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A translational perspective towards clinical AI fairness
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Jasmine Chiat Ling Ong 8, Zhen Ling Teo5, Ting Fang Tan5, Narrendar RaviChandran 5, Fei Wang 9, Leo Anthony Celi 10,11,12,
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Artificial intelligence (AI) has demonstrated the ability to extract insights from data, but the fairness of such data-driven insights
remains a concern in high-stakes fields. Despite extensive developments, issues of AI fairness in clinical contexts have not been
adequately addressed. A fair model is normally expected to perform equally across subgroups defined by sensitive variables (e.g., age,
gender/sex, race/ethnicity, socio-economic status, etc.). Various fairness measurements have been developed to detect differences
between subgroups as evidence of bias, and bias mitigation methods are designed to reduce the differences detected. This
perspective of fairness, however, is misaligned with some key considerations in clinical contexts. The set of sensitive variables used in
healthcare applications must be carefully examined for relevance and justified by clear clinical motivations. In addition, clinical AI
fairness should closely investigate the ethical implications of fairness measurements (e.g., potential conflicts between group- and
individual-level fairness) to select suitable and objective metrics. Generally defining AI fairness as “equality” is not necessarily
reasonable in clinical settings, as differences may have clinical justifications and do not indicate biases. Instead, “equity” would be an
appropriate objective of clinical AI fairness. Moreover, clinical feedback is essential to developing fair and well-performing AI models,
and efforts should be made to actively involve clinicians in the process. The adaptation of AI fairness towards healthcare is not self-
evident due to misalignments between technical developments and clinical considerations. Multidisciplinary collaboration between AI
researchers, clinicians, and ethicists is necessary to bridge the gap and translate AI fairness into real-life benefits.
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INTRODUCTION
The early days of artificial intelligence (AI) were filled with great
aspirations, some of which have now been realized, particularly in
the “post-ChatGPT” era1–4. In healthcare, data-driven AI models
have shown capability in extracting objective evidence from
complex and large-scale databases5,6. Yet, algorithms are only as
objective as the data that they are based on. Similarly, human
judgments are inevitably susceptible to bias in handling sensitive
data (e.g., age, gender/sex, race/ethnicity, socio-economic status,
weight, sexual orientation) even when these data variables have
no objective connection with the outcome of interest7. In high-
stakes fields like clinical decision-making, fairness (or absence of
bias) is of vital importance. Proper application of AI fairness in
clinical algorithmic development could contribute to the reduc-
tion of health disparities rather than their escalation8,9 but
practical implementation is not self-evident.
The practice of medicine has continuously been evolving from

eminence-based to evidence-based, but due to limited resources,
the evidence may be gathered from a skewed representation of
the underlying population, e.g., in terms of race/ethnicity or age
subgroups. The emerging data-driven practice in medical
decision-making may reduce the risk of bias, but if not carefully
designed, decision rules generated can still lead to unfair
decisions10. For example, the online Kidney Donor Profile Index

(KDPI) calculator used by the US Organ Procurement &
Transplantation Network predicts higher risks of kidney graft
failure for black donors than for non-black donors when all other
conditions are identical, resulting in fewer eligible organ sources
from black donors11.
Such risk of bias is not automatically mitigated by using more

complex algorithms or a larger amount of data12,13. In one
example, questionable differences are observed in AI-based
survival prediction after liver transplantation by gender14, which
can bias clinical decisions and allocation of scarce healthcare
resources against certain patient subgroup(s) simply because of
the traits they were born with. Such biased models violate the
justice required in delivering equal well-being in healthcare. It is
essential to develop fair models for data-driven clinical decision-
making, but current AI fairness research may not be well-
adaptable for clinical settings.
In recent years, with growing public awareness of bias in AI

models in real-life tasks such as face recognition15 and prediction
of recidivism16, AI researchers have developed extensive qualita-
tive and quantitative approaches to evaluate and ensure fairness
in model development17,18. However, due to the knowledge gap
amongst AI researchers and clinicians, AI fairness studies tend to
focus on abstractive conceptualization or technical developments.
While these aspects are highly important, it is unclear how they
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can be applied to healthcare. This paper provides an overview of
the misalignments of current AI fairness research with practical
clinical concerns and the obstacles to AI fairness adaptation, which
is visually summarised in Fig. 1.

