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A deep learning-based electrocardiogram risk score for long
term cardiovascular death and disease
J. Weston Hughes 1✉, James Tooley2, Jessica Torres Soto 3, Anna Ostropolets4, Tim Poterucha5, Matthew Kai Christensen6,
Neal Yuan 6, Ben Ehlert3, Dhamanpreet Kaur2, Guson Kang2, Albert Rogers 2, Sanjiv Narayan 2, Pierre Elias 4,5, David Ouyang6,8,
Euan Ashley 2,8, James Zou1,7,8 and Marco V. Perez 2,8

The electrocardiogram (ECG) is the most frequently performed cardiovascular diagnostic test, but it is unclear how much
information resting ECGs contain about long term cardiovascular risk. Here we report that a deep convolutional neural network can
accurately predict the long-term risk of cardiovascular mortality and disease based on a resting ECG alone. Using a large dataset of
resting 12-lead ECGs collected at Stanford University Medical Center, we developed SEER, the Stanford Estimator of
Electrocardiogram Risk. SEER predicts 5-year cardiovascular mortality with an area under the receiver operator characteristic curve
(AUC) of 0.83 in a held-out test set at Stanford, and with AUCs of 0.78 and 0.83 respectively when independently evaluated at
Cedars-Sinai Medical Center and Columbia University Irving Medical Center. SEER predicts 5-year atherosclerotic disease (ASCVD)
with an AUC of 0.67, similar to the Pooled Cohort Equations for ASCVD Risk, while being only modestly correlated. When used in
conjunction with the Pooled Cohort Equations, SEER accurately reclassified 16% of patients from low to moderate risk, uncovering a
group with an actual average 9.9% 10-year ASCVD risk who would not have otherwise been indicated for statin therapy. SEER can
also predict several other cardiovascular conditions such as heart failure and atrial fibrillation. Using only lead I of the ECG it predicts
5-year cardiovascular mortality with an AUC of 0.80. SEER, used alongside the Pooled Cohort Equations and other risk tools, can
substantially improve cardiovascular risk stratification and aid in medical decision making.
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INTRODUCTION
Cardiovascular disease is the most common cause of death in the
United States and globally despite the availability of preventive
therapies1. Prescription of these therapies relies on allocating
preventative care to higher-risk patients, making accurate risk
stratification invaluable2. Even so, commonly used risk scores like
the pooled cohort equations (PCE) for risk stratification of
atherosclerotic disease3 (ASCVD) suffer from limited accuracy
and leverage only a few simple risk factors including cholesterol,
blood pressure, and age4, despite the range of rich data sources
available.
Proposed improvements to the PCE require additional data

from imaging or lab testing that can be both extensive and
beyond what is currently included in standard of care manage-
ment. In cases of intermediate PCE risk, measuring coronary artery
calcium (CAC) further stratifies patients but incurs the additional
cost of computed tomography imaging5. Polygenic risk scores can
identify patients with greater genetic risk for cardiovascular
disease6 but require genetic sequencing and fail to account for
a lifetime of environmental risk. Risk scores can be developed
based on larger collections of multimodal features to improve
accuracy7, but implementation is difficult since measurements
often are missing in practice. A risk score that can further risk
stratify those at low or intermediate ASCVD risk from existing or
inexpensive and easily-acquired data would fill a gap in clinical
practice and provide significant additional value.

Discrete abnormalities in the electrocardiogram (ECG), including
signs of left ventricular hypertrophy8, bundle branch blocks9, and
premature ventricular contractions10, are individually associated
with modestly increased cardiovascular and all-cause mortality11

and with higher incidence of major cardiovascular events12. Given
its low cost and near-ubiquity, the ECG is a good candidate for risk
scoring. Still, there has been limited success in using the ECG to
assess cardiovascular risk in the general population13. Convolu-
tional Neural Networks (CNNs) trained on large datasets can learn
clinically relevant patterns in raw ECG waveforms, often matching
or surpassing cardiologist performance on tasks ranging from
standard interpretation14 to diagnosis of diseases like cardiac
contractile dysfunction15, hypertrophic cardiomyopathy versus
hypertension16, and atrial fibrillation in patients in sinus rhythm17.
Most relevant to our work, CNNs are able to predict short-term all-
cause18 and post-operative19 mortality with high accuracy based
on ECG alone. Predicting long-term cardiovascular mortality, on
the other hand, has not been previously explored but has large
implications for clinical intervention such as decisions about
statin use.
Using a large dataset of ECGs from Stanford University Medical

Center (Stanford), we developed SEER, the Stanford Estimator of
ECG Risk, a CNN-based risk score to predict long-term risk of
cardiovascular mortality and other cardiovascular diseases from
only a single resting 12-lead ECG. SEER is trained on Stanford ECGs
to predict 5-year cardiovascular mortality, but can accurately
predict a range of cardiovascular disease across an array of time-
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scales. It stratifies patients in five different evaluation cohorts from
three different medical centers and two different ECG vendors,
and out-performs predictions based on traditional risk factors.
When used together with the PCE, SEER reclassifies patients to
better predict cardiovascular disease and mortality. We envision
SEER being used alongside the PCE score to evaluate cardiovas-
cular risk in ambulatory settings including in outpatient clinics and
on wearable devices.

