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Modeling personalized heart rate response to exercise and
environmental factors with wearables data
Achille Nazaret1, Sana Tonekaboni2, Gregory Darnell3, Shirley You Ren3, Guillermo Sapiro3 and Andrew C. Miller 3✉

Heart rate (HR) response to workout intensity reflects fitness and cardiorespiratory health. Physiological models have been
developed to describe such heart rate dynamics and characterize cardiorespiratory fitness. However, these models have been
limited to small studies in controlled lab environments and are challenging to apply to noisy—but ubiquitous—data from
wearables. We propose a hybrid approach that combines a physiological model with flexible neural network components to learn a
personalized, multidimensional representation of fitness. The physiological model describes the evolution of heart rate during
exercise using ordinary differential equations (ODEs). ODE parameters are dynamically derived via a neural network connecting
personalized representations to external environmental factors, from area topography to weather and instantaneous workout
intensity. Our approach efficiently fits the hybrid model to a large set of 270,707 workouts collected from wearables of 7465 users
from the Apple Heart and Movement Study. The resulting model produces fitness representations that accurately predict full HR
response to exercise intensity in future workouts, with a per-workout median error of 6.1 BPM [4.4–8.8 IQR]. We further demonstrate
that the learned representations correlate with traditional metrics of cardiorespiratory fitness, such as VO2 max (explained variance
0.81 ± 0.003). Lastly, we illustrate how our model is naturally interpretable and explicitly describes the effects of environmental
factors such as temperature and humidity on heart rate, e.g., high temperatures can increase heart rate by 10%. Combining
physiological ODEs with flexible neural networks can yield interpretable, robust, and expressive models for health applications.
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INTRODUCTION
The increasing availability of wearable technologies has empow-
ered individuals to monitor their overall health and well-being
throughout daily life—a recent research study found that 21% of
Americans use wearable fitness trackers or smartwatches1. Such
wearable data carry the potential for machine learning (ML)
models to discover new correlates of human health from device
signals2. Previous work has shown success in various applications,
from clinical monitoring tools to fitness and activity planners3. In
the clinical domain, modern ML methods have been shown to
predict cardiovascular events from wearables data4–6, as well as
overall health conditions indicated by different lab measures7. In
the public health domain, wearables data and ML algorithms have
been successfully deployed in disease surveillance8 such as
detecting influenza-like illness9, monitoring disease progression
in the population10,11, and informing the design of new
epidemiological studies12. This relatively recent area of research
demonstrates that wearables data is a rich source of information
that can provide insight into an individual’s overall health.
Heart rate response to activity or exercise reflects an individual’s

cardiorespiratory fitness. In sports medicine, exercise stress testing
is used to quantify cardiac health by measuring cardiac response
to a controlled physical activity13. Physiological models of heart
rate response to exercise intensity have been developed to
measure cardiorespiratory in controlled settings in small stu-
dies14–17. Similar principles may be used to monitor cardiorespira-
tory health throughout daily activities using wearables data, as
opposed to controlled-environment tests. However, there are two
major challenges. First, these physiological models of heart rate
response must be adapted to use data collected by wearables—
e.g., step count, speed, elevation change, and weather. Second,

personalizing these models to measure an individual’s cardior-
espiratory fitness is both computationally and statistically
challenging. Given the prevalence of wearables, such health
monitoring could reach a broader population with an increased
frequency, and without interruption to daily life.
In this work, we develop a scalable algorithm that predicts heart

rate response to workout intensity as measured by wearables—
step count, speed, and elevation change. We augment an expert
model from the exercise physiology literature with machine
learning components and inference techniques14. Our approach
combines a physiological model of heart rate (HR) based on
ordinary differential equations (ODEs) with neural networks and
representation learning to estimate personalized, user-specific
parameters. Our algorithm learns to map a subject’s recent
workout history to a personalized representation that is predictive
of HR response in future workouts under the ODE model. This is
done with data from the Apple Heart and Movement Study
(AHMS)18, rendering this work as one of the largest and in regular
environments (outside of the lab) reported in the literature on
this topic.
We show that our personalized representations and model can

