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Deep learning system improved detection efficacy of fetal
intracranial malformations in a randomized controlled trial
Meifang Lin 1, Qian Zhou 2, Ting Lei 1, Ning Shang 3, Qiao zheng 1, Xiaoqin He4, Nan Wang 5✉ and Hongning Xie 1✉

Congenital malformations of the central nervous system are among the most common major congenital malformations. Deep
learning systems have come to the fore in prenatal diagnosis of congenital malformation, but the impact of deep learning-assisted
detection of congenital intracranial malformations from fetal neurosonographic images has not been evaluated. Here we report a
three-way crossover, randomized control trial (Trial Registration: ChiCTR2100048233) that assesses the efficacy of a deep learning
system, the Prenatal Ultrasound Diagnosis Artificial Intelligence Conduct System (PAICS), in assisting fetal intracranial malformation
detection. A total of 709 fetal neurosonographic images/videos are read interactively by 36 sonologists of different expertise levels
in three reading modes: unassisted mode (without PAICS assistance), concurrent mode (using PAICS at the beginning of the
assessment) and second mode (using PAICS after a fully unaided interpretation). Aided by PAICS, the average accuracy of the
unassisted mode (73%) is increased by the concurrent mode (80%; P < 0.001) and the second mode (82%; P < 0.001).
Correspondingly, the AUC is increased from 0.85 to 0.89 and to 0.90, respectively (P < 0.001 for all). The median read time per data is
slightly increased in concurrent mode but substantially prolonged in the second mode, from 6 s to 7 s and to 11 s (P < 0.001 for all).
In conclusion, PAICS in both concurrent and second modes has the potential to improve sonologists’ performance in detecting fetal
intracranial malformations from neurosonographic data. PAICS is more efficient when used concurrently for all readers.
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INTRODUCTION
Artificial intelligence (AI), especially deep learning (DL), is
increasingly used in image medicine and health care1–4. Much
of the work about DL has focused on the retrospective evaluation
of model performance on ground-truth-labelled validation data-
sets, and few studies have gone a step forward to evaluate the
impact of DL assistance on sonologist diagnostic performance, let
alone explore the suitable assistant modes of DL in clinical
diagnosis5–8. In a recent study, we developed a DL system named
PAICS (the Prenatal ultrasound diagnosis Artificial Intelligence
Conduct System) that is capable of identifying 9 types of fetal
intracranial abnormalities and normal image patterns. The
performance of PAICS in off-line images and videos was
comparable to that of the experts and due to its high accuracy
and efficiency, the system could serve as a central nervous system
(CNS) malformation screening tool9. PAICS has received extensive
attention from medical professionals and was acclaimed as a
major advancement of AI in the obstetrical ultrasound field10. To
further develop the PAICS, we focused on the following questions:
first, can the PAICS be integrated into clinical practice with
efficacy? Second, what assisted method is more suitable when
PAICS is applied?
Two assistant reading modes are widely employed in radiology

in computer-aided detection (CAD): the concurrent mode and the
second mode11–15. In the concurrent mode, CAD is applied at the
start of the assessment, whereas in the second mode, CAD is
applied after a full, unassisted reading is completed by the reader.
Neither mode is perfect. For example, the concurrent application

of CAD may reduce readers’ vigilance and sensitivity16, while the
second mode is very time-consuming.
In the present study, a multi-reader and crossover randomized

controlled trial (RCT) test was performed in which 36 sonologists
are recruited to read fetal neurosonographic images/videos
without PAICS assistance and with PAICS in two aided modes.
We aim to evaluate the efficacy of PAICS in assisting fetal
intracranial malformation diagnosis and compares the auxiliary
diagnosis methods for the system.
Our work demonstrates that the two image/video reading

modes powered by the PAICS deep learning system can
significantly increase the accuracy of the classification of CNS
malformation. The system shows great potential in improving the
performance of sonologists in detecting fetal intracranial
malformations.

