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Relay learning: a physically secure framework for clinical
multi-site deep learning
Zi-Hao Bo 1,2, Yuchen Guo2✉, Jinhao Lyu3, Hengrui Liang 4, Jianxing He 4, Shijie Deng5, Feng Xu 1,2✉, Xin Lou3✉ and
Qionghai Dai 2,6✉

Big data serves as the cornerstone for constructing real-world deep learning systems across various domains. In medicine and
healthcare, a single clinical site lacks sufficient data, thus necessitating the involvement of multiple sites. Unfortunately, concerns
regarding data security and privacy hinder the sharing and reuse of data across sites. Existing approaches to multi-site clinical
learning heavily depend on the security of the network firewall and system implementation. To address this issue, we propose Relay
Learning, a secure deep-learning framework that physically isolates clinical data from external intruders while still leveraging the
benefits of multi-site big data. We demonstrate the efficacy of Relay Learning in three medical tasks of different diseases and
anatomical structures, including structure segmentation of retina fundus, mediastinum tumors diagnosis, and brain midline
localization. We evaluate Relay Learning by comparing its performance to alternative solutions through multi-site validation and
external validation. Incorporating a total of 41,038 medical images from 21 medical hosts, including 7 external hosts, with non-
uniform distributions, we observe significant performance improvements with Relay Learning across all three tasks. Specifically, it
achieves an average performance increase of 44.4%, 24.2%, and 36.7% for retinal fundus segmentation, mediastinum tumor
diagnosis, and brain midline localization, respectively. Remarkably, Relay Learning even outperforms central learning on external
test sets. In the meanwhile, Relay Learning keeps data sovereignty locally without cross-site network connections. We anticipate
that Relay Learning will revolutionize clinical multi-site collaboration and reshape the landscape of healthcare in the future.
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INTRODUCTION
Big data combined with artificial intelligence (AI) has facilitated
numerous applications in the past few years, including AI-aided
medicine1,2. Many powerful medical AI systems have been built
for clinical applications3–5. For example, by gathering hundreds of
thousands of training samples from multiple clinical sites, expert-
level performance has been reported for intracranial hemorrhage6,
fundus disease detection7, lung cancer screening8, etc.
However, besides the power and importance, big data also

brings non-negligible risks and challenges. The data privacy and
security issue sabotages directly collecting big data from multiple
sites and thus limits the wide application of AI technologies1. To
handle this problem, techniques like Federated Learning9,10, and
Swarm Learning11 are proposed. These techniques just require the
data of each site to be put online and they use the data to train
models locally and share only the parameters of the models but
not the data among sites. This parameter-sharing represents a
significant milestone in privacy-preserving tasks. Nonetheless,
such methods require the medical data to be connected and
exposed to the Internet topologically during the training as
consistent model training and frequent model parameter
transmission are necessary. As there is a risk that the network
firewall gets attacked, the data may be disclosed by the attacks.
Furthermore, the training step usually takes days or weeks, which
adds to the risk. Due to the data disclosing risk, some individuals
and organizations strictly forbid data and information online to
ensure security. This case happens frequently in medical

applications, where data privacy is crucial. In general, the current
AI technologies cannot fully handle the data privacy and security
issues in leveraging big data.
We introduce Relay Learning, a de-connection solution that

provides physical security to data sovereignty in clinical multi-site
deep learning. It disconnects all the participants physically, where
only the model is delivered over clinical sites one by one like in a
relay race. To be specific, the model transmission is only
performed once for one site after the model training, and since
the training is accomplished, the medical data can be physically
disconnected from the model when the transmission happens,
which makes full protection of the medical data. The asynchro-
nous model transmission also reduces cooperation costs, where
sites can join and perform model training at any time as the relay
order does not affect the performance of the relay learning
technique.
The framework of Relay Learning, together with other multi-site

approaches, is illustrated in Fig. 1. In local learning, each institution
learns the model on its own data separately, without the benefit of
large-scale multi-site data. Central learning introduces a central
node that collects data directly from all the participants, which
violates privacy regulations. Federated Learning requires the
parameter gradients to be gathered to a central node online
and frequently for training. Swarm Learning modifies Federated
Learning to a decentralized version, therefore the potential
security risk still exists. To address the aforementioned problems,
Relay Learning disconnects the clinical site offline from the
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computation topology by passing only the model asynchronously,
and only once after training in each site. This procedure happens
sequentially at each host in Relay Learning: the deep model is
updated inside, copied from the computation topology, and
carried out from the host to the next. The ability of Relay Learning
to maintain and chronologically update knowledge is facilitated
by a generative relay system (see “Methods” section for details).
The relay system learns the data distribution in each site without
storing data. Then the knowledge of previous sites can be
reviewed by sampling from the learned distribution, and thus the
multi-site knowledge can be merged given the generative relay
system. The physical gating in Fig. 1d transfers the model across
sites via storage devices, or via the Internet after physically and
securely disconnected from the data. This controls the clinical sites
isolated and disclosed from interlopers.
We hypothesize that in real-world clinical multi-site deep

