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Engaging a national-scale cohort of smart thermometer users
in participatory surveillance
Yi-Ju Tseng 1,2, Karen L. Olson1,3, Danielle Bloch4 and Kenneth D. Mandl 1,3,5✉

Participatory surveillance systems crowdsource individual reports to rapidly assess population health phenomena. The value of
these systems increases when more people join and persistently contribute. We examine the level of and factors associated with
engagement in participatory surveillance among a retrospective, national-scale cohort of individuals using smartphone-connected
thermometers with a companion app that allows them to report demographic and symptom information. Between January 1, 2020
and October 29, 2022, 1,325,845 participants took 20,617,435 temperature readings, yielding 3,529,377 episodes of consecutive
readings. There were 1,735,805 (49.2%) episodes with self-reported symptoms (including reports of no symptoms). Compared to
before the pandemic, participants were more likely to report their symptoms during pandemic waves, especially after the winter
wave began (September 13, 2020) (OR across pandemic periods range from 3.0 to 4.0). Further, symptoms were more likely to be
reported during febrile episodes (OR= 2.6, 95% CI= 2.6–2.6), and for new participants, during their first episode (OR= 2.4, 95%
CI= 2.4–2.5). Compared with participants aged 50–65 years old, participants over 65 years were less likely to report their symptoms
(OR= 0.3, 95% CI= 0.3–0.3). Participants in a household with both adults and children (OR= 1.6 [1.6–1.7]) were more likely to
report symptoms. We find that the use of smart thermometers with companion apps facilitates the collection of data on a large,
national scale, and provides real time insight into transmissible disease phenomena. Nearly half of individuals using these devices
are willing to report their symptoms after taking their temperature, although participation varies among individuals and over
pandemic stages.
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INTRODUCTION
Participatory surveillance systems crowdsource individual reports
to rapidly assess population health phenomena, potentially
yielding a timely signal that complements traditional population
health surveillance1–3. These systems have proven useful for
infectious diseases, including influenza-like illness (ILI)4, vector-
borne diseases5, foodborne illnesses6, and COVID-197–9.
Common platforms underlying participatory surveillance sys-

tems include social media sites, the Web, smartphone apps, and
connected devices2,10. One of the most crucial challenges is
recruitment and retention of a large cohort of participants
reflecting the population of interest3,11,12. The value of these
systems increases dramatically when more participants join and
persistently contribute4,9. Willingness to participate may be
affected by marketing and recruitment efforts11, individual
demographic characteristics13–15, population disease levels15,
and media coverage16. Furthermore, the behavior of checking
symptoms or taking body temperature may be affected by one’s
level of anxiety regarding infectious diseases17,18.
We sought to analyze the level of and factors associated with

engagement in participatory surveillance among a national-scale
cohort of individuals using smartphone-connected digital thermo-
meters. When recording temperatures, participants can use the
companion smartphone app to report symptoms and assign
readings to profiles with self-reported demographic information.
In turn, users are provided with basic health guidance developed
by clinicians. Temperature readings from commercially available
smart thermometers are known to be effective in forecasting

influenza19 and ILI20, as well as discerning within-household
infection transmission dynamics21.

RESULTS
Characteristics of the participants
In total, 1,325,845 participants took 20,617,435 temperature
readings during the study period (January 1, 2020 to October
29, 2022), yielding 3,529,377 episodes of consecutive temperature
readings (Fig. 1).
Demographics for distinct participants are shown in Table 1.

Demographic and other characteristics of episodes are shown in
Tables 1, 2. Most participants (758,498, 57.2%) contributed one
temperature reading episode during the study period. There were
218,614 (16.5%) participants with 2, and 348,733 (26.3%) with 3 or
more. The median interval between the start of the first and last
episodes of participants with 2 episodes was 42 days (IQR
[15,122]), and those with or 3 more was 231 (IQR= [99, 455]) days.
For almost half (1,735,805, 49.2%) of the episodes, participants
self-reported symptoms (including reports of no symptoms).
Children under 12 years old were 35.2% of all participants. The
number of episodes per person differed by age group. In post-hoc
analyses, the median number of episodes per person for children
under 12 was higher (1, IQR= [1,3]) than age groups 12–18, 18–35,
and 35–50 (1, [1, 2], p < 0.001). However, it was lower than groups
50–65 (1, [1, 3]) and over 65 (1, [1, 4]) (p < 0.001).
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Thermometer usage and COVID-19 pandemic
Counts of both newly activated thermometers and temperature
reading episodes rose at the beginning of the first outbreak and
during the omicron BA.1/2 wave, while the percentage of febrile
episodes dropped at the beginning of the first outbreak and
steadily increased during the pandemic (Fig. 2).