accurately estimate the heart rate profile given workout data
sequences by simply using an individual’s workout history. Unlike
most existing work in the literature that performs short-term HR
prediction19,20, our method can predict the entire HR trend of a
completely new workout of up to 2 h. These learned health
representations of individuals could be used in a variety of
applications, such as personalized workout planning and estimat-
ing HR zones or calories burned during a workout.
The ability to accurately estimate HR response to any workout

shows that the representations summarize meaningful informa-
tion about an individual’s health. We investigate this by showing
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that, after being learned only for predicting heart rate, the learned
representations correlate well with traditional metrics of cardior-
espiratory fitness, e.g., VO2 max. Additionally, we explicitly show
evidence of an effect of weather on heart rate during workouts
across the study population; this is done by augmenting the
biophysical ODE mode to consider environmental factors.

METHODS
Study design and participants
Our study uses workout measurements contributed to the Apple
Heart and Movement Study (AHMS) between November 2019 and
July 202218. The Apple Heart and Movement Study is a
prospective, single-group, open-label, siteless, pragmatic observa-
tional study conducted in collaboration with the American Heart
Association and Brigham and Women’s Hospital to investigate the
relationship between physical activity, mobility, and heart health.
The study was approved by the Advarra Central Institutional
Review Board (PRO00036784) and registered to ClinicalTrials.gov
(ClinicalTrials.gov Identifier: NCT04198194). There is no compensa-
tion for participation.
The AHMS allows participants to securely share information

collected by their Apple Watch. To be eligible, the participants
must own an Apple Watch paired with their iPhone, be at least 18
years old (at least 19 years old in Alabama and Nebraska; at least
21 years old in Puerto Rico), live in the United States of America,
have installed the Apple Research app on their iPhone, do not
share their iCloud account, iPhone, or Apple Watch with anyone
else, and are willing and able to provide informed consent to
participate in the study. The study app was used to verify
eligibility, obtain participants’ consent, provide study education,
and direct participants through the study procedures.
Within the AHMS, we selected participants who chose to use

the Workout app on their Apple Watch to record their outdoor
runs. The AHMS logs the outdoor weather information W
(temperature and humidity) at the time of each workout and
provides the participant’s heart rate during each workout along
with four measurements of exercise intensity: the instantaneous
speed from the pedometer sensor, the instantaneous speed from
the GPS, the step cadence from the pedometer, and the elevation
gain from the altimeter. The sensor measurements are inter-
polated on a 10-s grid to form, for each workout w, a heart rate
time-series cHR 2 Rd and a multivariate time-series of exercise
intensity I 2 R4 ´ d ; where d is the duration of the workout. We

finally only selected workouts with a duration between 15 and
120min long that had no missing data and further filtered out
participants with less than 10 valid runs. We obtained 270,707
outdoor runs from 7465 distinct subjects (see Fig. 1 for cohort
summary and inclusion criteria).
Our hybrid approach blends a physiological model of heart rate

dynamics with machine learning components (e.g., deep neural
networks) to adapt it to wearable data and personalize it to
individual subjects. We first detail the physiological model and
then describe our ML-based augmentations and learning algo-
rithm. A diagram of the end-to-end system is detailed in Fig. 2.

Physiological HR dynamics model
Several works in the sports physiology literature have studied
heart rate dynamics in response to exercise using ordinary
differential equations (ODEs)14–17. These approaches translate
the physical mechanisms of the human body into differential
equations in order to incorporate domain (physiology) knowledge
in the modeling. This is an appealing method to build
interpretable and ultimately trustworthy models of fitness and
health.
A common approach for modeling changes in heart rate, HR,

due to exercise intensity, t↦ I(t), is to introduce the oxygen
demand, D, as an intermediary quantity through coupled ODEs15

_DðtÞ ¼ B � f ðIðtÞÞ � DðtÞð Þ;
_HRðtÞ ¼ A � HRðtÞ � HRminð Þα � HRmax � HRðtÞð Þβ � DðtÞ � HRðtÞð Þ;

HRð0Þ ¼ HR0;

