesion level, iQ-Solutions missed the equivalent of only 1

new lesion for every 44 scans analyzed in our cohort, whereas
conventional radiology reports and the core lab missed the
equivalent of 1 new lesion in 15 and 19 scans respectively. Using
the average new lesion volume calculated by the AI tool and an
approximation of the number of axons transected per mm3 of
new lesional tissue23, the application of iQ-MS therefore repre-
sents a potential opportunity to prevent, with appropriate
treatment change, an averaged irreversible loss of >45,000 (up
to >2 million in individual patients) axons, over 12 months relative
to individuals monitored with conventional radiology reporting
alone. These numerical extrapolations assume the availability of a
therapy that can effectively prevent new lesion formation.
However, improved sensitivity for interval disease activity

relative to radiology reports was driven primarily by failure of
the human reporter to capture enlarging lesions consistently,
perhaps not an unexpected finding given their visual subtlety in
comparison with new, free-standing lesions. Enlarging lesions are
under increasing scrutiny as a primary driver of disability
worsening, especially for patients in whom relapses have been
essentially abolished by high-efficacy DMT. In particular, slowly
enlarging lesions, likely an imaging surrogate of “smoldering” MS
lesions that exhibit chronic inflammation at their edge24, have
gained traction as an independent biomarker of disease progres-
sion with a distinct pathophysiology25. Currently, iQ-MS does not
isolate concentrically enlarging lesions from the global enlarging
lesion pool, nor does it automatically monitor individual lesions
over multiple timepoints to separate subacute from slow lesion
enlargement. Incorporating these capabilities into AI-based lesion
activity tools such as iQ-MS will become more pressing as
pharmacotherapies that putatively target these pathomechan-
isms, such as the BTKi drugs, are developed26.
The detection of contrast enhancement, a marker of blood-brain

barrier disruption that characterizes new MS lesion formation and
typically persists for 2–6 weeks, was also assessed in the 180 study
scans in which gadolinium contrast was administered. While the
sensitivity of iQ-MS for this metric (85.7%) was less impressive than
for new and enlarging lesions, the fully automatic AI-based tool
significantly outperformed (Table 4) the other methods with only a
minor impact on specificity (97.2%). The omission of gadolinium
administration from routine MS monitoring protocols27,28 further
emphasizes the need for tools that sensitively detect interval
development of new and enlarging lesions.
Accelerated brain atrophy occurs at the earliest stages of MS

and is a recognized marker of neurodegeneration29. The role of
brain volumetrics in the clinical management of individual people
with MS is less well defined. At the group level, there is good
evidence that lower cross-sectional normalized brain volumes
correlate with worse disability outcomes30; and that short term
(1–2 years) brain atrophy can predict longer term clinical
outcomes31. Translation to individual patients is confounded by
measurement error inherent to analysis techniques; longitudinal
scan acquisition inconsistency; and biological and treatment-
related fluctuations in brain volume32. However, brain volume
below the 10th centile of an age-matched healthy control, a
consistent adverse brain atrophy trajectory over multiple clinical
epochs or severe PBVC (>0.8% per annum) over a single epoch,
may influence or support changes in immunotherapy in conjunc-
tion with relevant clinical and lesion metrics. The current literature
lacks clinical evaluation and validation data for existing quantita-
tive volumetric reports for people with MS15.

Table 6. Correlations with Disability Status.

iQ-SolutionsTM Core MRI Lab

NBV-EDSS R2= 0.23,p < 0.001 R2= 0.14, p < 0.001

NTV-EDSS R2= 0.21,p < 0.001 R2= 0.17, p < 0.001

GMV-EDSS R2= 0.23,p < 0.001 R2= 0.12, p < 0.001

PBVC-EDSS R2= 0.05,p < 0.001 R2= 0.03, p= 0.04

Lesion Volume-EDSS R2= 0.16,p < 0.001 R2= 0.15, p < 0.001

New Lesion Volume-EDSS Not significant —

Enlarging Lesion Volume-
EDSS

R2= 0.05, p < 0.001 —

NBV normalized brain volume, NTV normalized thalamic volume, GMV
normalized gray matter volume, PBVC annualized percent brain volume
change, EDSS expanded disability status scale

