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Autonomous artificial intelligence increases real-world
specialist clinic productivity in a cluster-randomized trial
Michael D. Abramoff 1,2,3,4,5✉, Noelle Whitestone 6, Jennifer L. Patnaik6,7, Emily Rich6,8, Munir Ahmed9, Lutful Husain9,
Mohammad Yeadul Hassan9, Md. Sajidul Huq Tanjil10, Dena Weitzman2, Tinglong Dai 11,12,13, Brandie D. Wagner7,14,
David H. Cherwek6, Nathan Congdon6,8,15 and Khairul Islam10

Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We
developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized
clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases
clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we
report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not
using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59
encounters/hour, 95% confidence interval [CI]: 1.37–1.80) than control (1.14 encounters/hour, 95% CI: 1.02–1.25), p < 0.00; the
secondary endpoint (productivity in all patients) is also met. Autonomous AI increases healthcare system productivity, which could
potentially increase access and reduce health disparities. ClinicalTrials.gov NCT05182580.
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INTRODUCTION
Lack of access to essential services is a primary cause of health
inequity1. In the United States (US), racial and ethnic minorities,
persons with low socioeconomic status, and rural populations are
especially affected, and worldwide, an estimated one billion
people lack access to essential health services2,3. This inequitable
distribution continues to blunt global economic growth and
inhibit living standards4.
Access can be improved by increasing the overall capacity of the

healthcare system. One option is to expand the health workforce5;
however, training more healthcare professionals at scale requires
substantial resources and time, which may not be feasible6. Another
option is to increase capacity by increasing efficiency7. Consistent
gains in total factor productivity over the past century, especially in
the agricultural and nonfarm industrial sectors, have substantially
improved living standards8,9. By contrast, clinic productivity, mea-
sured as the number of completed care encounters per hour per
physician10, may actually be declining in the United States (US)
(Fig. 1), with similar declines observed in other countries11. This
widening healthcare productivity gap has been suggested as a cause
of rising healthcare costs9.
We hypothesize that autonomous Artificial Intelligence (AI), where

a computer rather than a human provider makes the medical
decision, can improve clinic productivity as defined above12. Such
autonomous AI systems have recently been approved by the US
Food and Drug Administration (FDA), as safe and effective for use in
medical care13,14 and as reimbursable by Medicare, Medicaid and
private insurance payors15,16. However, the potential productivity
impact of autonomous AI systems has received scant attention. The

purpose of the present study is to test this hypothesis in a
preregistered, randomized controlled (clinical) trial.

RESULTS
All specialists in the clinic (n= 3, 100% male, mean 5.17 years of
practice (Standard Deviation [SD]: 3.33)) were included. There
were 51 clinic days in the intervention group and 54 in the control
group. The average number of clinic patients per day was 54.5.
The number of clinic patients with diabetes was 2109, of which
1189 and 920 were in the intervention and control groups,
respectively (Fig. 2). Among 2109 patients with diabetes, 993
(mean age 50.9 years (SD: 9.86), 47.2% male) were AI eligible, all of
whom gave written consent and completed the autonomous AI
exam, with 494 patient participants (49.7%) in the intervention
group, and 499 (50.3%) in the control group (Table 1).

Primary outcome
The primary outcome, productivity λd among patients with
diabetes, was significantly greater in the intervention group (λd,AI,
1.59 completed care encounters per hour per specialist physician,
95% confidence interval [CI]: 1.37–1.80) than in the control group
(λd,c1.14, 95% CI: 1.02–1.25), Student’s t-test p < 0.001 (Table 2).
This corresponds to an increase of 0.45 completed care
encounters per hour per specialist physician, or 39.5%.
The linear regression model showed a significant association

between membership in the intervention group and productivity
in univariate analysis (beta= 0.449 (SE: 0.120), p < 0.001). Results
from the sensitivity analysis that included adjustment for age, sex,
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day of week, and autonomous AI output confirmed this
association (beta= 0.461 (SE: 0.118), p < 0.001) (Table 3). The
diagnostic output of autonomous AI and the day of the week were

associated with the primary outcome but had minimal impact on
the primary measure of association.