learning, there is a dilemma that institutions should keep their
data locally while data reuse and sharing are still needed to build
powerful models in this big-data era. To address this issue with a
flexible and secure multi-site deep learning framework, we
propose a de-connection solution that makes full use of multi-
site medical data. Relay Learning guarantees that: (1) medical
institutions can be completely disconnected from the Internet and
become isolated systems; (2) data sovereignty is physically
controlled inside hospitals away from interlopers; (3) participants
are flexible to join the computation at any time; (4) transmission
cost is minimized by passing only the final model in each site; (5)
cooperation cost is minimized without the requirement for the
sites to be synchronous online during training; (6) the framework
is decentralized and the increase in transmission cost is linear with
the increase in the number of institutions; (7) the connection
topology order of sites is flexible; (8) complicated clinical tasks are
supported, e.g., pixel-wise lesion localization on 3D medical
images, due to its generalized compatibility for advanced deep
learning models. Relay Learning enables clinical deep learning

models to fuse the broad knowledge offline from multi-site data
without privacy leakage, which is key in this big-data era.

RESULTS
Experimental settings
In this research, we evaluated Relay Learning in different multi-site
clinical problems for different diseases and anatomical structures.
First, we tested Relay Learning to segment important retina
fundus structures on several widely used public datasets,
including five hosts. In addition, we dedicatedly collected a large
3D CT dataset from eight institutions and used Relay Learning to
develop a multi-site simulation system for mediastinum tumor
diagnosis. Finally, we managed to deploy Relay Learning in five
medical institutions and trained a deep model to perform brain
midline localization from medical images. The trained model was
also sent to another three sites for the external test. Since the
brain midline localization task was deployed in the real world, data
sovereignty was kept locally in each site, which is impossible for
central learning. In each internal host of all these three tasks, data
samples were subject-wisely split for training and testing. Then all
the samples in external hosts were used for testing. The dataset
details and preprocess, the settings of Relay Learning, and the
deep models for different tasks are described in the “Methods”
and Supplementary Notes sections.
We conducted a variety of evaluations to fully assess the

performance of Relay Learning compared to other approaches. In
each task, we first compared Relay Learning with local learning,
which was trained on a single host and tested on all the test sets.
Next, in the first two tasks, we compared our framework with
central learning (Fig. 1a), because the objective of Relay Learning
is to provide physical security, while still achieving comparable
performance to directly gathering data. Federated Learning and
Swarm Learning can also be considered as distributed simulations
of central learning, though their variations in parameter
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Fig. 1 Overview of Relay Learning with other multi-site deep learning solutions. a In central learning, multi-site data is aggregated to a
central host, resulting in complete privacy leakage. b Federated Learning and c Swarm Learning use an online distributed-computing strategy
where only model parameters or gradients are transported, either in a centralized or decentralized manner. However, data servers and medical
systems are still connected physically and the parameter transmission is synchronous and frequent. d We propose Relay Learning, a physically
secure multi-site framework, which disconnects data servers from the computing topology physically. e In Relay Learning, the model is
updated using local data inside each host sequentially to acquire cumulative ability. Hosts are physically isolated from each other. Only the
model is transported through controllable hardware. New hosts can participate in Relay Learning dynamically without any interruption to the
existing computation.
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aggregation strategies may decrease their performance compared
to central learning in some situations. In the last task of localizing
brain midlines, we cannot evaluate a central learning model
because data is kept locally. Furthermore, we built a baseline for
our framework—training the task model sequentially through
hosts but without the relay system. The sequential method, which
can be considered a sequential fine-tuning strategy, is widely
adopted as a transfer learning routine in cross-dataset deep
learning. It may forget the previous knowledge rapidly12, thus
becoming an unpractical solution in multi-site clinical applications.
At last, to evaluate the influence of the host order in the training
topology, besides the main sequential order (episode1), Relay
Learning and sequential learning were also conducted in a
reversed order (episode2) and another random order (episode3).

Segmenting retina fundus structures
Retina fundus image is important in ophthalmic diagnosis and
useful to observe the homeostasis of the human body13. One
important biomarker for many diseases is the biomedical structure
of the retina fundus, including the optic cup(OC), optic disc(OD),
and other structures14. Here, we evaluated Relay Learning on a
public OC/OD segmentation dataset of retinal fundus images,
which consists of four internal hosts (F1–F4)15–17 and an external
test host (F5)18. As a medical segmentation task, we used the
widely adopted Dice similarity coefficient (Dice) as our evaluation
metric (higher is better), which was computed image-wisely and
averaged on OC and OD. We also show 95% CI (confidence
interval) of the mean evaluation score in the analysis.
Results shown in Fig. 2 demonstrate the supremacy of Relay