RESULTS
Study populations
SEER was trained using a dataset of resting ECGs from Stanford
University Medical Center (Stanford; Supplementary Table 1,
Supplementary Fig. 1) and evaluated using ECGs from Stanford,
Cedars-Sinai Medical Center (Cedars-Sinai; Supplementary Table 2,
Supplementary Fig. 2), and Columbia University Irving Medical
Center (Columbia; Supplementary Table 3). A set of 312,422
Stanford ECGs with either a cardiovascular mortality within 5 years
or 5 years of followup was used to train SEER to predict 5-year
cardiovascular mortality. SEER was evaluated on three held-out
test sets, the Stanford, Cedars-Sinai, and Columbia test sets of
31,899, 46,095, and 458,455 patients respectively, each consisting
of first available ECGs per patient. Additionally, we report results
on the Stanford PCE comparison set, a subset of the Stanford
cross-validation set with 18,370 ECGs, and the Cedars-Sinai PCE
comparison set, a subset of the Cedars-Sinai test set with 4065
ECGs, two datasets of healthy patients with associated
clinical data.

SEER accurately predicts cardiovascular mortality and ASCVD
events across three sites
We first investigated SEER’s performance in predicting cardiovas-
cular mortality based on a single 12-lead ECG in the three test sets
(Table 1). We defined cardiovascular mortality as a mortality falling
within thirty days of a myocardial infarction, ischemic stroke,
intracranial hemorrhage, sudden cardiac death, or hospitalization
for heart failure. Among patients in these cohorts with 5 years of
followup or a cardiovascular mortality within 5 years, SEER
predicted 5-year cardiovascular mortality with areas under the
receiver operator characteristic curve (AUC) of 0.83 (95% CI:
0.81–0.85), 0.78 (0.77–0.80), and 0.83 (0.82–0.83) at Stanford,
Cedars-Sinai, and Columbia respectively. While SEER was trained
on the binary 5-year prediction task, it was similarly accurate in
predicting relative survival times, achieving Harrell’s C-statistics20

of 0.82 (0.80–0.83), 0.78 (0.77–0.78), and 0.81 (0.81–0.081). Using
the top tertile as a cutoff, SEER balanced sensitivity and specificity
well at 0.76 (0.71–0.81) and 0.75 (0.75–0.76) respectively at

Stanford, 0.52 (0.49–0.55) and 0.85 (0.85–0.86) at Cedars-Sinai, and
0.80 (0.80–0.81) and 0.71 (0.70–0.71) at Columbia. It achieved
positive predictive values of 0.07 (0.06–0.08), 0.16 (0.15–0.18), and
0.16 (1.15–0.16) at the three sites, i.e., 6–16% of patients in the top
third of SEER risk suffered a cardiovascular mortality within 5 years.
Being in the top third of SEER indicated a 5.4 (4.6–6.3)-fold age
and sex-adjusted increase in hazard of cardiovascular mortality at
Stanford. In the Stanford test set, SEER stratified risk across all time
scales between a few days and over 10 years (Fig. 1B), and
achieved an AUC of 0.80 (0.76–0.84) in predicting 5-year
cardiovascular mortality among patients who survived for at least
one year (Supplementary Table 4). It also achieved good
performance across patients with different underlying rhythms
(Supplementary Table 4).
Patients in the top third of the SEER score were at higher risk for

developing a range of incident cardiovascular diseases (Fig. 1C). In
the Stanford test set, age and sex-adjusted hazard ratios were 3.2
(2.9–3.5) for incident heart failure, 2.0 (1.7–2.5) for myocardial
infarction, 1.6 (1.4–1.9) for stroke, and 4.2 (3.0–5.7) for sudden
cardiac death. For a composite of those four events, the adjusted
hazard ratio was 2.4 (2.2–2.7). The trend was similar for other
cardiovascular conditions including atrial fibrillation (2.2 (2.0–2.5)),
heart block (2.8 (2.4–3.2)), cardiomyopathy (4.0 (3.4–4.7)), aortic
stenosis (2.3 (1.8–3.0)), and peripheral vascular disease (1.7
(1.5–2.1)). We compared SEER to models trained specifically to
predict different future cardiovascular diseases (Supplementary
Table 5). SEER performed similarly to models custom-trained to
predict 5-year ASCVD and myocardial infarction. In contrast, SEER
was outperformed by a heart failure-specific model (0.76
(0.74–0.77) vs 0.82 (0.81–0.83)) and an atrial fibrillation-specific
model (0.68 (0.66–0.70) vs 0.752 (0.73–0.77)). All risk scores were
strongly correlated with SEER, with Spearman correlations
between 0.44 (0.43–0.45; atrial fibrillation) and 0.63 (0.62–0.64;
heart failure). All risk scores were strongly correlated with SEER,
with Spearman correlations between 0.44 (0.43–0.45; atrial
fibrillation) and 0.63 (0.62–0.64; heart failure).