Secondary outcomes
The secondary outcome of productivity λ over all patients (with
and without diabetes) was also significantly greater in the
intervention group (λAI4.05, 95% CI: 3.66–4.43) than in the control
group (λd,c3.36, 95% CI: 3.08–3.63), Student’s t-test p= 0.004.
Specialist productivity adjusted for patient complexity, for

diabetes patients, was also significantly greater in the intervention
group (λcaAI= 3.15) than in the control group (λca,d,c= 1.19).
Table 2 corresponds to an increase by a factor of 2.65.
Patient participants were satisfied with the appointment

waiting time (100% satisfied or very satisfied) and the interaction
with the healthcare team (499/499= 100% in the control group
and 493/494= 99.8% in the intervention group). Among patient
participants in the intervention group who completed their care
encounter through autonomous AI only (n= 331, 67.0%), 100%
were satisfied or very satisfied with the time to receive results, and
100% were satisfied with receiving results from an autonomous AI
system. Among the specialist participants, all “agreed” or “strongly
agreed” that autonomous AI saved time in their clinics, and all
“agreed” or “strongly agreed” that autonomous AI allowed them
to focus their time on appropriate patients.
The number of DED treatments scheduled per day did not differ

between the control (0.70, 95% CI: 0.47–0.93) and intervention
(0.61, 95% CI: 0.38–0.83, Wilcoxon rank sum test p= 0.532) groups,
nor did the patient complexity score (mean score 1.06 ± SD: 2.36
vs 0.949 ± SD: 2.26, Wilcoxon rank sum test p= 0.288). When
analyzing complexity for only those patient participants who
required a specialist examination after completion of the
autonomous AI exam, the mean complexity score was significantly

Fig. 1 Productivity changes: 1987–2020. US healthcare productiv-
ity declined over the last three decades, at the same time that US
productivity overall, commonly expressed as “private nonfarm
business total factor productivity,” increased by 26.2% between
1987 and 2020. Over this same period, productivity in ambulatory
healthcare services declined by 13.2%. One contributor to this
growing difference is the loss of labor productivity in ambulatory
healthcare services during this same period (with a total decline of
4.9%). (The productivity data was provided by the US Department of
Labor, Bureau of Labor Statistics, and graphed with assistance from
the Office of Productivity, Bureau of Labor Statistics. Industry data
prior to 1987 is unavailable on a consistent classification basis). The
red line is Ambulatory Healthcare Total Factor Productivity. The
yellow line is Ambulatory Healthcare Labor Productivity. The green
line is Private Nonfarm Business Total Factor Productivity.

Fig. 2 Cluster randomization flow chart showing clinic days and patients in the control or intervention group, according to CONSORT.
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higher in the intervention group (2.80 ± SD: 3.19) than in the
control group (1.06 ± SD: 2.36, Wilcoxon rank sum test p < 0.0001).
The estimated sensitivity of the Autonomous AI system compared

to the level 4 reference standard (human graders) was 93.9% (95%
CI: 90.5, 97.2), and the estimated specificity was 84.0% (95% CI:
81.4, 86.7).

DISCUSSION
B-PRODUCTIVE confirmed our primary hypothesis: the use of
autonomous AI systems significantly improves clinic productivity
(λ) in the real world12. The healthcare productivity gap has been
underappreciated as an issue in healthcare, leading to health
inequities along racial, ethnic and geographic lines; reduced
access to high-quality care; and increasing healthcare expendi-
tures, despite cost-saving measures, such as rationing, which may,
in turn, diminish the quality of care17,18.
The importance of increasing productivity as a potential

solution to these issues has also received scant attention19.
Increasing worker productivity has been highly successful in other
sectors of the economy8 but has been challenging in healthcare20.
For example, while information technology has facilitated
substantial productivity growth in other sectors21, there is
evidence that innovations such as electronic medical records
may lower healthcare labor productivity in some cases22. Other
causes of the productivity gap may be increased regulatory
requirements and the resulting documentation burden, as well as
the increasing complexity of clinical information systems, though
these are beyond the scope of this study.
The autonomous AI system used in the current study was