Symptom reports and COVID-19 pandemic
Symptom reporting rates decreased right after the first outbreak
(47.8%, 10,695 of 22,356 episodes, week starting from March 1,
2020) until the week starting May 10, 2020 (28.6%, 9316 of 32,613
episodes), and then began steadily increasing. In the winter wave,
the reporting rate increased to 64.0% (23,256 of 36,341 episodes)
in the week starting from January 3, 2021, then remained around
55% afterward. In the omicron BA.1/2 wave, the symptom
reporting rate dropped to 44.2% (14,864 of 33,649 episodes) in
the week starting from January 16, 2022, but increased to 56%
within a week (Fig. 3). Compared with the weekly symptom
reporting rates among all episodes (52.0% (IQR= [47.4–55.6%])),
the weekly reporting rates among febrile episodes were
considerably higher (59.7% (IQR= [57.1–62.3%])) and relatively
stable, with a smaller IQR, during the study period. The decline in
reporting rates during the Omicron BA.1/2 wave was not seen
among participants with fever (Fig. 3). Among episodes reported
with symptoms, 36%, 26%, 16%, and 22% reported 1, 2, 3, and
more than 3 symptoms, respectively. The highest rate of multiple
coexisting symptoms in an episode was 71% during the Omicron
BA.1/2 and BA.4/5 waves. The lowest was 51% during the second
period (May 16 to September 12, 2020).

Factors associated with symptom reports
We characterized profiles that were either more or less likely to
report or record symptom occurrence (Fig. 4). Odds ratios (ORs)
were adjusted for all independent variables and covariates.
Participants 50 to 65 years old were more likely to report their

symptoms, and compared with these participants, participants
over > 65 years old were less likely to report their symptoms
(OR= 0.3, 95% CI= 0.3–0.3). Symptoms were more likely reported
during febrile episodes (OR= 2.6, 95% CI= 2.6–2.6), and for new
participants, during their first episode (OR= 2.4, 95% CI= 2.4–2.5).
Symptoms were more likely to be reported in winter (OR= 1.3,
95% CI= 1.3–1.3) than in spring. Compared with before the
pandemic, participants were more likely to report their symptoms
during the pandemic periods, especially the winter wave
(September 13, 2020 to March 6, 2021, OR= 3.8, 95% CI= 3.7–3.8),
fourth period (March 7 to July 14, 2021, OR= 3.5, 95%
CI= 3.5–3.6), delta wave (July 15 to December 18, 2021,
OR= 4.0, 95% CI= 3.9–4.0), omicron BA.1/2 wave (December 19,
2021 to June 19, 2022, OR= 3.0, 95% CI= 2.9–3.0) and omicron
BA.4/5 wave (June 20 to October 29, 2022, OR= 3.1, 95%
CI= 3.1–3.2). Using the east north central division as the
reference, participants living in east south central (OR= 0.9, 95%
CI= 0.9–0.9) and west south central (OR= 0.9, 95% CI= 0.9–1.0)
were less likely to report their symptoms, and participants living in
the other divisions were more likely, except south Atlantic.
Compared with adult-only households, participants living in a
household with both adults and children were more likely to
report symptoms (OR= 1.6, 95% CI= 1.6–1.7).

Symptom trends in the COVID-19 pandemic
There were 3,125,957 symptom reports collected among 1,735,805
episodes (49.2% of all episodes). Of these, 849,486 (48.9%)
episodes were associated with reports of no symptoms. The
proportion of reports of no symptoms increased during the
COVID-19 pandemic periods until the winter wave. In the
pandemic periods, the percentage of episodes with reporting no
symptoms (24.7% of all episodes, March 1, 2020 to October 29,
2022) was higher, compared with before the pandemic (8.4% of all
episodes, January 1 to February 28, 2020, p < 0.001). The top five
symptoms reported during the COVID-19 pandemic periods from
the beginning to the omicron BA.4/5 wave were cough (344,834,

°

Fig. 1 Flow diagram of participants and temperature readings. Of 1,341,747 individuals using the smart thermometers and app between
January 1, 2020 and October 29, 2022, 1,325,845 individuals met the inclusion criteria. These eligible participants took 20,617,435 temperature
readings, yielding 3,529,377 episodes of consecutive temperature readings during the study period.
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20.6% of episodes with symptom reports), runny nose (323,599,
19.3%), body aches (256,916, 15.3%), stuffy nose (201,588, 12.0%),
and headache (199,415, 11.9%). The symptom report trends are
shown in Fig. 5.