Dð0Þ ¼ D0:
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In this dynamical system, the function f translates the
instantaneous activity intensity I into the necessary oxygen
demand for I. The top equation attempts to match the current
body oxygen demand D with the instantaneous demand f(I) (also
known as the drive function). Parameter B controls how fast D
adapts to f(I). At the same time, the second equation drives the
heart rate HR toward the pace required to deliver the demand D.
Parameter A controls how fast the heart can adapt while the terms
with HRmin, HRmax, and α, β control how difficult it is to reach the
maximal heart rate or to rest down to the minimal heart rate.
To learn the parameters of this ODE, previous studies of such

models have limited their data collection to controlled laboratory

Fig. 1 Cohort summary. a Subject and workout inclusion diagram. b Description of study data and summary statistics of included
participants. Intervals reflect the 2.5 and 97.5 quantile range.
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environments with small samples—typically fewer than ten
individuals14–17. Workout intensity data I was typically the power
output or cadence from a stationary bicycle, and the drive
function f(I) was modeled using low-order polynomials14,15. Here,
we extend the ODE method to large-scale uncontrolled environ-
ments and use it to model workout data from wearable devices;
we do this by learning some parts of the ODE as neural networks
and some parameters of the ODE as user-specific variables.
Furthermore, we augment the ODE to incorporate environmental
factors, such as temperature and fatigue.

Modeling heart rate in uncontrolled environments
In uncontrolled environments, accurately measuring the exercise
intensity I becomes challenging. Instead, wearables rely on
sensors like GPS and pedometers to measure proxy variables for
activity intensity (such as speed, elevation, and number of steps).
However, the relationship between I and f(I) becomes unclear
when dealing with such generally noisy measurements. To tackle
this challenge, we use a flexible neural network to model and
learn the drive function f.

Uncontrolled environments might also have external factors
that can affect heart rate. For instance, higher temperatures
induce a higher oxygen demand21. In contrast to controlled
environments, workouts in uncontrolled settings may also vary
in duration, leading to potential changes in heart rate
dynamics over time due to fatigue. Hence, we refine the heart
rate equations by modeling how they are affected by the
weather W, which includes temperature and humidity mea-
surements at the time of workout, and add the effect of fatigue
incurred over time t during the workout. We parameterize
these effects by neural networks g(W) and h(t), respectively,
and we incorporate them into the demand equation. The term
(f(I(t))− D(t)) becomes (f(I(t)) ⋅ g(W) ⋅ h(t)− D(t)). For instance,
g(W) > 1 indicates an increase in oxygen demand for the
weather W.

Learning a personalized large-scale heart rate model
Each individual possesses their own set of personalized para-
meters (A, B, α, β, as well as the drive function f and HRmin, HRmax)
that capture their unique heart rate dynamics in response to
exercise. Inferring these parameters for each subject and
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Fig. 2 Method overview. Overview of the method for modeling heart rate response to exercise with wearable data. The top panel describes
the study population data and details of the wearable workout measurements used. The two bottom panels describe the training procedure
and how the model components are trained to learn the personalized representation and ODE parameters using only heart rate and workout
data. Learned representations can then be used downstream to predict various physiological traits, e.g., Fitness, BMI, and age.
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understanding how they might evolve over time can reveal
important insight into their health status17. However, learning
these parameters for every subject and each new workout is
computationally expensive. Instead of directly learning a set of
parameters for each subject, we assume that an individual’s health
state at a given time can be represented by a low-dimensional
latent vector z 2 Rℓ . Then, we turn each ODE parameter into a
function of this health representation. For instance, the parameter
α becomes α(z), and f(I) becomes f(z, I). All these “functions of z”
are parametrized as neural networks, and our goal will be to learn
these health representations.
With these changes, the ODE in Equation (1) becomes

_DðtÞ ¼ BðzÞ � f ðz; IðtÞÞ � gðWÞ � hðtÞ � DðtÞð Þ;
_HRðtÞ ¼ AðzÞ � HRðtÞ � HRminðzÞð ÞαðzÞ � HRmaxðzÞ � HRðtÞð ÞβðzÞ � DðtÞ � HRðtÞð Þ;