developed and validated under a strict ethical framework23,24,
outperformed physician accuracy to the same prognostic standard
in clinical trials13, shows no racial or ethnic bias13,25 as also
demonstrated in Hansen et al.26, is explainable12, is highly
effective for outcomes27, is supported by all US healthcare
stakeholders15, and can reduce the cost of care15,27. While the
accepted reference standard for validating specialist clinicians and
autonomous AI is the prognostic ETDRS and DRCR standards (a
level 1 reference standard)24, confirming that the autonomous AI
used in this study has much higher accuracy than human
specialists in the US population13,24, the present results show
the AI’s high accuracy in this Bangladeshi study population, where
AI had not been tested previously. The existing evidence,
combined with the present findings, show that autonomous AI
can increase clinic productivity at equivalent or higher quality of
care, in contrast to other cost-saving measures such as rationing
or substitution17.
In B-PRODUCTIVE, specialists reported that autonomous AI

allowed them to focus their time on more complex cases, as
reflected in the mean complexity score in the intervention group,

Table 1. Characteristics of clinic day clusters and patient participants
by study group.

Characteristic Control group Intervention group

Clinic days

Number 54 51

Patients total (including non-participants)

Number 2708 3013

Patient participants

Number 499 494

Age, years

22–40 81 (16.2%) 86 (17.4%)

41–50 183 (36.7%) 167 (33.8%)

51–60 158 (31.7%) 170 (34.4%)

>60 77 (15.4%) 71 (14.4%)

Mean (SD) 51.0 (10.0) 50.8 (9.70)

Male sex, n (%) 234 (46.9%) 235 (47.6%)

Education

No education 137 (27.4%) 114 (23.1%)

Non-graded religious school 102 (20.4%) 123 (24.9%)

Primary school only 237 (47.5%) 231 (46.8%)

Secondary school 23 (4.61%) 26 (5.26%)

Monthly incomea

$50–$150 70 (14.0%) 64 (13.0%)

$151–$250 122 (24.4%) 137 (27.7%)

$251–$500 196 (39.3%) 181 (36.6%)

>$500 111 (22.2%) 112 (22.7%)

Patient autonomous AI output

DED present 167 (33.5%) 140 (28.3%)

DED absent 321 (64.3%) 331 (67.0%)

Insufficient quality 11 (2.20%) 23 (4.66%)

DED : referable Diabetic Eye Disease: ETDRS level 35 or higher, clinically
significant macular edema, and/or center-involved macular edema.
aMonthly income reported in taka and converted to USD at a conversion
rate of 0.01057 as of July 29, 2022 (https://www.xe.com/currencycharts/?
from=BDT&to=USD).

Table 2. Productivity outcomes by study group.

Control group mean (95% CI) Intervention group mean (95% CI)

Completed care encounters among clinic patients with diabetes

Care encounter involved specialist 920 858

Care encounter completed by AI-only 0 331

Total 920 1189

Total number of specialist hours in clinic 819 763

Clinic productivity (95% CI) for diabetes patients: number of completed care
encounters per hour per specialist physiciana

λd,c= 1.14 (1.02, 1.25) λd,AI= 1.59 (1.3, 1.80)

Clinic productivity (95% CI) for all patients number of completed care encounters
per hour per specialist physicianb

λc= 3.36 (3.08, 3.63) λAI= 4.05 (3.66, 4.43)

Specialist productivity adjusted for patient complexity for diabetes patients λca,d,c= 1.19 λcaAI= 3.15

aStudent’s t-test p < 0.001 for between-group difference.
bStudent’s t-test p= 0.004 for between-group difference.
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which was significantly higher than in the control group. Given the
large proportion of patients who were able to avoid the wait to
see a specialist as a result of receiving their examination from the
AI, the net effect of the autonomous AI visible to patients was to
reduce wait time. This benefit would be especially likely to lead to
improved satisfaction in settings where wait times comprise some
of the most common patient complaints.
Some three-quarters of patient participants in the intervention

group completed their care encounters through the autonomous
AI system only. Productivity (λd,AI) increased by 40% in the
intervention group because non-AI-eligible diabetes patients filled
the 331 clinic spots that became available when eligible patients
were identified by autonomous AI as “DED absent” and thereby
completed their clinic encounter. Productivity λd,AI did not achieve
its upper bound, as the average complexity of the patients
evaluated by specialists increased. If the prevalence π of DED in
the patient participants had been lower, or the proportion of
diabetes patients who were AI-eligible (α) had been higher,
productivity λd,AI would have increased even further. When the
shift to more complex patients for the specialist due to the use of
autonomous AI was taken into account, by calculating specialist
productivity adjusted for complexity, autonomous AI increased
productivity by a factor of 2.65.
We based our study design on our mathematical productivity