Fig. 2 Correlation of annualized percentage brain volume change
between scan pairs as determined by SIENA and iQ-MS. PBVC
percentage brain volume change.
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Here, we report high correlations between the outputs of the AI
tool and both cross-sectional and longitudinal whole brain
volumetric tools measured in a core MRI lab using SIENAX32

(R2= 0.67) and SIENA33 (R2= 0.86) respectively; and comparatively
improved correlations with the EDSS (Table 6). Severe brain
volume loss (<10th healthy control centile) was present in
substantial proportion of study scans, but cross-sectional brain
volume loss of any severity was only mentioned in a small
proportion (<25%) of radiology reports, potentially reflecting
assumed lack of clinical relevance of this metric by the reporting
radiologist or inability of the human reporter to assess brain
volume loss, even qualitatively, relative to a hypothetical, age-
matched healthy control. Despite excellent correlation between
the tools, there was a general tendency for NBV derived by the
Core Lab’s implementation of SIENAX to yield NBVs of lower
centiles (referenced to the HC cohort) than iQ-MS (Table 5). In the
absence of a true ground truth for brain volume measurement,
the significance of this “shift” is uncertain, noting that iQMS-
derived NBV did show improved (albeit modest) correlation with
clinical outcomes (Table 6). The principal measure of clinical
interest, annualized PBVC, was similar across the two quantitative
tools (iQ-MS mean PBVC −0.32%, SIENA mean PBVC −0.36%), and
fell within the range (<0.4% loss) considered non-pathological22.
This is unsurprising in a modern MS cohort, given that many of the
highly effective therapies, use of which is prevalent in Australia,
ameliorate brain volume loss in randomized clinical trials34–36.
When stratified by severity, the tools appear to show equivalent
interval PBVC among the atrophy subgroups when referenced to
the same healthy control cohort analyzed with the respective
methods (Table 5). However, the presence of severe atrophy
(>0.8% negative PBVC), as determined by the two quantitative
methods, was discordant in 24/295 (8.1%) of cases, highlighting
methodological concerns when applying these tools to individual
patients over single, relatively short epochs. Compared to SIENA,
we have recently shown that DeepBVC, the brain atrophy
algorithm embedded in iQ-MS, demonstrates greater stability
and superior performance in test–retest experiments; and is more
robust to variance in imaging acquisition19. Likely reflecting the
inability of the human reporter to detect minor brain volume
changes over short intervals, no interval atrophy was reported in
any of the 236/295 scan pairs that were visually assessed.
When a clinician evaluates brain imaging in a person with MS,

they mentally compare the scan before them not only with a
hypothetical healthy person of similar age, but also with a
hypothetical patient, derived from their cumulative experience, of
similar age, disease duration and treatment. In conventional
monitoring paradigms, such a comparison is necessarily indirect,
qualitative and limited by the experience of the reporting radiologist
and clinician. Existing quantitative imaging tools partly address this
through comparison of individual patients to healthy controls, as
does the fully automatic, AI tool described here. To our knowledge,
this is the first tool to additionally embed an ‘experiential’
comparator that returns a relevant patient centile for both FLAIR
lesion burden and brain volumetric data. While the clinical utility of
this additional information is unknown, the integration of iQ-MS into
the recently inaugurated MSBase Imaging Repository will facilitate
the development of a broader comparative experiential dataset that
can be properly benchmarked in research settings.
Finally, incidental findings (Table 2) were reported by the

radiologist in 10.6% of MS scans. We emphasize that iQ-
SolutionsTM is a non-diagnostic tool designed for the quantitative
monitoring of people with a known neurological disease, here
applied to MS, to facilitate their precision treatment. Radiologist
oversight, both for quality control of the results provided by the AI
tool; and for reporting clinically significant incidental findings,
remains paramount.
Our study has a number of limitations. The bulk of MRI scans in