Learning compared to local and sequential learning. Relay
Learning achieved Dice values of 0.832 (0.819–0.845, 95% CI) on
internal test sets and 0.747 (0.736–0.758, 95% CI) on the external
test set, which were 0.211 and 0.252 higher than those of local
learning (Fig. 2c, g). Compared to sequential learning, Relay
Learning still maintained 0.213 and 0.198 Dice superiority on
internal and external test sets averaged on three episodes. The
host order did not affect the performance much (Fig. 2f, j) as
shown by a further experiment of all the permutations of the host
order including 24 episodes (Supplementary Fig. 1 and Supple-
mentary Table 8), where Relay Learning still kept the performance
evenly in all the episodes. We also observed that Federated
Learning and Swarm Learning showed a slight decrease compared
to central learning (Fig. 2d, h), except for Federated Learning on
the external test set. This phenomenon may be caused by their
sparser parameter-aggregation strategy compared to central
learning. In Fig. 2d, Relay Learning achieved comparable
performance to central learning on internal test sets (P-values
0.348, 0.116, and 0.362 for the three episodes respectively).
Moreover, on external test sets (Fig. 2h), Relay Learning even
exceeded naive central learning (0.164, 0.182, and 0.133 Dice
increment on three episodes, P-values all < 0.001), which demon-
strates its better generalization ability. This can be explained by
that the relay system models the knowledge of previous sites as a
distribution, which may intrinsically extend the information of the
original samples and improve the generalization ability of the
trained model.
The Retina Fundus dataset contains diverse data distributions

across sites (see in Fig. 2m and Supplementary Fig. 2). This brings
training difficulties to multi-site deep learning models— both the
local learning and the sequential learning struggled in this
situation (Fig. 2c–j). In Fig. 2f, j, the sequential model cannot
keep improving its performance with the training on new hosts
and even drop its performance greatly at the last host. This reveals
that without dedicated optimization, sequential training is
inadequate in multi-site settings, especially when data distribution
varied much across sites. On the other hand, Relay Learning kept
its performance increasing during the training on different hosts

as demonstrated by the results shown in Fig. 2k, l. To be specific,
in Fig. 2m, we can see sequential learning can only predict
acceptable results on the last seen host F4, indicating that
sequential learning forgot the knowledge learned from previous
hosts. Relay Learning did not suffer from this distribution-shift
problem as the generative model in our relay system learned all
the previous data distribution. The robustness of Relay Learning
demonstrates its potential in real-world clinical applications.
Detailed results (including Dices for OC and OD seperately) and
P-values are shown in Supplementary Tables 2, 3, 6, and 7.

Diagnosing mediastinum tumors
After using a public dataset, here we collect real clinic data in an
unbiased manner to mimic the real case of applying Relay
Learning. The clinical task here is diagnosing mediastinum tumors.
Mediastinum is the anatomic region located between the human
lungs, which contains most of the primary tissues and organs in
the chest except the lungs. In recent decades, the incidental
encounters of mediastinum tumors increase in both clinical
practice and the screening of lung cancer, with the wide usage
of computed tomography (CT)19. The tumor states vary greatly in
location, composition, and imaging characteristics20, which leads
to the difficulty to identify tumors from CT scans. Here, we used
Relay Learning to build a mediastinum tumor diagnosing system
to evaluate its applicability in this challenging task of identifying
lesion regions. We collected a multi-site Mediastinum Tumor
dataset with CT images captured from eight medical sites (T1–T8),
including five internal hosts (T1–T5) and three external hosts
(T6–T8). The images in the external hosts were used for the
external test (Fig. 3a). A total of 27,048 2D image slices were
incorporated. We also used Dice to evaluate the performance in
this use case, which was computed subject-wise. This unbiased
clinical dataset is composed of all the images containing
mediastinum tumors during a period of time in each hospital,
thus it can directly reflect the ability of Relay Learning in real
clinical usage.
The Dice result is shown in Fig. 3. Relay Learning achieved 0.638

(0.598–0.678, 95% CI) and 0.616 (0.593–0.638, 95% CI) on the
internal and external test sets averaged on three episodes, which
is much higher than local learning by 0.113 and 0.124 (Fig. 3c, g).
Relay Learning also overtook sequential learning on internal and
external test sets by 0.092 and 0.097 respectively, averaged on
three episodes (Fig. 3e, i). Besides, the host order did not affect the
performance of Relay Learning much as shown in Fig. 3f, j.
Federated Learning and Swarm learning were still worse than
central learning (Fig. 3d, h), though the gaps were small.
Moreover, Relay Learning even slightly overtook central learning
by 0.017 and 0.006 on the internal and external test sets
respectively, averaged on three episodes. This means Relay
Learning can achieve acceptable or even better performance
without collecting sensitive data to a central node.
The evaluation demonstrates the robustness and generalization

of Relay Learning in a multi-site clinical task. According to host
chronology analysis in Fig. 3f, j, the performance of Relay Learning
raised gradually when trained on more hosts and finally
approached the performance of central learning, while sequential
learning was quite unstable when switching to some hosts.
Specifically, Relay Learning outperformed the sequential strategy
on all eight test sets (Fig. 3k, l). The performance of the sequential
learning dropped quickly after training on some hosts, such as T2-
test (dropped 0.218) and T8-test (dropped 0.118) after training on
host4 (T4-train), which may be due to the different data
distribution on these hosts and the knowledge forgetting in
sequential fine-tuning21. In addition, the performance of sequen-
tial learning dropped by 0.032 from the internal to the external
test sets, while Relay Learning did not change much (slightly
increased by 0.002). The result indicates that Relay Learning can
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utilize multi-site data more efficiently and has better general-
ization ability. Detailed results and P-values are shown in
Supplementary Tables 4, 6, and 7.