model, using a concealed cluster-randomized design, in a clinic
context where demand is overwhelmingly greater than clinic
capacity (Λ≫ μ). This was done to minimize bias by schedulers,
clinic staff, patients, or specialists. This productivity hypothesis
testing study design would not have been possible in a scheduled
outpatient clinic context: in such clinics, the schedulers would fix
any measured productivity gains, as they would have to make

additional slots available on intervention dates, the number of
additional slots determined by their expectation of gains in λAI, not
by true λc. Similarly, masking clinic staff, patients or specialists,
whether or not the AI diagnosis was being used, mitigated bias
from those sources.
Potentially, while specialists were masked to whether or not a

day was an intervention day, they could potentially have
determined that from their perceived average patient complexity
on that day. If that was the case, it would have biased against AI,
as specialists would spend more time with these more complex
patients.
Autonomous AI systems have particular advantages in under-

resourced settings, most obviously, the benefit of improved
productivity where trained personnel is scarce. While telemedicine
platforms have been implemented in some cases, these do not
allow instantaneous, point-of-care diagnosis, so that the care
encounter cannot be completed in the same visit. The reason is
that while the patient images can be taken in the clinic, the
diagnostic result will only be available after the patient has already
left the clinic, resulting in care completion rates of 30%, at lower
diagnostic accuracy27. Implementation of the AI system, including
operator training, was delivered remotely. This suggests these AI
systems are scalable and sustainable, especially in low- and
middle-income countries, further strengthened by the high
participant and provider satisfaction.
Limitations of the current study are that B-PRODUCTIVE was

conducted in a single health system, in a low-income country,
with only three physician specialists, and using an autonomous AI
designed to diagnose only a single disease, DED, in patients
without symptoms or a history of DED. While it was conducted in a
single health system, the results from our mathematical model of
healthcare productivity have implications for other health systems
that are characterized by a ‘saturated queue’ (i.e., without
schedules or appointment slots). While the autonomous AI
diagnosed only DED, this complication of diabetes is of particular
economic importance as the leading cause of vision loss among
working-age people worldwide, including in Bangladesh28. The
autonomous AI system, in addition to being validated by the US
FDA, EU CE mark, and various other national regulatory agencies,
with respect to its safety, efficacy and lack of racial bias, was also
evaluated on the Bangladeshi patient population by comparison
of the AI output to a UK NHS-certified retina expert. While the
autonomous AI is only validated for patients without symptoms or
a history of DED, the majority of patients visiting the retina
specialist fall into this category. Application of these results to
other settings, conditions and AI systems must be made with
caution, and further studies are needed to extend these findings
more broadly. Application of these results to other settings,
conditions and AI systems must be made with caution, and further
studies are needed to extend these findings more broadly.
Strengths of the current study include the model-based hypoth-

esis testing; the preregistered, randomized design; real-world29

implementation in a lower-income country where productivity gains
among scarce specialists are particularly relevant; and the collection
of data on patient and provider satisfaction.
In summary, the use of an autonomous AI system improved

clinic productivity by 40% in the B-PRODUCTIVE trial. Autonomous
AI systems can play an important role in addressing global health
disparities by improving access to affordable, high-quality care,
especially in low- and middle-income countries.

METHODS
Theoretical foundation of unbiased estimation of healthcare
productivity
To test our central hypothesis—that autonomous AI improves
healthcare system productivity—in an unbiased manner, we

Table 3. Potential predictors of main outcome, provider productivity
assessed as number of completed clinic visits among patients with
diabetes per specialist per hour.