HRð0Þ ¼ HR0ðzÞ
Dð0Þ ¼ D0ðzÞ:
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Fitting our proposed ODE model to large-scale wearable data
involves learning both the global shared neural networks and the
subject-time specific health representation z. In order to efficiently
learn the health representation z, we finally introduce one last
component inspired by deep learning methodologies. We posit
that at any time, the subject’s workout history up to this time
contains all of the information to characterize z. To model the
complex interactions that define z based on this history, we utilize
a convolutional neural network (CNN) encoder architecture. This
allows us to learn the subject-specific health representation as a
function of their past workout data. Hence, we exchangeably refer
to z as the health representation or the history embedding. Figure 2
summarizes the full pipeline of our method: at any given time and
for any subject, the model takes the workout history of this subject
up to this time and feeds it to an encoder function to obtain a
health representation z. Subsequently, the representation z is

transformed into ODE parameters that are used to solve the ODE
for new incoming workouts. Training the model end-to-end is
done with standard gradient descent to identify the best neural
network weights that best predict workout heart rate sequences.
For training and evaluation, we divided the data into a training

set and a testing set. The training set comprises the first 80% of
workouts for each subject, while the remaining 20% of workouts
form the test set and are held out during training. We selected a
few hyperparameters using the best training loss. Additional
model details and a description of the implementation, neural
network hyperparameters, and training procedure using ODE
solvers can be found in Supplementary Methods.

RESULTS
Heart rate profile forecasting
The representation z estimated using an individual’s workout
history can be used to predict the heart rate in future workouts.
We measured the accuracy of heart rate prediction on workouts
that were held out for each subject. Figure 3 shows two examples
comparing the true heart rate to the heart rate estimated using
our model (additional predictions in Supplementary Fig. 7). Note
that for predicting HR for workout w happening at date T, our
model only uses the workout intensity measures of that sample I
and the personalized health representation z—coming from
encoding the previous workouts; i.e., the model does not observe
any HR measurements for making predictions.
We compare the prediction performance of our model to seq-

to-seq deep models with and without the embedding z with
similar modeling capacity, as well as a simple heuristic that uses
the per-subject mean HR to form the prediction. Figure 3 reports
the performance across these baselines, with our model out-
performing the context-free (i.e., no z) and the strong seq-to-seq
baseline. We also measure the performance of our model in

Fig. 3 Prediction performance summary. a Heart rate reconstruction performance. We compare the average workout mean absolute error
(MAE) (and 95 % CI), as well as the median workout MAE and interquartile range (IQR). Additionally, we compare the mean absolute percent
error (MAPE) (and IQR) and the prediction sequence correlation (and IQR). We observe the history embedding z used in the hybrid ODE model
and seq-to-seq baseline improves predictions, and the hybrid ODE model consistently outperforms the strong seq-to-seq baseline. b Example
HR predictions for two separate workouts. The x-axis indicates time since the beginning of the workout and the y-axis shows the subject’s
instantaneous heart rate (beats per minute). The measured heart rate sequence is in gray, and the predicted sequence is in red. Uncertainty
bands about the observation reflect a standard deviation of ± 5 beats per minute in the heart rate measurement. Additional predictions in
Supplemental Fig. 7.
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estimating the HR after the first 2 min of the workout. Indeed, it is
difficult, if not impossible, for a model to predict the heart rate at
the beginning of a workout. The initial heart rate depends on the
user’s activity prior to the workout, which is unobserved and
unpredictable. Conversely, we hypothesize that the heart rate
after 2 min can be explained by the user’s activity in the first 2 min
that we do observe. Again, we see that the hybrid ODE model
outperforms all baselines.

Oxygen demand inference
One of the key benefits of our hybrid model lies in the
interpretability of its latent variables. Supplementary Fig. 8 depicts
the inferred demand curve D for a set of random workouts. We
observe that the demand is highly correlated with HR, but
typically at a lag—changes in HR tend to follow changes in
demand, and the speed of those changes is described by the ODE
parameters.