Locating brain midlines
After collecting unbiased clinical data to mimic the real case, here
we do not collect data but directly use the data in their original
sites to deploy Relay Learning, which is a real-world multi-site
clinical experiment. Eight institutions were incorporated, including
three external test sites. The deep learning model was trained to

locate brain midlines from CT images. The human brain can be
grossly divided into a pair of hemispheres symmetrically in size
and shape by the brain midline. The brain midline shift (MLS) is an
important indicator of numerous brain abnormalities, including
traumatic brain injury (TBI), tumor, stroke, herniation, and other
severe intracranial lesions22. Therefore, the localization of the
brain midline and the measurement of MLS can help the
diagnosis. We managed to deploy Relay Learning in five internal
institutions (M1–M5) and train a deep model that can locate brain
midlines. The model was tested on three external institutions
(M6–M8). The incorporated multi-site Brain Midline dataset had

Federated Swarm central Relay

0.5

0.6

0.7

0.8

Dice *** *** ***

Federated Swarm central Relay

0.6

0.7

0.8

0.9
Dice ns ns ns

0.835

0.569

0.750

0.218

0.626

0.698

0.772

0.736

0.575

0.549

0.699

0.595

0.881

0.684

0.520

0.349

0.250

0.818

0.883

0.306

1 2 3 4

F1

F2

F3

F4

F5

host

in
te

rn
al

 te
st

 s
et

s
ex

te
rn

al
 te

st
 s

et

0.834

0.579

0.651

0.116

0.587

0.736

0.788

0.756

0.514

0.654

0.803

0.744

0.875

0.783

0.747

0.787

0.751

0.873

0.880

0.747

0.836

0.786

0.887

0.891

0.583

1 2 3 4

F1

F2

F3

F4

F5

host

Dice

0.2

0.4

0.6

0.8

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Dice ***

***
*** ***

local Relay
episode1 episode2 episode3

0.0

0.2

0.4

0.6

0.8

1.0

Dice

sequential Relay

***

ns ns
ns

*** ***

1 2 3 4
0.4

0.5

0.6

0.7

0.8

Dice

sequential

Relay
episode2
episode1

episode3

central

host

c local vs. Relay

k

d sequential vs. Relaye chronology analysis

lsequential Relay Learning m

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Dice ***

***
*** ***

local Relay
episode1 episode2 episode3

0.0

0.2

0.4

0.6

0.8

1.0
Dice

***

ns ***
**

*** ***

Sequential Relay 1 2 3 4

0.1

0.3

0.5

0.7

Dice

sequential

Relay
episode2
episode1

episode3

central

host

in
te

rn
al

 te
st

 s
et

s
ex

te
rn

al
 te

st
 s

et

g h i

fother multi-site solutions

j

central

Fig. 2 Relay Learning segments retina fundus structures. We compared Relay Learning to local learning, Federated Learning, Swarm
Learning, central learning, and a sequential fine-tuning strategy. a Four internal institutions (F1-F4) and one external institution (F5) were
incorporated, including 1709 retina fundus images. b Sequential and Relay Learning were evaluated in three episodes, including a forward, a
backward, and a random order. If not specified, we show the result in the main episode. We show analysis on the internal and external test
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Centerline: median; dotted lines: 1st and 3rd quartiles; dot spots: images in F-test. d, h Comparison of Federated Learning, Swarm Learning,
central learning, and Relay Learning. e, i Comparison of sequential learning and Relay Learning in three episodes. f, j Chronology analysis of
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P ≥ 0.05; ⋆P < 0.05; ⋆⋆P < 0.01; ⋆⋆⋆P < 0.001. Please refer to the “Methods” section for statistical details.
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12,281 2D head CT images in total and was held inside each site
locally, therefore no central model was trained. The brain midline
is a line-shaped target, which differs from other common
biomedical structures and lesions. To measure the distance

between the predicted midline and the ground truth, we used
Hausdorff Distance (HD) on each slice as our metric (lower is
better). In this use case, we deployed Relay Learning to real-world
clinical usage for identifying biological structures.
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Fig. 3 Relay Learning segments mediastinum tumors. We compared Relay Learning to local learning, Federated Learning, Swarm Learning,
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We used the Relay Learning framework to train a segmentation
model to locate brain midlines on our multi-site Brain Midline
dataset. The model was sequentially updated and transported
across the five institutions using portable storage devices. The
trained model was finally delivered to the three external sites for
testing. The performance was calculated in each site with its own
test data.
In Fig. 4c, local learning failed to predict reasonable brain midlines

in numerous samples (4, 28, 2, 16, and 2 failure samples for the five
local models respectively on internal test sets), while the perfor-
mance of Relay Learning was better with fewer failures (0 in internal
and 1 in external test sets). Relay Learning achieved HD scores of
1.819 (1.678–1.960, 95% CI) and 3.090 (2.821–3.358) on internal and
external test sets in the main episode, which were better than local
learning by 40.2% and 41.9% respectively. Relay Learning also
overtook sequential learning by a large margin (22.1% and 25.4% on
internal and external test sets). As Fig. 4e and h show, Relay Learning
rapidly outperformed sequential learning at the 3rd host. Detailed
metrics on each test set of the five internal hosts (Fig. 4i, j) indicate
that sequential learning and Relay Learning performed well on the
specific test set right after being trained on that host (see in
diagonal). However, sequential learning dropped quickly in the
following hosts, while Relay Learning showed a smaller performance
drop. Besides, Relay Learning outperformed sequential learning on all
three external test sets. Qualitative results (Fig. 4k) show that the
sequential model often generated irrelevant (M2, M4, and M6) and
interrupted (M1, M3, M6, and M8) lines, while Relay Learning
extracted similar midlines as the ground truth. This result
demonstrates in actual clinical systems, Relay Learning performs
consistently well. Detailed results and P-values are shown in
Supplementary Tables 5, 6, and 7.