Potential predictor β (SE)a p-value

Membership in intervention
group

0.449 (0.120) 0.0002

Patient-level factors

Patient age, years −0.00000003 (0.00000006) 0.607

Patient sex, female 0.000001 (0.000001) 0.400

Patient no education 0.0000003 (0.000002) 0.826

Patient monthly income, USD −0.000000007 (0.000000002) 0.727

Clinic-level factors

Day of the week

Sunday −0.33 (0.24) 0.174

Monday −0.20 (0.26) 0.433

Tuesday −0.18 (0.27) 0.504

Wednesday −0.49 (0.24) 0.040

Thursday −0.67 (0.23) 0.003

Friday Closed —

Saturday Reference —

AI diagnostic output

DED present 0.0000005 (0.000001) 0.697

DED absent Reference —

Insufficient quality −0.000003 (0.000002) 0.059

Complexity sum 0.0000004 (0.0000002) 0.134

aBeta coefficients and standard errors (SE) from linear regression model
with generalized estimating equations that included clustering effects of
clinic days.
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developed a healthcare productivity model based on rational
queueing theory30, as widely used in the healthcare operations
management literature31. A healthcare provider system, which can
be a hospital, an individual physician providing a service, an
autonomous AI providing a service at a performance level at least
or higher than a human expert, a combination thereof, or a
national healthcare system, are all modeled as an “overloaded
queue,” facing a potential demand that is greater than its capacity;
that is, Λ≫ μ, where Λ denotes the total demand on the system -
patients seeking care—and μ denotes the maximum number of
patients the system can serve per unit of time. We define system
productivity as

λ ¼ nq
t
; (1)

where nq is the number of patients who completed a care
encounter with a quality of care that was non-inferior to q, and t is
the length of time over which nq was measured, allowing for
systems that include autonomous AI in some fashion. While the
standard definitions of healthcare labor productivity, such as in
Camasso et al.7, ignore quality of care, q assumes quality of care
non-inferior to the case when care is provided by a human expert,
such as a retina specialist, to address potential concerns about the
safety of healthcare AI8: Our definition of λ, as represented by
Eq. (1), guarantees that quality of care is either maintained or
improved.
β denotes the proportion of patients who receive and complete

the care encounter in a steady state, where the average number of
patients who successfully complete the care encounter is equal to
the average number of patients who gain access to care, per unit
of time, in other words, λ= β · Λ. See Fig. 3. Remember that in the
overloaded queue model, there are many patients 1-β⋅Λ who do
not gain access. β is agnostic about the specific manner in which
access is determined: β may take the form of a hospital
administrator who establishes a maximum number of patients
admitted to the system or in the form of barriers to care—such as
an inability to pay, travel long distances, take time off work or
other sources of health inequities—limiting a patient gaining
access to the system. As mentioned, λ is agnostic on whether the
care encounter is performed and completed by an autonomous
AI, human providers, or a combination thereof, as from the patient
perspective, we measure the number of patients that complete
the appropriate level of care per unit time at a performance level
at least or higher than human physician. Not every patient will be
eligible to start their encounter with autonomous AI, and we
denote by α, 0 < α < 1 the proportion of eligible patients, for
example, because they do not fit the inclusion criteria for the

autonomous AI; not every patient will be able to complete their
care encounter with autonomous AI when the autonomous AI
diagnosed them with disease requiring a human specialist, and we
denote by γ, 0 < γ < 1, the proportion of patients who started their
care encounter with AI, and still required a human provider to
complete their encounter. The proportion α(1-γ) are diagnosed as
“disease absent” and start and complete their encounter with
autonomous AI only, without needing to see a human provider.
For all permutations, productivity λ is measured as the number of
patients who complete a provided care encounter per unit of
time, with λC, the productivity associated with the control group,
where the screening result of the AI system is not used to
determine the rest of the care process, and λAI, the productivity
associated with the intervention group, where the screening result
of the AI system is used to determine the rest of the care process,
and where the AI performance is at least as high as the human
provider.
Because an autonomous AI that completes the care process for

patients without disease—typically less complex patients—as in
the present study, will result in relatively more complex patients to
be seen by the human specialist, we calculate complexity-adjusted
specialist productivity as

λca ¼ cnq
t

; (2)

with c the average complexity, as determined with an appropriate
method, for all n patients that complete the care encounter with
that specialist. This definition of λca, as represented by Eq. (2),
corrects for a potentially underestimated productivity because the
human specialist sees more clinically complex patients requiring
more time than without the AI changing the patient mix.
We focus on the implication Λ≫ μ; in other words, that system

capacity is limited relative to potential demand, as that is the only
way in which λc and λAI, can be measured without recruitment
bias, i.e., in a context where patients arrive throughout the day
without appointment or other filter, as is the case in Emergency
Departments in the US, and almost all clinics in low- and middle-
income countries (LMICs). This is not the case, however, in
contexts where most patient visits are scheduled, and thus β
cannot be changed dynamically, and measuring λ in such a
context would lead to bias. Thus, we selected a clinic with a very
large demand (Λ), Deep Eye Care Foundation (DECF) in
Bangladesh, for the trial setting in order to avoid recruitment bias.