RESULTS
The constitution of fetal neurosonographic images/videos in
the reading test
During the research period, 734 fetuses with abnormal intracranial
findings and 19,709 normal fetuses were scanned, among which
254 fetuses with abnormal findings and 19,631 normal fetuses
were excluded because the images were either unqualified or
redundant. Finally, a total of 709 original images/videos (549
images, 160 videos) from 558 fetuses met the inclusion criteria
and were included (Table 1, Fig. 1 and Supplementary Table 1).
According to the trial design, the sum of the sample size
expanded from 709 to 25,524 after being read by 36 sonologists
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with three reading modes, corresponding to 8508 images/videos
per reading mode. The eligible neurosonographic data were
randomly grouped into three datasets, where the distribution of
ten types of patterns did not differ among the three datasets both
in image sets (Chi-squared test, P= 1.000) and in video sets
(Fisher’s Exact Test, P= 0.991), and there were no significant
differences in the baseline characteristics among the three datasets.

Improvements in the sonologist’s performance by PAICS
When assisted with PAICS both in concurrent mode and in second
mode, the average ACC of all sonologists was increased from 0.73
(95% CI: 0.72, 0.74) in unassisted mode to 0.80 (95% CI: 0.80, 0.81;
Chi-square test, P < 0.001) in concurrent mode and to 0.82 (95% CI:
0.81, 0.83, Chi-square test, P < 0.001) in second mode, yielding
increments of 0.08 (95% CI: 0.06, 0.09) and 0.09 (95% CI: 0.08, 0.11)

Table 1. The constitution of neurosonographic images/videos included in the test.

Patterns Fetuses Number of images and videos by datasets Number of images and videos read by 36
sonologists

Dataset 1
(images/videos)

Dataset 2
(images/videos)

Dataset 3
(images/ videos)

Unassisted
mode

Concurrent
mode

Second
mode

Nonvisualization of CSP 84 33 (25/8) 36 (25/11) 35 (25/10) 1248 1248 1248

Nonvisualization of SP 47 25 (15/10) 20 (14/6) 21 (14/7) 792 792 792

Crescent-shaped single
ventricle

59 20 (19/1) 21 (20/1) 21 (20/1) 744 744 744

Mild VM 40 19 (14/5) 21 (15/6) 23 (15/8) 756 756 756

Severe VM 70 27 (24/3) 25 (22/3) 23 (20/3) 900 900 900

Nonintraventricular cyst 25 17 (12/5) 15 (12/3) 14 (12/2) 552 552 552

Intraventricular cyst 48 20 (16/4) 22 (15/7) 22 (14/8) 768 768 768

Open fourth ventricle 49 18 (15/3) 17 (15/2) 18 (16/2) 636 636 636

Megacisterna magna 58 27 (22/5) 28 (23/5) 22 (20/2) 924 924 924

Normal 78 33 (23/10) 33 (24/9) 33 (23/10) 1188 1188 1188

Total 558 239 (185/54) 238 (185/53) 232 (179/53) 8508 8508 8508

The number of datasets for each reading mode is 12 times the original data. CSP Cavum septi pellucidi, SP Septum pellucidum, VM Ventriculomegaly.

Fig. 1 Flowchart of patient selection and randomization for the reading study. A total of 709 original images/videos (549 images, 160
videos) met the inclusion criteria and were eventually included in the study. Eligible neurosonographic data were randomly grouped into
three datasets and read interactively by three groups of readers in three reading modes.
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for concurrent and second assistance modes, respectively.
Correspondingly, the sensitivity was increased from 0.74 (95%
CI: 0.44, 1.00) to 0.81 (95% CI: 0.57, 1.00) and to 0.83 (95% CI: 0.60,
1.00) when assessed by macroaverage and from 0.73 (95% CI: 0.72,
0.74) to 0.81 (95% CI: 0.80, 0.81) and to 0.82 (95% CI: 0.81, 0.83)
when assessed by microaverage (Paired t-test for macro- and Chi-
square test for microaverage sensitivity, all P < 0.001). The AUCs
improved from 0.85 to 0.89 and to 0.90 when assessed with
macroaverage and microaverage, respectively (Paired t test for
macro- and Delong’s test for microaverage AUC, all P < 0.001)
(Tables 2, 3, Fig. 2).
Among the ten image patterns, the performance on 8 patterns