DISCUSSION
To the best of our knowledge, Relay Learning is the first physically
secure multi-site deep learning framework capable of making full
use of multi-site medical data without any physical connections
between the data sites and the Internet. This physical security
makes medical institutions, hospitals, and other organizations get
controllable data sovereignty and confidentiality to fully contest
malicious entities. In the meantime, it makes the modern deep
learning models benefit from multi-site training and thus achieve
similar performance to central learning with physical data
aggregation. Specifically, the relay system learns to model the
continuous data distribution locally and externally re-samples
from that distribution to get virtual individuals different from any
real identities in all the hosts, thus containing no personal
information and protecting data privacy. Although it does not
store any actual data, the relay system is significant in multi-site
learning because the learned data distribution of different hosts
can largely help to train the model to achieve high robustness and
generalization ability. In real-world applications, data often follows
diverse patterns across clinical sites due to diverse image-
acquiring conditions, by learning the data distribution rather than
keeping the original samples, our relay system keeps data security
and privacy in a de-connection manner and still fully benefits from
the multi-site data.
Relay Learning draws lessons from recent advances in deep

learning. Aiming at modeling the data distribution, generative
adversarial network (GAN)23 has shown great potential in various
tasks24–26. Its generative modeling is domain-specific and identity-
free, which inspires us to use it in clinical data sharing in a privacy-
safeguarded manner27–29. We managed to improve current
advanced GANs to a DoubleGAN-based relay system, which is
suitable for pixel-wise tasks, and addressed a sharp transition
problem in Relay Learning (see the “Methods” section for details).
The sequential training procedure also appears in continual
learning21. However, many well-performed continual learning

methods store a partial dataset for future tasks, which directly
violets the privacy requirement in clinical settings30,31. In addition,
most of them are assessed in tasks such as image classifica-
tion32,33, and are still immature in challenging clinical tasks, like
pixel-level lesion segmentation (see Supplementary Results
section and Supplementary Fig. 3 for a comparison). Relay
Learning leverages a pixel-level generative relay system to
completely model data distribution, enhancing its ability to
handle complex segmentation tasks.
In the era of AI-aided precision medicine and medical big data,

Relay Learning focuses on physically secure learning in multi-site
data utilization, compared to some relevant multi-site approaches.
In Federated Learning or Swarm Learning, the model parameters
rather than the data are exchanged frequently during the model
training. Even though this strategy does not leak the data, as the
data is also accessible by the model during the training, there is a
risk of data leaking by directly attacking the model through the
internet or by inversion attacks which can recover personal
statistics through parameter gradients34,35. This could damage
data confidentiality and increase distrust among participants.
Besides, the frequent online transmission and the synchronous
training strategy increase the cost of multi-site cooperation. Relay
Learning introduces a completely de-connection method, where
clinical data are physically disconnected from the network. Relay
Learning also fixed extra issues in these methods: Federated
Learning brings a central node which may cause data monopolies;
Swarm Learning implicates edge computing with the exponential
increase in computation complexity when adding new nodes.
There are several limitations of this study. First, the introduction

of DoubleGAN increases computational time. This is a drawback of
such an asynchronous sequential method compared to synchro-
nous Federated and Swarm Learning, though Relay Learning can
ensure physical security and minimize communication costs. We
managed to reduce the training time with an efficient model
design. In the Relay Learning pipeline, except for the first host, the
training of DoubleGAN in subsequent hosts is a finetuning
procedure, which can reduce the convergence time largely.
Besides, The training trajectory of Relay Learning is sequential,
which brings advantages such as the linear computation increment
and the flexibility for new host engagement. The evaluation result
also shows that the performance of Relay Learning was relatively
consistent in different host orders. However, the hosts are treated
differently in theory due to the sequential procedure, which may
affect fairness in some particular applications. We can partially fix
this issue by ensembling models trained with multiple host orders
or designing the training topology/order according to conditions
and objectives in different applications.
Cross-site and international sharing of medical data are essential

for modern healthcare, especially for rare diseases36. However, the
strict privacy provision and ethics certification limit direct data
transfer and remote access. Instead of data or parameter online
sharing that may encompass the message of personal information,
we suggest reusing and sharing depersonalized knowledge offline
in AI models. We anticipate that the deployment of Relay Learning
would help to encourage innovation of AI-aided solutions in
medicine, respect human rights in AI systems, promote healthcare
resource-sharing, improve the fairness of data governance, and
revolutionize the collaboration of clinical sites, groups of hospitals,
and international organizations in biomedical and healthcare
research, especially in this turbulent global condition with regional
disputes and other international threats.

METHODS
Datasets
We used three multi-site datasets in the evaluation of Relay
Learning, including the Retina Fundus dataset, Mediastinum
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Tumor dataset, and Brain Midline dataset. The samples in the Brain
Midline dataset were held inside each clinical site, while samples
in the other two datasets were gathered to simulate the multi-site
learning.