DISCUSSION
In a national-scale participatory surveillance network with over a
million people using a smart thermometer to report temperature
readings, about half also reported symptoms despite no clear
incentive to do so. Consistent with heightened awareness of
individual and public health needs, willingness to report
symptoms was higher during the pandemic. And participants
were willing to report even when they were not currently

experiencing symptoms. Participants who were 50 to 65 years
old or lived in a household with both adults and children were
more likely to report their symptoms than those in other age
groups or household configurations.
During the early stage of the COVID-19 pandemic, temperature-

taking behavior was associated with both population disease
levels and individual demographic characteristics15. Symptom-
reporting behavior was found to be associated with individual
demographic characteristics in flu seasons13. Prior studies found
that women were more active in both online symptom report-
ing12,22 and health information seeking23,24. But even when
females were more engaged in symptom reporting, they were
less likely than males to have more than 2 additional follow-up
symptom reports after the initial one13. Among our user base,

Table 1. Participant and Episode Characteristics.

Participants Episodes

Total No. 1,325,845 3,529,377

With reported symptoms Without reported symptoms p-value

No. (%) 1,735,805 (49.2) 1,793,572 (50.8)

Age, median [IQR] 26.0 [8.0, 42.0] 29.0 [9.0, 47.0] 31.0 [8.0, 54.0] < 0.001

Age group, No. (%) < 0.001

Age <= 12 466,471 (35.2) 578,366 (33.3) 584,087 (32.6)

12 < Age <= 18 96,970 (7.3) 99,430 (5.7) 84,433 (15.9)

18 < Age <= 35 306,762 (23.1) 352,661 (20.3) 355,597 (12.2)

35 < Age <= 50 233,932 (17.6) 334,864 (19.3) 265,992 (14.8)

50 < Age <= 65 130,779 (9.9) 243,977 (14.1) 218,664 (19.8)

Age > 65 90,931 (6.9) 126,507 (7.3) 284,799 (4.7)

Gender, No. (%) < 0.001

Female 721,136 (54.4) 979,045 (56.4) 981,214 (54.7)

Male 542,899 (40.9) 699,601 (40.3) 726,500 (40.5)

Other 11,168 (0.8) 9,931 (0.6) 17,699 (1.0)

Unknown 50,642 (3.8) 47,228 (2.7) 68,159 (3.8)

US geographic division, No. (%) < 0.001

East North Central 167,838 (12.7) 221,272 (12.7) 237,136 (13.2)

East South Central 53,382 (4.4) 68,009 (3.9) 73,008 (4.1)

Middle Atlantic 195,853 (14.8) 262,848 (15.1) 262,817 (14.7)

Mountain 84,587 (6.4) 113,256 (6.5) 118,127 (6.6)

New England 92,265 (7.0) 127,898 (7.4) 129,475 (7.2)

Pacific 289,331 (21.8) 380,675 (21.9) 379,433 (21.2)

South Atlantic 203,379 (15.3) 270,384 (15.6) 293,350 (16.4)

West North Central 81,923 (6.2) 107,566 (6.2) 110,831 (6.2)

West South Central 152,287 (11.5) 183,897 (10.6) 189,395 (10.6)

Urban/rural designation, No. (%) < 0.001

Large central metro 389,547 (32.2) 553,132 (33.9) 557,132 (33.5)

Large fringe metro 307,975 (25.5) 425,686 (26.1) 449,839 (27.0)

Medium metro 275,533 (22.8) 357,123 (21.9) 366,183 (22.0)

Small metro 102,789 (8.5) 132,404 (8.1) 133,712 (8.0)

Micropolitan 86,276 (7.1) 108,792 (6.7) 102,803 (6.2)