Fig. 3 Healthcare productivity model based on rational queueing theory. aMathematical model of ‘overloaded queue’ healthcare system in
order to estimate productivity as λ= β Λ. without observer bias. b Model of ‘overloaded queue’ healthcare system where autonomous AI is
added to the workflow.
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Trial design
The B-PRODUCTIVE (Bangladesh-PRODUCTIVity in Eyecare) study was
a preregistered, prospective, double-masked, cluster-randomized
clinical trial performed in retina specialist clinics at DECF, a not-for-
profit, non-governmental hospital in Rangpur, Bangladesh, between
March 20 and July 31, 2022. The clusters were specialist clinic days,
and all clinic days were eligible during the study period. Patients are
not scheduled; there are no pre-scheduled patient visit times or time
slots, instead access to a specialist clinic visit is determined by clinic
staff on the basis of observed congestion, as explained in the
previous Section.
The study protocol was approved by the ethics committees at

the Asian Institute of Disability and Development (Dhaka,
Bangladesh; # Southasia-hrec-2021-4-02), the Bangladesh Medical
Research Council (Dhaka, Bangladesh; # 475 27 02 2022) and
Queen’s University Belfast (Belfast, UK; # MHLS 21_46). The tenets
of the Declaration of Helsinki were adhered to throughout, and
the trial was preregistered with ClinicalTrials.gov, #NCT05182580,
before the first participant was enrolled. The present study
included local researchers throughout the research process,
including design, local ethics review, implementation, data
ownership and authorship to ensure it was collaborative and
locally relevant.

Autonomous AI system
The autonomous AI system (LumineticsCore (formerly IDx-DR), Digital
Diagnostics, Coralville, Iowa, USA) was designed, developed, pre-
viously validated and implemented under an ethical framework to
ensure compliance with the principles of patient benefit, justice and
autonomy, and avoid “Ethics Dumping”13. It diagnoses specific levels
of diabetic retinopathy and diabetic macular edema (Early Treatment
of Diabetic Retinopathy Study level 35 and higher), clinically
significant macular edema, and/or center-involved macular edema32,
referred to as “referable Diabetic Eye Disease” (DED)33, that require
management or treatment by an ophthalmologist or retina specialist,
for care to be appropriate. If the ETDRS level is 20 or lower and no
macular edema is present, appropriate care is to retest in 12 months34.
The AI system is autonomous in that the medical diagnosis is made
solely by the system without human oversight. Its safety, efficacy, and
lack of racial, ethnic and sex bias were validated in a pivotal trial in a
representative sample of adults with diabetes at risk for DED, using a
workflow and minimally trained operators comparable to the current
study13. This led to US FDA De Novo authorization (“FDA approval”) in
2018 and national reimbursement in 202113,15.

Autonomous AI implementation and workflow
The autonomous AI system was installed by DECF hospital
information technology staff on March 2, 2022, with remote
assistance from the manufacturer. Autonomous AI operators
completed a self-paced online training module on basic fundus
image-capture and camera operations (Topcon NW400, Tokyo,
Japan), followed by remote hands-on training on the operation by
representatives of the manufacturers. Deployment was performed
locally, without the physical presence of the manufacturers, and all
training and support were provided remotely.
Typically, pharmacologic pupillary dilation is provided only as

needed during use of the autonomous AI system. For the current
study, all patient participants received pharmacologic dilation with a
single drop each of tropicamide 0.8% and phenylephrine 5%,
repeated after 15min if a pupil size of ≥4mm was not achieved. This
was done to facilitate indirect ophthalmoscopy by the specialist
participants as required. The autonomous AI system guided the
operator to acquire two color fundus images determined to be of
adequate quality using an image quality assessment algorithm, one
each centered on the fovea and the optic nerve, and directed the
operator to retake any images of insufficient quality. This process

took approximately 10min, after which the autonomous AI system
reported one of the following within 60 s: “DED present, refer to
specialist”, “DED not present, test again in 12 months”, or “insufficient
image quality”. The latter response occurred when the operator was
unable to obtain images of adequate quality after three attempts.