Retina Fundus dataset (F1-F5). The public Retina Fundus dataset
were split into five hosts – Drishti-GS (F1)15, RIM-ONE-r3 (F2)16,
REFUGE train (F3)17, REFUGE test (F4)17, and ORIGA-light (F5)18.
Due to different imaging conditions, the data from each clinical
host shows varying distributions. The five hosts contain 101, 159,
400, 400, and 649 fundus images respectively. We followed the
data split strategy in previous work for the four internal sets37:
samples in F1 and F2 were split into training and test sets as the
original providers, which are 50+ 51 for F1 and 99+ 60 for F2,
while samples in F3 and F4 were randomly partitioned at a ratio of
4:1, which are both 320+ 80. Samples in F5 were all used for
external test. We preprocessed the fundus images similarly to a
previous work38. The original images and the corresponding OC/
OD annotations were center-cropped to the disc region uniformly
at a resolution of 800 × 800. The cropped images and annotations
were then resized to 64 × 64 before being fed into the deep neural
network. The RGB input images were normalized uniformly to the
range [−1, 1], and the annotation maps were considered as three-
class segmentation masks. More details are shown in Supplemen-
tary Table 1.

Mediastinum tumor dataset (T1–T8). We collected a Mediastinum
tumor dataset consisting of chest CT images from eight different
institutions, including The First Affiliated Hospital of Guangzhou
Medical University (T1), The People’s Hospital of Gaozhou (T2),
Sichuan Cancer Hospital and Institute (T3), Zhongshan People’s
Hospital (T4), Affiliated Cancer Hospital and Institute of Guangz-
hou Medical University (T5), The First Affiliated Hospital of Xi’an
Jiaotong University (T6), The Fourth Hospital of China Medical
University (T7), and Shanghai Chest Hospital (T8). This dataset is a
part of CAIMEN39. Each institution conducted a retrospective
search from the local picture archiving and communication
system (PACS) database for all the plain lung CT scans from Jan.
1st, 2010 to Oct. 31st, 2020 whose report includes at least one of
the following terms: “mediastinal nodule", “mediastinal lesion",
“mediastinal neoplasm", and “mediastinal mass". The data from
different sites share the same inclusion period that reflects the
natural prevalence of specific diseases. Five (T1–T5) of the eight
hosts were used for internal training and testing, and the other
three (T6–T8) hosts were only used for the external test. At each
site, six board-certified radiologists were involved to annotate the
segmentation masks for the mediastinal neoplasms. We used a
learning-based method (DenseNet12140) to crop the lung area
from the original 3D images while keeping the aspect ratio of
every 2D slice which is 512 × 512. The image slices were then
resized to 128 × 128 and normalized to [−1, 1] from Hounsfield
units (HU) between −160 and 240. Finally, a total of 27,048 2D
image slices from 575 series were used in this dataset, which is all
plain CT images. The samples in each internal host were split
randomly and subject-wise into training (80%) and test sets (20%),
while all the samples in external hosts contributed to test sets.
More details are shown in Supplementary Table 1.

Brain Midline dataset (M1-M8). The Brain Midline dataset was
built from eight clinical institutions—The 924th Hospital of
Chinese PLA Joint Logistics Support Force (M1), Langfang TCM
Hospital (M2), The 908th Hospital of Chinese PLA Joint Logistics
Support Force (M3), Sinopharm Gezhouba Central Hospital (M4),
Chinese PLA General Hospital (M5), The 921st Hospital of the Joint
Logistics Support Force of the Chinese People’s Liberation Army
(M6), The 927th Hospital of the Joint Logistics Support Force of the
Chinese People’s Liberation Army (M7), The 922nd Hospital of the
Joint Logistics Support Force of the Chinese People’s Liberation

Army (M8). At each site, all the brain CT scans captured in the
institution during a randomly selected period were collected to
build the dataset(M1: Jul. 4th, 2020 to Oct. 19th, 2020; M2: Jul.
17th, 2020 to Nov. 9th, 2020; M3: Feb. 28th, 2021 to May 5th, 2021;
M4: Feb. 19th, 2018 to Apr. 11th, 2018; M5: Mar. 3rd, 2019 to Apr.
28th, 2019; M6: Nov. 15th, 2020 to Jul. 21st, 2021; M7: Nov. 10th,
2020 to Apr. 29, 2021; M8: Nov. 5th, 2019 to May 29th, 2021). The
inclusion periods were random and different among sites to
mimic a popular clinical application that developed models are
updated gradually over a long time. The original head CT images
were 3D cubes, and only the 2D slices in the axial plane from the
top of the brain to the bottom of the temporal lobe were selected,
which contains the majority of the brain area that has a clear
midline. The data process, model training, and testing were
conducted inside each site. A total of 12,281 2D slices from 599
patients were selected. The 2D images were then normalized to
[−1, 1] from HU between −45 and 115. The original
512 × 512 slices were resized to 256 × 256, annotated by two
clinicians, reviewed by another experienced radiologist in each
site, and then resized again to 128 × 128 before training for a
better computation cost. Annotators marked the brain midline
with a polyline. Then the polyline result was transformed to a
segmentation mask using a line width of 10 pixels. The samples in
each internal institution were split randomly and subject-wise into
training (80%) and test sets (20%). More details are shown in
Supplementary Table 1.