(except for megacisterna magna [Delong’s test, P= 0.770] and
open fourth ventricle [Delong’s test, P= 0.030) in concurrent
mode and all patterns in the second mode were improved
compared with that of the unassisted mode in terms of AUC
(Delong’s test, P < 0.010) (Table 4, Fig. 2).
Further comparison between the performance of the concur-

rent and the second reading modes (Tables 2, 3, Fig. 2) showed a
2% improvement in average ACC and approximately 1% incre-
ments in macro- and microaverage AUCs in the second reading
mode. However, these differences did not reach the 3% target in
our study design. Additionally, we compared the performance
before assistance in the second reading mode with that of the
unassisted mode (Table 3, Fig. 2), and no significant difference was
found in terms of macro- and micro AUCs (Paired t-test for macro-
and Delong’s test for microaverage AUC, P= 0.520, P= 0.800,
respectively).

The performance was improved by PAICS for sonologists of all
three levels of expertise
The performance of experts, competent sonologists, and trainees
were improved when assisted by PAICS both as a concurrent
reader and as a second reader (Table 2, Fig. 3 and Supplementary
Tables 2, 3), manifested in the improvements of average ACC and
macro- and micro AUCs comparisons (Delong’s test P < 0.0167).
When we compared the performance between the two DL-aided
modes, it was found that neither mode showed significant
advantages to the other mode for these three levels of
sonologists, with all of the average ACC differences less than 3%
(Table 2).

The time comparison between three reading modes
Compared with the median per-image reading time of 6 s in
unassisted mode (IQR: [4, 15]), a slight increment in concurrent
mode was observed (median (IQR): 7 [4, 16] seconds, Wilcoxon
rank sum test, P < 0.001), whereas the time was significantly
prolonged in second mode (median (IQR): 11 [7, 22] seconds,
Wilcoxon rank sum test, P < 0.001). The time comparisons for
sonologists with different levels of expertise were consistent
with those of the average sonologists (Fig. 4 and Supplementary
Table 4).

Questionnaire on sonologists’ subjective evaluation of the
efficacy of PAICS
The results indicated that all readers regarded PAICS as helpful in
assisting the diagnosis, and the extent varied with scores ranging
from 50 to 100 (50 [n= 1], 60 [n= 2], 70 [n= 13], 80 [n= 17], 90
[n= 2], and 100 [n= 1]), resulting in a median score of 80 [IQR:
70–80]. A total of 91.7% (n= 33) credited the benefit of PAICS
assistance to lesion localization, and 77.8% (n= 28) attributed the
benefit to the diagnosis that PAICS made, among which 69%
(n= 25) ascribed it to both. For the preference modes, 61%
(n= 22) favoured the concurrent mode, and 39% (n= 14)
preferred the second mode (McNemar’s test, P= 0.182). As shown
in Supplementary Table 5, there was no significant difference in

the preferred modes between sonologists of the three levels (Chi-
square test, P > 0.05 for all).