Noncore 46,423 (3.8) 55,424 (3.4) 54,110 (3.3)

Household composition, No. (%) <0.001

Adult only 540,040 (40.7) 758,882 (43.7) 937,295 (52.3)

Adult and child 462,801 (34.9) 638,153 (36.8) 435,655 (24.3)

Child only 323,004 (24.4) 338,770 (19.5) 420,622 (23.5)

Differences in medians were assessed with the Kruskal-Wallis test. Chi-square test was used for categorical variables. Households with children-only profiles
were presumed to have adults in the household who were not using the thermometer.
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females took more temperature readings and were more willing to
report symptoms when taking temperature.
Consistent with prior research4, there was a higher likelihood of

symptoms being reported when users first used the thermometer.
Interestingly, symptom response rates dropped at the beginning
of the pandemic and in the omicron BA.1 wave. This may relate to
temperature-taking patterns. The number of episodes increased at
the beginning of the pandemic, but the percentage of febrile
episodes decreased, possibly driven by increased anxiety around
infection, resulting in more temperature-taking. Early in the
pandemic, higher coronavirus-related anxiety25 may explain the
increased use of thermometers, and their use even when fevers
were less likely to be present7,18.
This study has some limitations. First, self-reported symptoms

without validation by physicians may contain inaccuracies.
However, self-reported symptoms were reliable and valid in
various clinical settings26,27, including early detection of ILI28 and
COVID-1929. Self-reported symptoms have also been found
valuable for infection surveillance4,11,12,30 and were both spatially
and temporally correlated with the number of new of COVID-19
cases8,31–35.
Ability to participate in this network was subject to barriers that

could potentially introduce bias. Smart thermometers are available
in major retailers nationwide, but their higher cost compared to
other options poses a financial burden. Reporting symptoms
required a smartphone, excluding those without one. A digital
divide among seniors, adults, and children could result in a higher
likelihood of adults being participants in smartphone-based
surveillance12,31,36. In our study, only 7% of participants were over
65 years old, and they were less likely to report symptoms after
measuring their temperature. However, elderly individuals’ parti-
cipation in surveillance has been trending upwards37. Children
under 12 years old in our study were 35% of all participants,
potentially over-represented as participants because of parental
concerns. Young children and adults aged 50 and over had more

episodes per person than other age groups, perhaps attributed to
their health concerns.
To address potential bias and improve surveillance efforts

targeting underserved populations, incorporating additional data
collection methods using less advanced digital devices holds
promise9. Undoubtedly, the presence of structural bias can
introduce distortions in the results, particularly in regards to
demographic, socioeconomic, and racial factors38 that can
correlate with and contribute to disparities in health literacy39.
However, targeted communication strategies and recruitment
efforts can help mitigate these biases14,40. Further research is
needed to gain a deeper understanding of specific factors that
motivate and maintain engagement in participatory surveillance.
Participants in the long-running Dutch Great Influenza Study (GIS)
—which annually asks participants to report influenza-like
symptoms to a central database and has a loyal and active group
of participants41 —were motivated by being able to contribute to
knowledge regarding flu, science, and the GIS project itself. This
was especially true of more frequent reporters (2–3 times per
month or weekly). Participants also reported learning something
about flu (men more than women), although their factual
knowledge was quite good. Similar surveys could help uncover
background and motivating factors in the US, leading to greater
representativeness in populations engaging in participatory
surveillance.
For surveillance, other self-report approaches, such as large-

scale surveys8,42, often have limitations related to participation
and response. Digital data from search engines, social network
systems, and smartphones, provided early indications of COVID-
197,43,44, but lacked information on participant characteristics,
including demographics. Smart thermometers with a companion
app provide a unique opportunity to combine automatically
uploaded digital data with additional requested information, such
as demographics and symptom reports, via the companion app.

Table 2. Episode Characteristics.