Relay Learning framework
Relay Learning is a secure de-connection multi-site deep learning
framework compatible with various deep neural models for
different medical tasks. It benefits from large-scale data in
multiple data hosts, while still providing physical security to data
privacy. In each Relay Learning instance, the data fDigmi¼1 in hosts
fHigmi¼1, where m is the number of hosts, are processed in a
sequence. Only the deep model has the authority to access in and
out of each host without the requirement for simultaneous
connection via the Internet.
The pipeline shown in Fig. 5a is similar to the sequential

finetuning strategy. A model is trained on host H1, finetuned on
host H2, then H3... However, in sequential baseline, previous
knowledge is easily forgotten when finetuning on new hosts. The
core of Relay Learning is to facilitate the task model with a
DoubleGAN-based relay system that is capable to replay the
previous knowledge. DoubleGAN consists of two generative
adversarial networks (GAN), which model the images and labels
separately. The objective of DoubleGAN in Hi is to create virtual
heritage data Dh

1:::i�1 that shares the same distribution as
previously seen data D1:::i�1, and use this virtual data to keep
the previously learned knowledge in the new host. Data in Dh

1:::i�1
keeps the style and distribution of that in D1:::i�1, but samples are
all individually different, thus called the heritage data. Like a
sequential finetuning pipeline, the task model and DoubleGAN are
updated in each host and carried to the next host in a sequence
until the last host is enrolled. The implementation details of the
model and training settings can be seen in the Supplementary
Notes section.

DoubleGAN-based relay system
The key objective in Relay Learning is training the task model in
new hosts without forgetting the old knowledge learned in
previous hosts. However, the restriction of data privacy means
storing previous data directly is forbidden. With the rapid
development of advanced generative approaches that can form
the joint probability distribution of data, we found its ability in
creating synthetic data is useful in this situation. Therefore, we
propose a DoubleGAN-based relay system as the main component
of the Relay Learning framework. DoubleGAN comprises two
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GANs: InputGAN for input generation and LabelGAN for label
generation (Fig. 5b), e.g., input images and segmentation masks in
a medical image segmentation task. The aim of DoubleGAN in Hi

is to recall the knowledge in the training trajectory, generate the
heritage data Dh

1:::i�1, and utilize it together with the current data
Di to train the task model and DoubleGAN itself. The main
structures of InputGAN and LabelGAN are based on StyleGAN2-
ADA41: Each GAN has a mapping network MAPinput or MAPlabel that
transits the sampled noise zinput or zlabel from the standard
Gaussian distribution N to a style code winput or wlabel in a high-
dimensional style space, a generator Ginput or Glabel that generates
the task inputs according to the transformed style code winput or
wlabel, and a discriminator Dinput or Dlabel that judges whether the
generation is similar to the real data or not.
To better control DoubleGAN in this multi-site environment, we

use conditioning methods to improve its ability. The generated
heritage data is conditioned in two aspects: (1) the mapping
networks and discriminators are hard-coded with a Hid condition
that identifies various data distributions across hosts via class-
conditioning41, which enables DoubleGAN to generate data of
specific host; (2) Ginput is conditioned by the generation of Glabel

using SPADE42, which establishes the paired relationship between
the generated inputs and labels on the image level.

Two-stage strategy
In traditional sequential training or fine-tuning procedure, the pre-
trained model will be directly trained on new data. At first, our
relay system followed this pipeline as shown in Fig. 5a. However,
we found that there is a sharp transition problem for the training
of DoubleGAN in Relay Learning as shown in Fig. 5e. The
responsibility of discriminators in DoubleGAN is to tell whether

the results of generators are real data or fake data. At the
beginning of training on Hi , we use DoubleGANi−1 to generate
heritage data Dh

1:::i�1. This data contains the data distribution
information in previous sitesH1:::i�1. It will be used as real samples
together with the current data Di from Hi , to keep training
DoubleGANi−1. However, at the beginning of the training
procedure, the same data Dh

1:::i�1 is also the output of the
generator of DoubleGANi−1, which should be used as fake samples
to train the discriminator. This is a conflict and a sharp transition of
the expected judgment, which will destabilize the discriminator
training, and consequently influence the generators.
Therefore, we use a two-stage strategy in Hi to solve this

problem as shown in Fig. 5d. In the first stage, DoubleGANi−1 and
the task model are only trained on current data Di like a fine-
tuning routine, resulting in DoubleGANf

i , which is only capable to
generate Dh

i . Then, this fine-tuned model is weighted-merged
with the original DoubleGANi−1 as follows:

θDoubleGANmerged
i

¼ bi�1

bi�1 þ bi
θDoubleGANi�1 þ

bi
bi�1 þ bi

θDoubleGANf
i

(1)

where θ is the model parameter, bi is the number of samples in Di ,
and bi ¼

Pi
j¼1 bj . This parameter merging combines the ability in

DoubleGANi−1 and DoubleGANf
i . Then, the second stage is performed

using both Dh
1:::i�1 and Di to train DoubleGANmerged

i , finally resulting
in updated DoubleGANi. Similarly as DoubleGAN, the task model is
also trained using this two-stage strategy. This strategy is not applied
in H1 as the model is trained from scratch there.