AI FAIRNESS FROM A TECHNICAL PERSPECTIVE
Fair AI has been associated with a variety of technical properties
and capabilities. It is widely believed that AI is capable of making
accurate predictions. Additionally, AI is expected to remain robust
against the cognitive bias and prejudice that humans experience
when making judgments, and even to detect biases that humans
cannot recognize17,18. This builds on a series of concepts and
methods, as visually summarized under “AI fairness” in Fig. 1 and
elaborated below.

Bias and fairness types
Bias and fairness are two concepts that usually oppose each other: a
decision is unfair if it is biased towards (or against) any individual or
subpopulation19. In the development pipeline of an AI model, which
typically involves data collection, model training, evaluation, and
validation, bias (and therefore unfairness) can occur at any stage for
various reasons, sometimes in an imperceptible manner20.
First, any historical (and existing) bias in medical practice can be

reflected in medical records, e.g., underdiagnosis and under-
treatment of postpartum depression has been observed among
minorities on Medicaid21,22, which will bias the resulting predic-
tion models in similar ways if not carefully handled. Data under-
representation23 is another common source of data bias that
arises from inappropriate data collection and sampling, where
certain subgroups constitute a smaller proportion of the sample
than they are in the underlying population, leading to biased
inference and predictions. For example, the landmark Framing-
ham Heart Study greatly improved the understanding of
cardiovascular disease but was more beneficial to Caucasians
than to other underrepresented ethnic groups in the USA24. Data
bias may be amplified by inappropriate data pre-processing,
including but not limited to the exclusion of incomplete records
when information is not missing at random, or a naive
combination of datasets from different sources without account-
ing for overlapping subjects. All possible sources of data bias
should be proactively identified and addressed during the early

stages of AI model development before it impedes fair model
development.
In addition to data bias, inappropriate model development

steps (e.g., unjustifiable use of sensitive variables such as gender/
sex and race/ethnicity in decision-making) can amplify existing
bias or introduce new bias in AI models, resulting in algorithm bias
that is another prevalent source of AI unfairness9. The use of black-
box AI models, especially complex deep learning models,
exacerbates algorithm bias by making it more difficult to detect
and understand. Algorithm bias can be mitigated, but often at the
expense of model performance25, for example, when intentionally
excluding sensitive variables that can add information for
outcome prediction in the development data. This makes it
difficult to develop and implement completely fair AI in pragmatic
healthcare practice.

Fairness metrics in AI literature
Many quantitative metrics have been developed to assess fairness
in AI, mostly from the perspective of “equality”17,18,26: a fair model
should have equal performance in subgroups with respect to
sensitive variables. Two types of fairness metrics are discussed most
often: group-based and individual-based17,18,26. Group-based
metrics measure the consistency of model performance (e.g., using
the confusion matrix or calibration) across subgroups defined by
sensitive variables, and a fair model is expected to behave similarly
among subgroups. Some widely used individual-based metrics
include fairness through awareness27 which assumes that observa-
tions with similar conditions should have similar predictions, and
counterfactual fairness28 expecting that changing a sensitive
variable should not alter the predicted outcome for an individual.
Interested readers can refer to Supplementary Table 1 for a more
detailed overview of fairness metrics.