the study were acquired on one of three scanners, potentially

limiting the generalizability of the results. Additionally, most scan
pairs (318/397) analyzed in our cohort were acquired on the same
scanner with a consistent imaging protocol, as determined by iQ-
MS, that may be difficult to enforce in some clinical settings.
Although not a principal outcome of our study, the high
correlation between cross-sectional lesion number/volume as
determined by iQ-MS and the core lab should be interpreted with
caution, given that image analysts in the core lab manually
adjusted lesion masks that were initially created with an in-house
AI algorithm that shared training data with the fully automatic
solution. However, longitudinal lesion metrics (new and enlarging
lesions), the outcome of most clinical relevance, were manually
determined by the core lab via the aid of an independent
subtraction image and slice by slice visual inspection. While the
determination of the expert consensus was potentially con-
founded by lack of blinding (imposed by the distinct formats of
the segmentations reviewed by the expert neurologist and
neuroradiologist), the consensus was corroborated by an inde-
pendent radiologist in all case-level discrepant scan pairs
reviewed. Volumetric performance of the AI tool was confined
to scan pairs with an available quantitative comparator. However,
normalized brain volume and PBVC correlated strongly with de-
facto gold standards used in the majority of modern MS clinical
trials, exhibited less variance than these comparators, and better,
though still weakly, correlated with a measure of clinical disability.
iQ-MS is a sensitive and accurate tool for monitoring MRI scans

in people with MS by providing quantitative metrics that value-
add to traditional radiology reports. Comparison with both
radiology reports and a core MRI analysis lab shows superiority
of the AI tool across a range of lesion and volume measures
derived from clinically acquired, multicentre scans. The incorpora-
tion of an experiential patient reference provides a more clinically
meaningful quantitative comparator for lesion burden and brain
volumetric analyses. The scaled deployment of AI-based quanti-
tative imaging tools, such as iQ-MS, has the potential to enhance
both real-world, clinical-imaging disease-specific research and the
precision management of individual patients with MS.

METHODS
Patients and clinical data
Patients with a diagnosis of MS attending the Royal Prince Alfred
Hospital MS Service were retrospectively included in the study.
The study was approved by The University of Sydney Human
Research Ethics Committee and followed the tenets of the
Declaration of Helsinki. Written informed consent was obtained
from all participants. De-identified clinical data, including diag-
nosis, disease duration (from symptom onset), gender, age in
years and expanded disability status scale (EDSS) score, were
extracted through the clinic’s MSBase37 interface.

Imaging data and informatics
Inclusion criteria included a minimum of two available MRI
timepoints, separated by at least 6 months. Scans with 3D T1-w
and 3D FLAIR imaging, acquired on any MRI scanner, were
included in the study; there were no pre-specified sequence
parameters. Based on a significance level of 5%, assumed 80%
sensitivity of radiologist reports for detection of MS lesion activity,
and power of 80% to identify a 10% improvement with iQ-MS,
recruitment to the study ended when 400 appropriate scan pairs
had been included. All images were automatically de-identified
with an informatics tool, ToranaTM (Sydney Neuroimaging Analysis
Centre, Sydney), prior to their inclusion in an in-house research
PACS for automatic analysis and processing by iQ-MS. The MSBase
identifier was automatically added to the image meta-data to
facilitate subsequent matching with the patient’s clinical data. To
simulate real-time clinical workflow, annotations and reports
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generated by iQ-Solutions were automatically returned to
ToranaTM and transferred into the appropriate project/subject/
scan session in the PACS for review by study staff.

Clinical radiology reports
Clinical radiology reports were de-identified and then reviewed by an
expert MS neurologist (MB), who extracted and recorded the
following metrics: number of new FLAIR lesions, enlarging FLAIR
lesions and T1-w CELs. Scans were categorized as active if any new/
enlarging or enhancing lesions were detected. The burden of
cerebral FLAIR MS pathology, where reported, was recorded and an
attempt made to transform descriptors into a numerical rating made
(Table 3). The presence/absence of reported brain volume loss and its
severity (mild, moderate, severe) was recorded, as was the presence/
absence of brain atrophy between current and prior studies.
Incidental findings and their type were recorded. Reports were also
categorized by whether the reporting radiologist was a fellowship-
trained subspecialty neuro-radiologist or a general radiologist.