Pseudo labels
In complicated medical tasks, e.g., pixel-wise lesion segmentation
tasks on medical images, the generated labels, i.e., lesion
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Fig. 5 Framework of Relay Learning. a Regular training pipeline of the relay system at each host. The model Mi−1 transported from hostHi�1
consists of two components: DoubleGANi−1 to memorize previous data distribution and TaskModeli−1 to perform specific tasks (medical image
segmentation here). At host Hi , these two components are trained by the real data Di from Hi and the heritage data Dh

1:::i�1 generated by
DoubleGANi−1. Then, these two updated components build the model Mi and are carried to the next host. b The structure of DoubleGAN,
which consists of InputGAN (upper half ) and LabelGAN (lower half ). Each GAN involves a mapping network MAP to project input noise to the
latent space ω, a generator G to generate images, and a discriminator D to judge whether the generated images are real or fake. We use host
identifier Hid as a condition in MAP and D, which instructs DoubleGAN to learn the data distribution of specific hosts. The InputGAN is also
conditioned by the generation of LabelGAN, which forces the paired generation to align. c The data D consists of both input and label images,
which can train the TaskModel. e There exists a sharp transition problem of DoubleGAN in the regular training pipeline in (a). In the begining of
training on hostHi , the generator of DoubleGANi−1 generates dataH1:::i�1 as real samples together with Di . However,H1:::i�1 is also considered
as the fake samples when training DoubleGANi−1 because it is the output of the generator. This is a conflict and may destabilize the training of
DoubleGANi−1. d Therefore, we use a two-stage training strategy to fix this problem. In stage 1, DoubleGANi−1 and TaskModeli−1 are only trained
on data Di . Then, we merge the fine-tuned models with the original models to build DoubleGANmerged

i and TaskModelmerged
i . In stage 2, the

normal training as that in (a) is conducted using both Di and Dh
1:::i�1. See the Methods section for details.

Z. Bo et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)   204 



segmentation masks, tend to model the real distribution of the
abnormalities in the human body, which may be markedly
unbalanced with numerous negative samples. In such cases, the
training of InputGAN that is conditioned on lesion masks may be
unstable. Therefore, we introduce pseudo labels applied to the
original labels that assist the LabelGAN to produce additional
information. Pseudo labels can be in various forms depending on
the characteristics of the task. In our mediastinum tumor and brain
midline experiments, we clip the input image according to HU
threshold ranges that differ the background and tissue in
segmentation tasks as the pseudo label.

Evaluation metrics and statistical analysis
Following the common practice in voxel-level medical image
tasks, we mainly used two evaluation metrics in the experiments,
Hausdorff Distance (HD) for the Brain Midline dataset and Dice
similarity coefficient (Dice) for Mediastinum Tumor and Retina
Fundus datasets. The calculation for Hausdorff Distance is:

HDðP; LÞ ¼ maxfmax
p2P

min
l2L

distðp; lÞ;max
l2L

min
p2P

distðl; pÞg (2)

where P and L are the boundary point sets in the prediction and
label masks, in which p and l are specific points. dist(x, y) computes
the Euclidean distance between two points x and y. To eliminate
the influence of outliers, we used 95% HD which is based on the
95th percentile in the computation of maximum and minimum
distances between P and L. The Dice score is computed as:

Dice ¼ 2TP
2TPþ FPþ FN

(3)

where TP, FP, and FN indicate true positive, false positive, and false
negative points between the prediction and the label masks.
The 95% CI of the mean metrics in all experiments was

estimated with all the values in each test experiment. Statistical
analysis in Fig. 2c, g, Fig. 3c, g, and Fig. 4c, f were tested using
ordinary ANOVA test and Holm-Šidák’s multiple comparisons test,
with a single pooled variance. Statistical analysis in Fig. 2d, h, and
Fig. 3d, h were tested using ordinary one-way ANOVA test and
Dunnett’s multiple comparisons test, with a single pooled
variance. Statistical analysis in Fig. 2e, i, Fig. 3e, i, and Fig. 4d, g
were tested using ordinary two-way ANOVA and Tukey’s multiple
comparisons test, with individual variances computed for each
comparison. No statistical methods were used to predetermine
the sample size. Measurements were tested on the same test sets
using different models in each experiment.

Human subject data
The study on the public Retina Fundus dataset follows the data
usage principle of the original provider. The study on the
Mediastinum Tumor dataset was approved by the Ethics
Committee of the National Center for Respiratory Medicine/The
First Affiliated Hospital of Guangzhou Medical University. The
study on the Brain Midline dataset was approved by the Ethics
Committee of Chinese PLA General Hospital/Chinese PLA Medical
School. Informed consent was waived for retrospectively collected
medical images, which were anonymized before data processing.

DATA AVAILABILITY
The whole public Retina Fundus dataset was released in previous research and can
be found at https://drive.google.com/file/d/1p33nsWQaiZMAgsruDoJLyatoq5XAH-
TH/viewand https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection. The
Mediastinum Tumor dataset can be accessed by contacting our first or corresponding
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