DISCUSSION
Before the application of AI in clinical practice, rigorous
randomized controlled trials (RCTs), as the gold standard design,
were important to prove the effectiveness of AI-aided diagno-
sis17–21. RCTs involving DL-assisted diagnosis were sparse and
mostly limited to colonoscopy diagnosis5,6,21. The present research
is the preliminary RCT evaluation of the efficacy of DL in obstetrics
with respect to the diagnosis of congenital malformations. The
PAICS is proven to be valuable in assisting sonologists in
recognizing abnormal fetal intracranial patterns, achieving
improvements of 8% and 9% in average ACC when using
concurrent and second modes, respectively. Concurrent reading
and second reading are usually utilized in CAD-assisted reading in
other fields, such as breast cancer diagnosis on automated breast
US11,13, polyp detection in CT colonography14,15, and lung nodule
identification on multidetector CT12. This is the first implementa-
tion in obstetric AI assistant scenarios. In the current study, when
compared to the unassisted mode, the performance of mega-
cisterna magna and open fourth ventricle diagnosis showed no
significant difference with concurrent modes, whereas the second
reading mode did; the value of ACC of the concurrent mode was
slightly lower than that of the second mode. However, the
difference (2%) did not reach the preset value (3%). Therefore, our
study indicated there was no significant difference between the
accuracies of these two modes, which was consistent with other
studies11,12. Notably, the concurrent mode took much less time
than the second mode and thus was considered more
efficient11,12. Therefore, through this well-designed RCT reading
test, balancing between performance and time consumption, we
regarded concurrent mode as a more efficient assisted mode and
will be more suitable to use in obstetric ultrasound, which opens
more ways for clinical application of DL.
The improvements by PAICS assistance might be ascribed to the

localization of the lesion and the final diagnosis that PAICS
provided. As shown in the questionnaire of readers’ subjective
evaluations, 91.7% (n= 33) credited the benefit of PAICS
assistance to lesion localization, and 77.8% (n= 28) attributed it
to the diagnosis that PAICS made. Malformations of the CNS are
among the most common major congenital malformations22. The
incidence of craniocerebral anomalies was estimated to be 9.8/
10000 births in Europe23. Given an estimated 17.8% annual rate of
childbirth in a total of 7,921,784,993 world population24, many
craniocerebral anomalies can be detected prenatally with the
assistance of DL, enabling earlier intervention and appropriate
management. The social cost-effectiveness is apparent.
The quality of clinical trials is very crucial. Although there have

been an increasing number of RCTs to evaluate the efficacy of AI
in interventions in the last two years, the quality of 2/3 of these
existing trials has tended to be suboptimal in terms of the
referenced CONSORT statement, sample size pre-estimation,
randomization, and masking25. The current study strictly followed
the principles of a qualified RCT. Our data were randomly
distributed into three datasets; the sonologists were allocated to
one specific type of test based on random sequence generation;
all the sonologists were blinded to the videos/images, and the
recruited sample size of the datasets in this study satisfied the pre-
estimation. Moreover, the three-way crossover test design avoided
the potential pitfall of giving an advantage to specific reading
mode, dataset and expertise levels, thus perfecting comparability
without confounding effects21. In terms of the sample size of the
study, we included 709 images/videos and involved 36 sonologists
which resulted in 25,524 independent data for final analysis. Of
note, as an intervention trial, sonologists played a very important
role in the comparisons of three reading modes for the study.
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Although the number of fetuses/images/videos was not large, we
made a balance between the number of fetuses/images/videos
and the number of sonologists to complete the study. These
36 sonologists were randomized into three reading modes
stratified by their expertise and then made to cross over and
read all the images/videos. Hence, the large number of sonologists
and the randomized crossover design reduced potential bias by
readers among the study groups, making the groups comparable
and enabling subgroup analyses.
Nonetheless, there are some limitations. First, unlike in real

clinical environments, where the positive-to-negative ratio is often
unbalanced, the proportions of the data with anomalies were
larger, as we emphasized congenital malformation detection, and
normal cases were randomly selected to maintain balance with the
other nine types of abnormalities. Therefore, the effectiveness
might not be the same as when used in a clinical setting. As many
more normal cases were randomly excluded, selection bias might
have been caused which could affect AI diagnosis and therefore
the efficacy of AI in assisting normal cases recognition. Specifically,
we assume that it might lead to a higher false positive rate in real-
time practice, and the average accuracy of AI assistance may be
affected; we will continue to explore this in future real-time clinical
research involving a large proportion of the consecutive normal
population. Second, as the incidence of congenital intracranial
malformations is very low, we have made great efforts to enable
the study completed to verify the effects of different AI assistance
reading modes. While investigating ten different patterns, the
actual number of images/videos is not large as each pattern only