Participants
This study included both physician participants and patient
participants. Physician participants were retina specialists who
gave written informed consent prior to enrollment. For specialist
participants, the inclusion criteria were:

– Completed vitreoretinal fellowship training;
– Examined ≥20 patients per week with diabetes and no known

DED over the prior three months;
– Performed laser retinal treatments or intravitreal injections on

at least three DED patients per month over the same time
period.

Exclusion criteria were:

– Using a clinical AI system integrated in their practice
– Inability to provide informed consent.

‘AI-eligible patients’ are clinic patients meeting the following
criteria:

– Presenting to DECF for eye care;
– Age ≥ 22 years. While preregistration stated participants could

be aged ≥18 years, the US FDA De Novo clearance for the
autonomous AI limits eligibility to ≥22 years;

– Diagnosis of type 1 or type 2 diabetes prior to or on the day of
recruitment;

– Best corrected visual acuity ≥ 6/18 in the better-seeing eye;
– No prior diagnosis of DED;
– No history of any laser or incisional surgery of the retina or

injections into either eye;
– No medical contraindication to fundus imaging with dilation

of the pupil12.

Exclusion criteria were:

– Inability to provide informed consent or understand the study;
– Persistent vision loss, blurred vision or floaters;
– Previously diagnosed with diabetic retinopathy or diabetic

macular edema;
– History of laser treatment of the retina or injections into either

eye or any history of retinal surgery;
– Contraindicated for imaging by fundus imaging systems.

Patient participants were AI-eligible patients who gave written
informed consent prior to enrollment. All eligibility criteria
remained unchanged over the duration of the trial.

Randomization, masking and concealment
B-PRODUCTIVE was a concealed cluster-randomized trial in which
a block randomization scheme by clinic date was generated by
the study statistician (JP) on a monthly basis, taking into account
holidays and scheduled clinic closures. The random allocation of
each cluster (clinic day) was concealed until clinic staff received an
email with this information just before the start of that day’s clinic,
and they had no contact with the specialists during trial
operations. Medical staff who determined access, specialists and
patient participants remained masked to the random assignment
of clinic days as control or intervention.

Intervention
After giving informed consent, patient participants provided
demographic, income, educational and clinical data to study staff
using an orally administered survey in Bangla, the local language.
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Patients who were eligible but did not consent underwent the same
clinical process without completing an autonomous AI diagnosis or
survey. All patient participants, both intervention and control,
completed the autonomous AI diagnostic process as described in
the Autonomous AI implementation and workflow section above:
the difference between intervention and control groups was that in
the intervention group, the diagnostic AI output determined what
happened to the patient next. In the control group, patient
participants always went on to complete a specialist clinic visit
after autonomous AI, irrespective of its output. In the intervention
group, patient participants with an autonomous AI diagnostic report
of “DED absent, return in 12 months” completed their care
encounters without seeing a specialist and were recommended to
make an appointment for a general eye exam in three months as a
precautionary measure for the trial, minimizing the potential for
disease progression (standard recall would be 12 months).
In the intervention group, patient participants with a diagnostic

report of “DED present” or “image quality insufficient” completed
their care encounters by seeing the specialist for further manage-
ment. “Seeing the specialist” for not-consented, control group, and
“DED present / insufficient” patient participants involved tonometry,
anterior and posterior segment biomicroscopy, indirect ophthalmo-
scopy, and any further examinations and ancillary testing deemed
appropriate by the specialist. After the patient participant completed
the autonomous AI process, a survey with a 4-point Likert scale (“very
satisfied,” “satisfied,” “dissatisfied,” “very dissatisfied”) was adminis-
tered concerning the participant’s satisfaction with interactions with
the healthcare team, time to receive examination results, and
receiving their diagnosis from the autonomous AI system.