Methods to detect, prevent, and mitigate bias
To ensure the fairness of AI models, each step of the modeling
pipeline should be self-motivated and aware of fairness26, even for
data exploration29. A detailed description of datasets (e.g., time-
period and site information for data collection) can provide
evidence to detect data bias such as under-representation of any
subpopulation23 for early bias prevention. A simple way to resolve
such data bias is to collect or request additional data, but this is
not always feasible due to regulations and legislation. In this case,
AI researchers can pre-process existing data using appropriate

Fig. 1 Conceptual model towards clinical AI fairness. Left panel: the framework of AI fairness from the technical perspective; right panel: the
corresponding concerns from the clinical perspective, which are not yet (fully) addressed by current methodological developments.
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sampling methods to better represent the underlying popula-
tion30, and use regular methods to develop models from the
adjusted dataset. Some prototype methods are listed in Supple-
mentary Table 2 as examples.
In addition to the pre-process approach described above, there

is a rich body of research on methods to mitigate data bias in- or
post-process during or after model development, respectively,
using the fairness metrics described in the previous subsection as
bias-monitoring and fairness-evaluation tools. Typical in-process
methods include adding fairness constraints served by fairness
metrics, and representation learning by filtering the sensitive
information for decision-making, whereas post-process methods
primarily rely on catering the established model for sensitive
subgroups (see Supplementary Table 2 for examples).

AI FAIRNESS FROM A CLINICAL PERSPECTIVE
The AI fairness technologies described in the previous section
have been applied in healthcare research, yet there remains a
prominent gap in the understanding of “fairness” between AI
developers and healthcare providers. The part of Fig. 1 under
“Clinical AI fairness” lists examples of important considerations in
clinical AI fairness not yet (fully) addressed by current methodo-
logical developments, which may explain the limited adoption of
AI fairness in clinical applications. In this section, we summarize
the potential hurdles and challenges in AI fairness in healthcare, in
order to promote future applications in clinical settings.

Hurdles for evaluating fairness in healthcare
On top of AI fairness metrics discussed in the previous section, the
mechanisms behind the fairness metrics can be problematic from
the perspective of healthcare. For example, the theoretically well-
defined and well-received counterfactual fairness28 assumes that
the prediction should remain unchanged for an individual when
changing the value of a sensitive variable (e.g., female to male)
with all other variables unchanged. This may be plausible when
predicting the likelihood of being hired by a company, but less so
in clinical contexts with natural biological differences between
females and males31, where artificially changing one sensitive
variable while leaving others unchanged may lead to comparison
with a “phantom” improbable to exist in real life.
Secondly, different types of fairness metrics correspond to

varying fairness definitions, which may in some cases conflict in
perspectives and ethical principles: group-based fairness may be
more relevant to the perspective of hospital leadership or public
health policy-making on the basis of population ethics, whereas
individual-based metrics are closer to the perspective of patient-
level decision-making guided by clinical ethics32. Such differences
in ethical assumptions and clinical perspectives should be
accounted for and justified when applying fairness metrics in
healthcare applications, and failing to account for either
individual- or group-based fairness seems unethical33.
The choice of fairness metrics is further complicated by the

large number of metrics available that may produce inconsistent
results26. Though there have been several review papers discuss-
ing the relationships and differences between these metrics, they
do not provide practical guidelines regarding the selection of
fairness metrics to address specific clinical needs34. Due to the
trade-offs between the metrics, it is mathematically impossible to
optimize all metrics simultaneously, except in highly restrictive
cases26,33,35.
Moreover, group-based metrics are “secondary” metrics, which

reflect differences in primary performance metrics across sub-
groups17,18,26,36, such as the commonly applied fairness metric —
equality of opportunity defined as the differences in true positive
rates among subgroups37; however, objective thresholds are
desperately needed to differentiate reasonable differences from

evidence of bias. Several hypothesis testing methods38,39 have
been proposed to statistically assess the presence of a difference,
but when the sample size is sufficiently large, small differences can
appear statistically significant even when it is clinically non-
significant40. It would be relevant to incorporate such considera-
tions when modifying existing fairness metrics or devising new
ones for clinical AI models to avoid misclaims of fairness.