had an average amount of data around 70, with the lowest being
53. This limited number may not fully represent all the various
characteristics or severity of the lesion, which could potentially
decrease accuracy in recognizing each pattern. We hope that in the
future our model and reading patterns can be verified in larger and
more realistic clinical scenarios. Third, due to the diversity of
algorithms and settings, PAICS might only represent some of the
DL that will emerge in the future for the assistance of congenital
malformation diagnosis. The effectiveness and suitable assistance
mode must be evaluated for individual platforms. Last, even
though PAICS can detect most of the fetal intracranial malforma-
tions encountered on a prenatal ultrasound screening scan9,26,
there are still some relatively rare malformations not being
included in PAICS training, and the efficacy of PAICS in assisting
those rare diseases has not yet been investigated.
In conclusion, our trial indicated that PAICS may improve

sonologists’ performance in detecting fetal intracranial malforma-
tion from neurosonographic data both in concurrent and in
second modes. PAICS was more efficient when used concurrently
for all readers. Further research is warranted in real clinical settings
involving a larger sample size to investigate the assisted efficacy
of PAICS in detecting congenital intracranial malformations.

METHOD AND MATERIALS
Study design and data collection
This was a multireader, three-way crossover, randomized con-
trolled trial with 36 sonologists from multiple centres by using

Fig. 2 Sonologists performance in recognizing ten fetal neurosonographic image patterns with three reading modes. Confusion matrix of
unassisted mode (a); concurrent mode (b); second mode (c); second mode (1), the performance before AI assistance in second mode reading
(d); Macroaverage AUCs of the three reading modes (e); Microaverage AUCs of the three reading modes (f). When assisted with PAICS in both
concurrent mode and second mode, performance improved significantly, and performance in unassisted mode showed no difference from
that in second mode (1). CSP Cavum septi pellucidi, SP Septum pellucidum, VM Ventriculomegaly.
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clinical routine collected images and videos (Fig. 1). It was
approved by the Institutional Review Board of First Affiliated
Hospital of Sun Yat-sen University (2019421) and performed
according to the Helsinki declaration. All participants provided
written informed consent. The study of the clinical efficacy of deep
learning artificial intelligence in detecting fetal intracranial
malformations in ultrasonography was registered in http://
www.chictr.org.cn on 5 July 2021 (Trial Registration:
ChiCTR2100048233).
Fetal neurosonographic images and videos with normal or

abnormal intracranial findings were collected consecutively from
The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU)
and Women and Children’s Hospital affiliated with Xiamen
University (WCHXU) during the period from 01 January 2021 to
01 December 2022. All the images and videos met the following
criteria: (1) neurosonographic data that were acquired by experts
who had more than 10 years of experience in fetal anatomy scans;
(2) neurosonographic data included at least one of the three
reference screening planes, acquired according to the guide-
lines22,27,28; and (3) image with an integrated skull, properly
magnified, without any obvious acoustic shadow and measure-
ment calliper overlaying. Those data, such as colour Doppler
ultrasound data or data that did not satisfy the inclusion criteria,
were all excluded. Each data underwent quality control before the
test, which was conducted by two senior sonologists (M.L. and
H.X. with over 15 years of experience) and was included only when
these two experts reached a consensus.
Abnormal intracranial findings in the reference screening planes

were categorized into nine different patterns according to the
textbook of ultrasonographic of the prenatal brain and the ISUOG
Practice Guidelines22,27,28: (1) nonvisualization of the cavum septi
pellucidi (CSP); (2) nonvisualization of the septum pellucidum (SP);
(3) crescent-shaped single ventricle; (4) mild ventriculomegaly
(VM); (5) severe VM; (6) nonintraventricular cyst; (7) intraventricular
cyst; (8) open fourth ventricle; and (9) megacisterna magna.