Calories burned estimation
The number of calories burned during exercise can be approxi-
mated using heart rate measurements during the workout with a
linear formula22. This, which is only a first-order approximation
often augmented with other movement measurements, is useful
for planning workouts based on calorie burn goals and even more
useful in cases where individuals are not wearing a wearable
device that records heart rate. Our method can reliably estimate
the number of calories burned with a 5% relative error (the same
relative error as the heart rate reconstruction), only using workout
metrics that can be measured using a smartphone.

Heart rate zone prediction
Exercise heart rate zones are the percentage of an individual’s
age-related maximum heart rate reached throughout the course
of exercise, where maximum heart rate is derived using the
common 220 bpm− age heuristic23 (distinct from the ODE model
parameter). Using our physiological model, we can predict heart
rate zones using the workout data. This can help individuals plan
personalized exercise routines to achieve their fitness goals more
effectively. We define six zones (% intervals [0, 50, 60, 70, 80, 90,
100]) of maximum heart rate, and Fig. 4a shows the performance
of our method in predicting the HR zone for the whole population,
as well as different subgroups of the population. We find that the
model can predict heart rate zones with an accuracy of around
67%. To provide a comparison, we computed the marginal
distribution of true heart rate zones across all workouts and found

that the most frequent zone ([80,90]) occurs about 38% of the
time. So the best possible constant predictor would be correct
about 38% of the time—significantly lower than the accuracy
achieved by our model.

Quantifying the impact of the weather on heart rate
Leveraging the interpretability of our ODE model, we analyze the
learned neural network g and quantify the relative effect of
weather on the body’s oxygen demand. This constitutes one of
the largest studies of this kind (over 270,000 workouts). The neural
network g is a global function shared between all subjects and
workouts. Figure 5 shows an increase in body oxygen demand by
up to 10% in high temperatures and humidity. Moreover, we
found that personalizing g asW↦ g(z,W) in the same way that the
personalized exercise intensity function f is parameterized by the
representation z did not result in significant improvements in
heart rate predictions. We kept a shared g for simplicity and
interpretability.

Learning about cardiorespiratory health
To check that our representations summarize information about
cardiorespiratory health, we use a summary of cardio fitness, VO2

max, estimated by wearable devices. VO2 max is the maximum
rate of oxygen the body can consume during exercise, normalized
by body mass. While a cardiopulmonary exercise test (CPET) is the
gold standard for measuring VO2 max, such tests can be
prohibitively expensive and even infeasible for certain popula-
tions. Instead, we can approximate VO2 max from sub-maximal
exercise bouts using measurements collected in our study24,
including heart rate, GPS, and user informaiton25.
Using the health representations z, we predict the estimated

VO2 max with a simple linear regression model and achieve a
mean absolute error of ± 2.16mL/(kg ⋅min), which is about 5% of
the average VO2 max in the data (42.5 mL/(kg ⋅min)). Figure 4b
reports the performance of a linear regression model on the ODE
representations only, on demographics only, or on both. The
demographics include subject height, weight, biological sex, and
age. Supplementary Fig. 11 shows a 2D projection of the health
representation for different workouts where we can see the
separation of higher and lower values of VO2 max. We also
examined the association between the z representations and
subject age and body mass index (BMI). With a linear regression
model, we find that the z representations explain 33% ( ± 0.3 %) of
the variance in age and 16% ( ± 0.7%) of the variance of BMI in our
cohort.

Fig. 4 Heart rate zone and VO2 max prediction results summary. a Predictive performance of heart rate zones (mean and standard
deviation). The most frequent zone occurred 38% of the time on average, which corresponds to the accuracy the best possible baseline
predictor can achieve. b VO2 max prediction performance in mean squared error (MSE) and mean absolute error (MAE) (mean and standard
error).
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Interpreting hybrid ODE model inferences
We also investigate the relationship between the inferred ODE
parameters (A, B, α, and β) and age, sex, and fitness. Supplemen-
tary Fig. 9 illustrates the variation of these four parameters as a
function of age (on the x-axis), stratified by VO2 max tertiles. As
previously mentioned, a higher value of α suggests that
individuals can more easily approach their resting heart rate. We
observe that the highest VO2 max tertile exhibits a significantly
higher inferred α, although the gap disappears as the cohort ages.
Similarly, a higher value of β indicates that individuals can more
readily reach their maximum heart rate. Among the youngest
cohort, we observe that the fittest group can reach the inferred
maximum heart rate more quickly. The parameter A characterizes
the overall sensitivity of heart rate changes. In the younger age
range, the least fit (lowest VO2 max cohort) displays a significantly
higher average A value, which diminishes as age increases. Lastly,
parameter B signifies the sensitivity of the demand sequence D to
changes in exercise intensity. We note that this value exhibits less
variability across ages and VO2 max strata.