Episodes

With reported symptoms Without reported symptoms p-value

No. 1,735,805 1,793,572

New participant, No. (%) 767,774 (44.2) 558,071 (31.1) < 0.001

Fever, No. (%) 425,130 (24.5) 287,414 (16.0) < 0.001

Severe fever, app skipped symptom page, No. (%) 154,406 (8.9) 133,056 (7.4) < 0.001

Season < 0.001

Spring 439,418 (25.3) 571,638 (31.9)

Summer 361,504 (20.8) 443,911 (24.8)

Autumn 441,102 (25.4) 374,107 (20.9)

Winter 493,781 (28.4) 403,916 (22.5)

Pandemic period, No. (%) < 0.001

Before pandemic (01/01/2020–02/29/2020) 61,087 (3.5) 83,664 (4.7)

First outbreak (03/01/2020–05/15/2020) 145,361 (8.4) 270,144 (15.1)

Second wave (05/16/2020–09/12/2020) 190,840 (11.0) 314,955 (17.6)

Winter wave (09/13/2020–03/06/2021) 445,190 (25.6) 332,553 (18.5)

Fourth wave (03/07/2021–07/14/2021) 174,969 (10.1) 158,103 (8.8)

Delta wave (07/15/2021–12/18/2021) 245,098 (14.1) 199,176 (11.1)

Omicron BA.1/2 wave (12/19/2021–06/19/2022) 312,114 (18.0) 282,658 (15.8)

Omicron BA.4/5 wave (06/20/2022–10/29/2022) 161,146 (9.3) 152,319 (8.5)

Chi-square test was used for categorical variables. If a participant of any age had a high fever (at least 39.4 °C), or a child aged 0 to 3 months had any fever, the
symptom report screen within the app was skipped and the user was immediately transferred to a guidance page to address potentially serious medical
conditions.

Y.-J. Tseng et al.

4

npj Digital Medicine (2023)   175 Published in partnership with Seoul National University Bundang Hospital



Future work could enhance the requested data to gain deeper
insight regarding who participates and why.
We defined who belonged to a household based on use of a

shared thermometer or smartphone for recording and uploading
temperature readings. However, it is possible that other indivi-
duals within the same household used different thermometers, or
did not participate in the surveillance network. This variability
could introduce biases in the analyses concerning households.
Moreover, in certain situations that could potentially be severe,

the app bypasses the symptom reporting page and redirects

participants to a guidance page. While this could inadvertently
lower the symptom reporting rate, participants retain the
opportunity to document their symptoms at a later point. To
streamline this process and ensure more comprehensive symptom
data collection, we can integrate the symptom reporting step into
the workflow when the guidance is needed. This could facilitate
the capture of symptoms from these individuals.
The mitigating effect of vaccination on COVID-19 symptoms is

well-documented45,46, underscoring a potential role of vaccination
status in modifying symptom reporting behaviors47,48. It is
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conceivable that vaccinated individuals might perceive them-
selves as more protected, thereby diminishing their routine
practices such as measuring their body temperature or utilizing
relevant health tracking apps. Intriguingly, this anticipated
behavior contrasted with our observation that individuals were
more willing to report a symptom following the roll-out of
vaccines during the winter wave, relative to earlier stages of the
pandemic. To cultivate an enhanced understanding of how
vaccination status influences symptom reporting, we propose
implementing a follow-up question or disseminating a survey
through the app. This could provide a more nuanced under-
standing of behavioral changes and their relation to the
vaccination status of the users.
We were highly encouraged by the robust citizen participation

in this network. They provided valuable insights for the designers
regarding factors associated with engagement. The utilization of
smart thermometers and accompanying apps for symptom
collection provides a real-time, nationwide data source for
disease monitoring, encompassing body temperatures, symp-
toms, demographic details, and geolocation information. It is
essential to acknowledge that engagement with smart
thermometer-based participatory syndromic surveillance systems
may vary among people with diverse demographic characteristics
and at different stages of a public health emergency. When
utilizing data from these systems, it is crucial to account for these
variations as they can have implications for data interpretation
and analysis.

METHODS
Design, setting, participants
This is a retrospective cohort study of a real-world, national-scale
network of participants using commercial smart thermometers
with a companion smartphone app that allows them to report
demographics and symptoms (Kinsa Inc., San Francisco, Califor-
nia). Participants were individuals who used the thermometers
and app between January 1, 2020 and October 29, 2022 and
opted into data sharing. Participants identified in more than one
household, defined as one or more individuals using the same
thermometer or smartphone21, were excluded. This time span was
divided into previously defined pandemic periods:21,49–51 before
the COVID-19 pandemic in the United States (US) (January 1, 2020
to February 29, 2020); the first outbreak (March 1 to May 15, 2020);
second period (May 16 to September 12, 2020); winter wave
(September 13, 2020 to March 6, 2021); fourth period (March 7 to
July 14, 2021); delta wave (July 15 to December 18, 2021); omicron
BA.1/2 wave (December 19, 2021 to June 19, 2022); and omicron
BA.4/5 wave (June 20, 2022 to October 29, 2022).
The number of newly activated smart thermometers–in other