Thus, counting the normal pattern as well, 10 types of different
patterns were included. The prenatal sonographic diagnoses of all
the images and videos were confirmed by either prenatal or
postnatal magnetic resonance imaging (MRI), follow-up ultra-
sound examination or autopsy. Ultrasound examinations were
performed using machines from six different manufacturers (GE
Voluson 730 Expert/E6/E8/E10 (GEHealthcare, Zipf, Austria),
Samsung UGEO WS80A (Samsung Medison, Seoul, Korea), Philips
IU22 (PhilipsHealthcare, Bothell, WA, USA).

Randomization and crossover design
As shown in Fig. 1, the eligible neurosonographic images/videos
were randomly grouped into three datasets (dataset 1, dataset 2,
and dataset 3), where the nine types of malformation and normal
patterns had balanced proportions in each dataset. These datasets
were interactively read by three groups of sonologists in three
reading modes (unassisted mode, concurrent mode, and second
mode). The orders of the three datasets and the three reading
modes were crossover designs and thus constituted three types of
tests (Fig. 1).
Thirty-six sonologists with three different levels of expertise

from 32 different hospitals across the nation took part in the
reading tests. They were randomly classified into three groups by
expertise (n= 12 for each group) and were randomly assigned to
one type of test with the random allocation sequence generated
with a computer random number generator conducted by the
research assistant. The sequence was concealed until the test
began. The expert group included professors with more than 10
years of experience; the competent sonologist group included
attending sonologists with 5–10 years of experience; and the
trainee group included residents with 2–4 years of fetal
experience in fetal anatomy scans. Sonologists in the three groups
had performed at least 10000, 5000, and 1000 fetal ultrasound
examinations, respectively. All sonologists were blinded to the
diagnoses and had not reviewed these images/videos before.

Table 4. Comparison of AUCs in the recognition of ten fetal neurosonographic image patterns between three assisted modes.

AUC of ten patterns
recognition

Unassisted
mode

Concurrent
mode

Second mode Second
mode (1)

P values of multiple comparisons

Concurrent vs.
Unassisted

Second vs.
Unassisted

Concurrent vs.
Second

Second (1) vs.
Unassisted

Nonvisualization of
CSP

0.68
(0.67, 0.69)

0.77
(0.76, 0.78)

0.78
(0.77, 0.80)

0.69
(0.68, 0.71)

< 0.001 < 0.001 0.175 0.229

Nonvisualization of SP 0.84
(0.82, 0.85)

0.90
(0.88, 0.91)

0.92
(0.90, 0.93)

0.87
(0.85, 0.88)

< 0.001 < 0.001 0.066 0.015

Crescent-shaped
single ventricle

0.91
(0.89, 0.92)

0.95
(0.94, 0.96)

0.95
(0.94, 0.96)

0.90
(0.88, 0.91)

< 0.001 < 0.001 0.669 0.304

Mild VM 0.81
(0.80, 0.83)

0.86
(0.85, 0.88)

0.87
(0.86, 0.88)

0.80
(0.78, 0.82)

< 0.001 < 0.001 0.379 0.360

Severe VM 0.85
(0.83, 0.86)

0.89
(0.88, 0.91)

0.90
(0.89, 0.91)

0.85
(0.83, 0.86)

< 0.001 < 0.001 0.599 0.749

Nonintraventricular
cyst

0.80
(0.78, 0.82)

0.84
(0.81, 0.86)

0.84
(0.82, 0.86)

0.79
(0.77, 0.81)

0.005 0.005 0.988 0.622

Intraventricular cyst 0.91
(0.89, 0.92)

0.93
(0.92, 0.94)

0.94
(0.93, 0.96)

0.90
(0.88, 0.91)

0.008 < 0.001 0.257 0.383

Open fourth ventricle 0.93
(0.92, 0.95)

0.95
(0.94, 0.96)

0.96
(0.95, 0.97)

0.94
(0.93, 0.95)

0.030 0.004 0.507 0.483

Megacisterna magna 0.91
(0.89, 0.92)

0.91
(0.90, 0.92)

0.94
(0.93, 0.95)