Core MRI reading laboratory
All scans were independently (and blindly) analyzed by trained
neuroimaging analysis staff at the Sydney Neuroimaging Analysis
Centre, an ISO-9001 certified and CFR-21 Part 11-compliant core
MRI reading facility, using standard operating procedures (SOP)
designed for regulatory MS clinical trials. Expert human QA was
undertaken at multiple steps for each of the following analysis
pipelines. FLAIR lesion number and volume were iteratively
measured on intensity-inhomogeneity corrected 3D FLAIR imaging
using an in-house lesion segmentation tool, followed by manual
quality control of every image slice and lesion mask adjustment
with a semi-automated thresholding technique. Importantly, the
in-house tool for measurement of these (cross-sectional) lesion
metrics used an AI algorithm that shared training data with the
fully automatic solution used by iQ-MS. Lesion activity analysis (the
development of new or enlarging lesions) was performed manually
with the aid of a subtraction image and slice-by-slice inspection.
Enlarging lesions were defined as any pre-existing FLAIR hyper-
intensity that had enlarged, either concentrically or eccentrically,
between the prior and current scan on ≥2 consecutive slices. Scans
were categorized as active if any new/enlarging or enhancing
lesions were detected. CELs were identified on co-registered post
contrast 3DT1 images and enhancing voxels segmented using a
semi-automated thresholding technique.
Quality control determined by the core lab’s SOP for observational

studies was implemented to exclude scans unsuitable for cross-
sectional or longitudinal analysis (Supplementary methods). At each
time point, the quantification of absolute and NBV and thalamus
volume was estimated on co-registered pre-contrast lesion in-
painted and inhomogeneity-corrected 3D T1-w images using
FMRIB’s SIENAX (version 2.6)33 and FIRST38 software packages
respectively. Quantification of longitudinal PBVC between the
current and prior scan was determined by a modified hybrid of
FMRIB’s SIENA33 software. Annualized brain atrophy was categorized
as normal (<0.4%), mild-moderate (0.4–0.8%) or severe (>0.8%).

iQ-SolutionsTM MS report
All iQ-MS data was derived automatically using the workflow
described under Imaging Data and Informatics above; for clarity,
no human intervention was introduced at any point. Specific
metrics returned by iQ-MS are shown in Table 1. FLAIR MS lesion
burden was categorized using the automatically returned patient
(MS population) centile figure (see Introduction, Table 3) as mild
(<25th patient centile), moderate (25th–75th patient centile) or
severe (>75th patient centile). Brain volume loss was categorized
using the automatically returned HC centile figure (Table 3) as
none (≥25th HC centile), mild-moderate (10–25th HC centile) or

severe (≤10th HC centile). Annualized brain atrophy was
categorized as normal (≤0.4%), mild-moderate (>0.4%, ≤0.8%) or
severe (>0.8%), based on previously determined ‘pathological cut-
offs’ of brain atrophy using SIENA22, against which the relevant
iQ-MS algorithm has been previously validated19.

Expert consensus
To establish a ground truth, a case and lesion level comparison of
the output of each method (radiology report, neuroimaging
analyst, iQ-MS) was undertaken. Where there was agreement at
both the case (active vs inactive) and lesion (number of new
lesions, enlarging lesions and CELs) level across all three methods,
the results were accepted as the ground truth. Where any
discrepancy was noted at either the case or the lesion level,
further review of the raw images, together with the output of all
three methods (including final segmentations from both neuroi-
maging analysts and iQ-MS) was undertaken by an expert neuro-
radiologist (YB) and neurologist (MB) and a final ground truth
established by consensus. As the segmentation masks output by
the three methods differed in both format and visual appearance,
this review was necessarily unblinded. As such, a random sample
of >25% of all case-level discrepant scan results was reviewed by a
third, independent expert neuroradiologist to determine con-
formity with the expert consensus.

Statistics
Statistical analyses were performed using SPSS 26.0 (SPSS,
Chicago, IL, USA). Descriptive statistics were calculated for all
inter-method comparisons. Subgroups studied included (i) scans
reported by a subspecialist neuroradiologist and (ii) scan pairs
acquired with a longitudinally consistent imaging protocol as
defined in Supplementary methods. Unless otherwise described in
the result, Pearson’s correlation coefficient was used to measure
statistical dependence between two numerical arrays, and p < 0.05
was considered statistically significant. For partial correlation, data
were adjusted for age, gender and disease duration; p < 0.05 was
considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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