Differences or biases?
As discussed in the previous section, “differences” are roughly
equivalent to “biases” in general AI fairness research in bias
detection and fairness evaluation, where most biases are claimed
based on “secondary” metrics derived from differences of primary
performance metrics30,41. However, these two terms are distinct,
where “differences” refers to variations among individuals or
groups and requires respect, while “bias” refers to unfair
preferences or prejudices towards certain individuals or groups
and requires mitigation42. When coming to the clinical context,
differences and biases can be difficult to disentangle, and failure
to distinguish them could lead to negative consequences43. On
the one hand, claims of differences can be biased if they lack solid
justification; for instance, genetic differences between race/
ethnicity subgroups in relation to certain diseases can be
controversial10, so as the resulting differences detected by fairness
metrics. In addition, when the biomedical differences have been
identified, e.g., males hold a higher risk of non-small-cell lung
cancer than females44, bias detection remains a challenge, as it is
difficult to assess if the differences observed are fully justifiable by
biomedical reasons or are partially due to unknown bias.
On the other hand, simplistic claims of biased predictions could

conceal the real problems that merit further investigations. After
reporting bias in models, most studies either stopped there or
tried to mitigate the bias via model adjustments. However, forced
adjustments for equal performance across subgroups may impair
model stability and limit generalizability45. More importantly,
when studying adverse outcomes such forced performance
improvement for under-privileged subgroups to some extent
approves existing unfairness and justifies existing health dispa-
rities rather than reduces them. In such cases, underpinning the
cause of disparity to enable subsequent interventions is practically
more desirable. As an example, breast cancer studies in
Singaporean cohorts reported worse outcomes for Malaysian
females than for other ethnicity groups. In-depth investigations
revealed that Malaysian females were more hesitant to seek
medical examinations and treatments due to cultural reasons,
causing delayed diagnosis and hence worse clinical outcomes46.
Such findings provide hints for possible interventions to improve
real-life health outcomes.

The problematic assumption underlying current fair AI
methodologies
Superficially considering difference as bias, current methodologies
of AI fairness mainly contribute to solving clinical questions that
particularly assume “equality” as evidence of non-bias (fairness)17,18,
such as equal chances of receiving treatment among pre-defined
subgroups (e.g., by age or gender). Despite the fact that this
assumption of “equality” is practical in quantifying fairness as an
abstractive concept, which led to its widespread adoption in
general AI fairness, it is normally embedded with a strong implicit
assumption that the treatment is equally suitable and hence must
be made equally available for all subgroups if all other conditions
are identical. Such an assumption is clearly irrational for some
sensitive variables, such as age, which is an important consideration
in any clinical decision-making. Moreover, insisting on equality in
treatment regardless of patients’ age and the corresponding
prognosis neglects important dimensions of medical practice
including dignity preservation and quality of life optimization. Thus,
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focussing on principles of equity rather than equality may push
concepts of fairness beyond the common discussion in general fair
AI research. This will likely require the inclusion of contextual factors
such as patients’ preferences. Moreover, definitions of AI fairness
must be contextualized to clinical and social scenarios, which would
inevitably involve different sets of assumptions, and be informed by
real-life feasibility.

Rethinking “sensitive variables” with respect to healthcare
scenarios
In general fair AI studies, sensitive variables such as age, gender/
sex, race/ethnicity, social status, marital status, and disability status
are repeatedly mentioned and a fair decision-making process is
expected to be free from the influence of such information17,47.
However, as discussed above, some of these variables are highly
relevant to disease diagnosis, treatment decisions and prognosis,
and therefore cannot be hidden from clinical decision-making and
healthcare resource allocation.
When developing fair AI for clinical outcomes, the set of relevant