0.90
(0.89, 0.91)

0.770 < 0.001 0.001 0.661

Normal 0.92
(0.91, 0.93)

0.94
(0.94, 0.95)

0.95
(0.94, 0.96)

0.92
(0.92, 0.93)

< 0.001 < 0.001 0.371 0.301

CSP Cavum septi pellucidi, SP Septum pellucidum, VM Ventriculomegaly; second mode (1), the results before AI assistance in second reading mode. AUCs
between each two groups were compared by Delong’s test. Multiple comparisons were corrected by Bonferroni method.
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Fig. 3 The performance of sonologists of three expertise levels in recognizing ten fetal neurosonographic image patterns with three
reading modes. Macroaverage and microaverage AUCs for training (a, b); for competent sonologists (c, d); for experts (e, f). When supported
with PAICS in both concurrent mode and second mode, performance improved significantly for all three levels of sonologists.
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To avoid carry-over effect or contamination, all datasets were
presented to sonologists in random order, and orders were
different for every reader.

The computer program designed to perform the test
Specifically, for this reading test, we designed a program that
could display the images/videos, along with the ten pattern
options, on a personal computer screen (see Supplementary
Movie 1). The applets inserted in this program also allowed offline
diameter measurements. Therefore, after reviewing the images/
videos, the reader selected one of the corresponding patterns.
Simultaneously, the program automatically recorded the answers
and the reading time for each data point. The display settings for
these three reading modes were different: there was no AI
reference in the unassisted mode, whereas in the concurrent
mode, the images/videos with AI diagnosis were shown in parallel
with the original data at the beginning of the reading; in the
second mode, after reading the original images/video and making
a diagnosis, the reader clicked the “next” button to view the same
data with AI diagnosis and make the final diagnosis. Therefore, in
the second reading mode, there were two sets of answers for each
data point, the answers before and after the AI assistance. Before
implementation, all sonologists received full training on the usage
of the software and only when they were qualified to use AI could
they participate in the test. The PAICS was built based on a real-
time convolutional neural network (CNN) algorithm, You Only
Look Once, version 3 (YOLOv3). Neurosonographic images
(n= 43078) from normal fetuses (n= 13400) and fetuses with
CNS malformations (n= 2448) at 18–40 gestational weeks were
retrieved from the databases of two tertiary hospitals in China and
randomly assigned (ratio, 8:1:1) to training, fine-tuning and
internal validation datasets to develop and internally evaluate
the PAICS. An image dataset (n= 812) from a third tertiary
hospital was used to further externally validate the performance of
the PAICS and to compare its performance with that of sonologists
with different levels of expertise. The macroaverage AUC and

microaverage AUC of internal validation were 0.933 (0.798–1.000)
and 0.977 (0.97–0.985), respectively, and the corresponding values
were 0.902 (0.816–0.989) and 0.898 (0.885–0.911) for external
validation, all being comparable to those of expert sonologists (0.9
[0.778–0.99], P= 0.891; 0.9 [0.893–0.907], P= 0.788). The macro-
and microaverage sensitivities of PAICS were 0.876 (0.596–0.999)
and 0.959 (0.941–0.973), and the macro- and microaverage
specificities were 0.99 (0.95–1.000) and 0.995 (0.993–0.997) for
internal validation; the macro- and microaverage sensitivities were
0.826 (0.624–1.000) and 0.817 (0.788–0.843), and the macro- and
microaverage specificities were 0.98 (0.926–1.000) and 0.98
(0.976–0.983) for external validation, respectively15.