Study outcomes
The primary outcome was clinic productivity for diabetes patients
(λd), measured as the number of completed care encounters per
hour per specialist for control / non-AI (λd,C) and intervention / AI
(λd,AI) days. λd,C used the number of completed specialist
encounters; λd,AI used the number of eligible patients in the
intervention group who completed an autonomous AI care
encounter with a diagnostic output of “DED absent”, plus the
number of encounters that involved the specialist exam. For the
purposes of calculating the primary outcome, all diabetes patients
who presented to the specialty clinic on study days were counted,
including those who were not patient participants or did not
receive the autonomous AI examination.
One of the secondary outcomes from this study was λ for all

patients (patients both with and without diabetes) measured as the
number of completed care encounters per hour per specialist by
counting all patients presenting to the DECF specialty clinic on study
days, including those without diabetes, for control (λC) and
intervention days (λAI). Complexity-adjusted specialist productivity λca
was calculated for intervention and control arms by multiplying (λd,C)
and (λd,AI) by the average patient complexity c.
During each clinic day, the study personnel recorded the day of

the week and the number of hours that each specialist participant
spent in the clinic, starting with the first consultation in the
morning and ending when the examination of the last patient of
the day was completed, including any time spent ordering and
reviewing diagnostic tests and scheduling future treatments. Any
work breaks, time spent on performing procedures, and other
duties performed outside of the clinic were excluded. Study
personnel obtained the number of completed clinic visits from the
DECF patient information system after each clinic day.
At baseline, specialist participants provided information on

demographic characteristics, years in specialty practice and patient
volume. They also completed a questionnaire at the end of the study,
indicating their agreement (5-point Likert scale, “strongly agree” to
“strongly disagree”) with the following statements regarding
autonomous AI: (1) saves time in clinics, (2) allows time to be focused

on patients requiring specialist care, (3) increases the number of
procedures and surgeries, and (4) improves DED screening.
Other secondary outcomes were (1) patient satisfaction;

(2) number of DED treatments scheduled per day; and (3)
complexity of patient participants. Patient and provider willingness
to pay for AI was a preregistered outcome, but upon further review
by the Bangladesh Medical Research Council, these data were
removed based on their recommendation. The complexity score for
each patient was calculated by a masked United Kingdom National
Health Service grader using the International Grading system (a
level 4 reference standard24), adapted from Wilkinson et al.
International Clinical Diabetic Retinopathy and Diabetic Macular
Edema Severity Scales31 (no DED= 0 points, mild non-proliferative
DED= 0 points, moderate or severe non-proliferative DED= 1
point, proliferative DED= 3 points and diabetic macular edema= 2
points.) The complexity score was summed across both eyes.

Power calculation
The null hypothesis was that the primary outcome parameter λd,
would not differ significantly between the study groups. The intra-
cluster correlation coefficient (ICC) between patients within a
particular cluster (clinic day) was estimated at 0.15, based on pilot
data from the clinic. At 80% power, a two-sided alpha of 5%, a cluster
size of eight patients per clinic day, and a control group estimated
mean of 1.34 specialist clinic visits per hour (based on clinic data from
January to March 2021), a sample size of 924 patients with completed
clinically-appropriate retina care encounters (462 in each of the two
study groups) was sufficient to detect a between-group difference of
0.34 completed care encounters per hour per specialist (equivalent to
a 25% increase in productivity λd,AI), with autonomous AI.

Statistical methods
Study data were entered into Microsoft Excel 365 (Redmond, WA,
USA) by the operators and the research coordinator in DECF. Data
entry errors were corrected by the Orbis program manager in the
US (NW), who remained masked to study group assignment.
Frequencies and percentages were used to describe patient

participant characteristics for the two study groups. Age as a
continuous variable was summarized with the mean and standard
deviation. The number of treatments and complexity score were
compared with the Wilcoxon rank sum test since they were not
normally distributed. The primary outcome was normally dis-
tributed and compared between study groups using a two-sided
Student’s t-test, and 95% confidence intervals around these
estimates were calculated.
The robustness of the primary outcome was tested by utilizing

linear regression modeling with generalized estimating equations
that included clustering effects of clinic days. The adjustment for
clustering of days since the beginning of the trial utilized an
autoregressive first-order covariance structure since days closer
together were expected to be more highly correlated. Residuals were
assessed to confirm that a linear model fit the rate outcome.
Associations between the outcome and potential confounders of
patient age, sex, education, income, complexity score, clinic day of
the week, and autonomous AI output were assessed. A sensitivity
analysis with multivariable modeling included patient age and sex,
and variables with p-values < 0.10 in the univariate analysis. All
statistical analyses were performed using SAS version 9.4 (Cary, North
Carolina).
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