sensitive variables should be carefully re-evaluated for each
application with clinical justifications. Examining the role of
sensitive variables in clinical decision-making presents a significant
challenge, as it requires a case-by-case analysis. This may be done
by investigating the relationship between sensitive variables and
the outcome (e.g., the presence of correlation or causation), and
accordingly exclude or include the sensitive variables to facilitate
fair decision-making in the specific context, with an objective of
“equality” or “equity” as appropriate. Race/ethnicity is particularly
challenging to handle in the pursuit of “equity”, as it can be
associated with systemic bias that affects clinical practice, or
genuine biological and/or sociological differences among subpo-
pulations48. The aforementioned postpartum depression study is a
typical example of systemic racial/ethnic bias inducing a correlation
between this sensitive variable with the outcome, which needed to
be corrected by including this variable with additional bias
mitigation procedures instead of simply excluding racial informa-
tion21,22. Whether an observed race/ethnicity-related difference is
genuine and justifiable can be controversial and requires additional
investigations. For example, while the KDPI score to predict kidney
graft failure was criticized for predicting a higher risk for black
donors, further investigations revealed that this may be justified by
differences in some genetic factors49. Hence, instead of using race/
ethnicity as an easy surrogate, it is preferable to replace the proxy
with the underlying factors (in this example the genetic factors) that
have a causal effect on the outcome24,50. Such follow-up studies can
also help identify modifiable factors to improve healthcare
outcomes, instead of passively associating inferior outcomes with
some racial subgroups.
When tailoring AI fairness to clinical outcomes, researchers also

need to reframe the concept of “fairness” in the specific clinical
context, and a fair treatment decision requires other crucial
considerations that are not applicable to general AI fairness
research. These considerations include factors that may induce
over-treatment (over-diagnosis) or under-treatment (under-diag-
nosis)21,51, confounders for treatment effects52, patients’ implicit
considerations of interests such as end-of-life care preferences,
clinicians’/patients’ prejudice towards a specific treatment, and
lack of AI digital literacy that may limit lower-resource commu-
nities from adopting and benefitting from AI, etc. These questions
are currently overshadowed by traditionally recognized sensitive
variables, hindering the applications of well-established meth-
odologies in fair AI.

Clinicians in the loop with fair AI
Clinical AI fairness is a multidisciplinary research topic that requires
input from AI researchers, clinicians, and ethicists. Some of the
concerns regarding clinical AI fairness have already been discussed

and addressed in medical ethics, bioethics and epidemiological
literature43,53–55, calling for effective cross-disciplinary communica-
tion. Engaging multidisciplinary experts in active discussions can
enhance existing AI governance schemes to promote fairness.
Measures such as the establishment of data panels to oversee the
data collection and avoid data bias56, dynamic monitoring of model
fairness in adherence to ethical principles within healthcare
workflows57, and incorporation of fairness considerations into
clinical AI guidelines58 contribute to raising awareness and enhance
the fairness of AI applications in healthcare.
In addition to the role of governance, clinicians can contribute

more proactively to the multiple stages of fair AI model
development. Despite the growing awareness of the potential of
AI models in medical research5,6, clinicians typically only
participate in AI modeling in limited ways, such as providing
general context description and validating the alignment of
predictions and actual decisions, where they are frequently out of
the modeling process5. However, clinicians possess the ability to
not only proactively identify potential biases within specific
clinical context for earlier bias detection, but also to discern bias
and clinically meaningful differences to set appropriate objectives
for AI models21,22. In addition, with clinicians evaluating the
algorithms purportedly addressing bias, standard clinical signifi-
cance regarding fairness can be put forward under clinical
common sense. Thereafter, only the models with clinically
significant bias should be adjusted, avoiding over-adjustment or
over-claim of bias.
To align the objectives of AI developers and clinicians, it is

necessary to establish a two-way communication between the two
parties to facilitate an iterative model building process that aligns
technical rationale with clinical concerns. For example, fairness
metrics applied (or developed) by AI developers should be clinically
contextualized to accurately quantify fairness in clinical settings. Such
communication requires some functional understanding of AI
modeling for clinicians59 and clinical context grasping for AI
developers56. Explainable AI can contribute to such communication
since it provides clinicians with the capability of interpretingmodels60

and giving feedback to the AI developers61. Having a better
understanding of the model’s decision-making process could enable
clinicians to help improve the model’s accuracy, and clinicians would
also guide the algorithms in a more equitable direction.

CONCLUSIONS
Current AI fairness research may not be readily adaptable to
clinical settings. With the discussion of multiple misalignments
between the technical and clinical perspectives, we highlighted
the obstacles to clinical AI fairness translation, which requires
multidisciplinary collaboration among clinicians, AI researchers,
social scientists, philosophers, and beyond.
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