Questionnaire on subjective evaluation of the effectiveness of
PAICS
At the end of the test, the sonologists completed a questionnaire
on their subjective evaluation of the effectiveness of the PAICS
that included several questions about whether the PAICS helped
identify the ten patterns in neurosonographic data. If the answer
was yes, then consideration of each of the following three
questions was required: 1. the subjective value on the extent of
PAICS assistance was appraised with scores from 10 to 100; 2. the
benefit of PAICS assistance was owed to (1) providing the
diagnosis or (2) the segments localizing the lesions; and 3. which
assistant modes was preferred: (1) concurrent mode, (2) second
mode. Alternatively, if the sonologists regarded that AI did not
help, then they answered each of the following three considera-
tions with one of three options (0: no; 1: yes; 2: uncertain): 1. the
diagnosis made by AI was incorrect; 2. AI disrupted their diagnosis;
3. the sonologists had self-confidence in their diagnosis and
therefore had no need of further assistance.

Outcomes
The primary outcome was the average accuracy (average ACC),
which assessed the scores of correct identifications of all ten
patterns without prior knowledge.

Fig. 4 Time consumption for sonologists of three levels of expertise in recognizing fetal neurosonographic image patterns with three
reading modes. Compared with the median per-image reading time in unassisted mode, a slight increment in concurrent mode was
observed, whereas the time was significantly prolonged in second mode for all sonologists (a); and sonologists of three expertise levels,
respectively (b). The upper and lower bounds of the box refer to the 25th and 75th percentiles, and the line intersection in the box refers to
the median. The dots outside of whiskers refer to outliers.
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The secondary outcomes included the area under the curve
(AUC) of the receiver operating characteristic (ROC), diagnosis
accuracy (ACC), sensitivity (SEN), specificity (SPE) for multiclass
classification9, and the time consumption of reading.

Sample size estimation
There were three hypotheses in our study: the average ACC of (1)
concurrent mode and (2) the second mode were at least 3%
higher (effect size = 3%) than that of unassisted mode,
respectively, and 3) the performance of one DL-assisted mode
was superior to the other, defined by a 3% difference in average
ACC, although no direction was specified.
Under these conditions, the two-sided α was 0.0167 for each

hypothesis (α= 0.05 divided by 3 to adjust for multiple
comparisons using the Bonferroni method), and the power was
90%. If the primary outcome average ACC was set to 80% for the
unassisted mode and the two DL-assisted methods increased by
3%, the required sample size was 3583 images/videos per group,
and the total sample size was 10749. If the power was increased to
99%, 5908 images/videos per group, or a total of 17724, would be
needed. In this study, the total sample size was much larger than
estimated, which ensured that the subgroup analysis also
obtained sufficient power. Subgroup analysis was performed
according to the levels of expertise (experts, competent sonolo-
gists, and trainees) and different types of image patterns (ten
patterns).

Statistical analysis
The performance metrics of the multiclass classification including
diagnostic ACC, SEN, SPE, and AUC with their 95% confidence
intervals (CIs) were estimated by micro- and macro analysis9,29.
Micro- and macroACCs were calculated according to the confusion
matrix, which was summed up by the confusion matrix from each
pattern. Therefore, these ACCs were used to evaluate the
diagnostic accuracy of a certain pattern among ten. ROC curves
were plotted by the sensitivity (true positive rate) versus the 1-
specificity (false positive rate). Fleiss’ Kappa (FK) value was
calculated to assess the diagnostic agreement between sonolo-
gists with labels. Continuous variables are presented as the
mean ± standard deviation (SD) or median (interquartile range,
IQR), as appropriate, and categorical variables are presented as
numbers and percentages. Comparisons between three indepen-
dent groups were made using ANOVA or Kruskal-Wallis test for
continuous variables and the Chi-squared test for categorical
variables. Comparisons between two independent groups were
made using the t-test or Mann−Whitney U test for continuous
variables and the Chi-squared test for categorical variables. Micro
and macro AUCs between two groups were compared by
Delong’s test and paired t-test, respectively. Micro and macro
SENs, SPEs, ACCs between two groups were compared by chi-
square test for proportions and paired t-test, respectively.
McNemar’s test was used to compare the preference modes of
all sonologists. Multiple comparisons were corrected by Bonferroni
test. All analyses were performed using R statistical software
(version 4.0.2, R Core Team, 2020)30, and a P value of less than
0.0167 was considered significant for all analyses.
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