DISCUSSION
The increasing availability of wearable devices is enabling
individuals to track their health and fitness. We developed a
method that predicts heart rate response to workout intensity
using data from a wearable device. We learn representations that
summarize the dynamics of the HR response, by combining
machine learning techniques with an expert model from the
exercise physiology literature. All results are derived from one of
the largest studies in the general population (outside of the lab),
illustrating the power of wearables in real, everyday scenarios.
We show that this hybrid model can accurately predict heart

rate sequences for new workouts given a user-specific history of
recent workouts. Beyond heart rate predictions, we show that
representations from this algorithm can serve as a measure of
cardiorespiratory fitness, which can help track fitness levels over
time and aid personalized workout planning. Additionally, we
show evidence of the effect of weather on heart rate demand
across the study population.
Methodologically, we demonstrate how machine learning

techniques can be used to translate an expert model—originally
developed for a controlled setting—to noisy, real-world signals
collected by wearables throughout a subject’s daily life. We use
ML techniques to both augment the model (e.g., using a neural

network to model the intensity-demand function) and to scale the
algorithm to a large dataset of users and workouts (e.g., via
learned subject-specific history embeddings).
There remain multiple avenues for future work. The first is further

developing applications of this model for planning new workouts
and tracking fitness changes over time. While predictions of heart
rate response describe user fitness, it remains an open question
how to translate insights from such a model to improvements in
fitness over time. With respect to behavior change, the studied
effects of incentivizing exercise adherence remain unclear26,27, and
the extent to which personalized insights may help is unknown.
Additionally, we aim to better understand how these learned

representations are associated with or predict changes in
cardiovascular function and adverse cardiovascular outcomes.
Cardiovascular health is strongly associated with exercise and
fitness level28, and physical activity can be a preventative activity
and prognostic indicator for heart failure29. And while we focus on
running workouts, lower-intensity walking workouts may also
carry rich information about an individual’s cardiovascular health
—adaptations of our approach could be applied to walking
workouts (or both walking and running workouts).
Lastly, this work proposes a new methodology to combine

expert models of physiology alongside machine learning compo-
nents. While we observe that this expert model can provide an
inductive bias that makes predictions more accurate, it remains to
be studied how accurately physiologically interpretable para-
meters can be identified and inferred from wearables data.
Furthermore, more complex models of heart rate—e.g., directly
parameterizing VO2 max or exercise thresholds—remain to be
studied within this hybrid framework.
A limitation of the study design is that participants must have

access to an iPhone with the Research app and an Apple Watch to
be eligible for participation. Furthermore, we select individuals who
have running workouts to train and evaluate our models. Further
study is required to understand if our approach is accurate under a
less active population—such selection bias may confound our
interpretation of inferred physiological parameters. Another limita-
tion is that this study focuses only on outdoor running workouts. In
theory, this approach could be extended to other activities, such as
cycling or indoor runs, provided the analogous workout intensity is
sufficiently rich. Additionally, our study is limited to questions of
cardiorespiratory fitness, and not subsequent health outcomes.
Follow-up on more detailed longitudinal data is necessary to
establish a strong link between representations learned by our
algorithm and subsequent health-related events.

DATA AVAILABILITY
Due to privacy and consent considerations, data from the AHMS cannot be shared.
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CODE AVAILABILITY
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rate-models upon acceptance. This repository includes methods for preprocessing
data, fitting models, and making predictions.
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