words, the number of new thermometers used for the first time–was
included to analyze how popularity of smart thermometers affects
the app survey response rate. For evaluating the relationship
between new thermometers, number of temperature reading
episodes, and cases of COVID-19, we obtained publicly available
COVID-19 confirmed case counts in the United States from Johns
Hopkins University, Center for Systems Science and Engineering
(JHU, CSSE)52. The Boston Children’s Hospital IRB reviewed this study
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protocol and determined it to have exempt status because the study
made secondary use of data which had been de-identified.

Dependent, independent, and covariables
The main dependent variable is whether or not the presence of
symptoms is reported, including reports of no symptoms, during an
episode. Symptoms reportable via the app include cough, runny
nose, body aches, headache, stuffy nose, chills, sore throat, fatigue,
stomachache, diarrhea, vomiting, earache, loss of taste or smell,
trouble breathing, nausea, rash, and seizure. As the pandemic
progressed, loss of taste or smell was added as an option on June 9,
2020 and nausea added on August 9, 2021. The other symptoms
were already present prior to the study period. Participants can also
report that no symptoms are present. If participants do not report
symptoms within an episode, the episode is coded as no response.
Independent variables are: season and pandemic period

defined by the start date of the episode, febrile episode defined
by temperature readings, whether an episode was from a new
participant, self-reported age and gender, US Census divisions and

Urban-Rural Classifications from automatically collected location
data, and household composition.
Each participant’s temperature readings were grouped into

episodes. If two readings were separated by more than 6 days, the
later reading was treated as a separate episode. Fever was defined
as a temperature of at least 38.0 °C for rectal and aural readings,
37.2 °C for axillary readings, and 37.8 °C for oral readings and other
body sites20,21. Temperature readings outside the range of 34 °C to
43 °C were excluded. Fever onset in an episode was defined as the
first body temperature at or exceeding the limits described above.
A participant was considered new at the time of their first episode
during the study period. Age and gender were self-reported.
Geographic information was based on GPS information if
participants opted into location sharing or an IP address
associated with each temperature reading. Location was coded
into nine geographic divisions based on US Census Bureau
definitions53 and labeled with 2013 National Center for Health
Statistics Urban-Rural Classifications54.
Episodes were excluded if multiple geographic divisions or

urban-rural designations were coded or gender was missing in an

Fig. 4 The association between patient characteristics and willingness of individuals to report their symptoms via the smartphone app.
Fever was identified by temperature reading, skip symptom entry page came from the app logs, geographic information was based on GPS
information or an IP address, and age and gender were self-reported.
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episode. Household compositions were defined as having adults
only, children only, or both children and adults. Households with
children-only profiles were presumed to have an adult present
who was not using the thermometer or app.
We captured information about when the symptom entry page

was skipped due to severe fever, and incorporated it as a covariate. If
a participant of any age has a high fever (at least 39.4 °C), or a
participant aged 0–3 months has any fever, the symptoms report
screen within the app is skipped and the user is immediately
transferred to a guidance page to address potentially serious medical
conditions. However, when the symptom reporting step is initially
skipped, participants are still allowed to enter symptoms afterward.

Statistical analysis
Baseline characteristics are presented as the median (IQR) for
continuous variables and the number (%) for categorical variables.
Differences in medians were assessed with the Kruskal-Wallis test
because the variables did not follow a normal distribution. Chi-
square test was used for univariate analysis of categorical variables.
We performed mixed effects logistic regression to assess the factors
affecting the engagement of symptom surveillance. Bonferroni
correction was applied for multiple comparison testing. All analyses
were performed using R (version 4.1.0, The R Foundation for
Statistical Computing, www.r-project.org/). All statistical tests were
two-sided, and statistical significance was defined as p < 0.05.

DATA AVAILABILITY
Data will be made available to others upon request and upon completion of a data
use agreement, only for research and non-commercial purposes, to individuals
affiliated with academic or public health institutions.
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