SEER complements the PCE risk score
We next explored SEER’s performance on the Stanford and Cedars-
Sinai PCE comparison sets, comprising outpatients who had no
record of a prior cardiovascular disease event at baseline, were
non-diabetic, had an LDL cholesterol measurement below
190mg/dL, and had a blood pressure measurement within the
year prior to the ECG. These criteria were selected to closely
represent the set of patients eligible for risk screening for long-
term cardiovascular disease, and to allow us to compare SEER to
the PCE. In these cohorts, SEER predicted cardiovascular mortality
with 5-year AUCs of 0.80 (0.76–0.83) and 0.78 (0.72–0.84), and

Table 1. Performance of SEER in predicting cardiovascular mortality in the three test sets.

Harrell C-statistic 5-year AUC Sensitivity Specificity Positive Predictive
Value

F1 score

Stanford 12-
lead

0.815
(0.798–0.826)

0.832
(0.810–0.854)

0.756
(0.709–0.805)

0.753
(0.746–0.760)

0.067 (0.058–0.076) 0.124
(0.108–0.138)

1-lead 0.781
(0.760–0.793)

0.797
(0.773–0.824)

0.756
(0.710–0.805)

0.672
(0.663–0.680)

0.052 (0.045–0.058) 0.097
(0.085–0.107)

Cedars-
Sinai

12-
lead

0.777
(0.768–0.783)

0.781
(0.767–0.795)

0.519
(0.487–0.550)

0.851
(0.846–0.856)

0.162 (0.151–0.176) 0.247
(0.232–0.266)

1-lead 0.771
(0.764–0.778)

0.778
(0.765–0.792)

0.843
(0.822–0.866)

0.567
(0.560–0.573)

0.098 (0.092–0.104) 0.176
(0.166–0.185)

Columbia 12-
lead

0.808
(0.806–0.810)

0.825
(0.821–0.829)

0.802
(0.796–0.809)

0.706
(0.704–0.708)

0.156 (0.153–0.159) 0.261
(0.258–0.265)

1-lead 0.755
(0.753–0.757)

0.761
(0.757–0.765)

0.718
(0.710–0.726)

0.685
(0.683–0.687)

0.132 (0.130–0.135) 0.224
(0.220–0.228)
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Harrell C-statistics of 0.78 (0.76–0.82) and 0.78 (0.72–0.80) based
on a single 12-lead ECG (Table 2). Within the same set, the PCE
achieved 5-year AUCs of 0.65 (0.59–0.71) and 0.78 (0.72–0.84) and
Harrell C-statistics of 0.66 (0.61–0.67) and 0.76 (0.71–0.80). The
PCE’s modest performance as measured by AUC is consistent with
what similar studies have found in the past21. For predicting low
versus moderate risk, SEER achieved a net reclassification
improvement (NRI) over PCE of 14.8% among events and 3.0%
among non-events, resulting in a total NRI of 17.8%22.
We additionally evaluated SEER’s ability to predict incident hard

atherosclerotic cardiovascular disease events (ASCVD) in the PCE

comparison sets, using the standard composite endpoint of lethal
and non-lethal myocardial infarction, stroke, and sudden cardiac
death3. SEER achieved a 5-year AUC of 0.67 (0.65–0.69) and Harrell
C-statistic of 0.66 (0.65–0.68) in predicting hard ASCVD at Stanford
and an AUC of 0.63 (0.59–0.67) and C-statistic of 0.635 (0.62–0.65),
while the PCE achieved a 5-year AUC of 0.71 (0.69–0.73) and a
better Harrell C-statistic of 0.70 (0.69–0.71) at Stanford and an AUC
of 0.66 (0.62–0.70) and a C-statistic of 0.64 (0.61–0.67) at Cedars-
Sinai. SEER and the PCE score were only modestly correlated with
a Pearson correlation of 0.218 (P < 10−195), and are based on
different data modalities.

Fig. 1 Performance of the SEER Model. A Receiver Operator Characteristic (ROC) curves and Areas Under the Curve (AUCs) for Stanford,
Cedars-Sinai, and Columbia test sets. B Cumulative incidence of cardiovascular mortality in the Stanford PCE comparison set (Kaplan-Meier
estimates). The blue and red lines represent the bottom and top third of patients as ranked by SEER; the black line represents all patients.
C Hazard ratios of various cardiovascular diseases given that a patient is in the top tertile of SEER risk in the Stanford test set. D–F Cumulative
incidence of atherosclerotic cardiovascular disease in the Stanford PCE comparison set (Kaplan–Meier estimates), among patients called low-
risk (0–7.5%) moderate risk (7.5%–20%), and high-risk (20–100%) by the PCE. The blue and red lines represent the bottom and top tertiles of
patients as ranked by SEER; the black line represents all patients. The dotted red line shows the 7.5% risk cutoff used in the decision to
prescribe statins. All error bars represent 95% bootstrap confidence intervals.

Table 2. Performance of SEER, the PCE Score, and a composite of the two in the Stanford and Cedars-Sinai comparison sets.

Cardiovascular Mortality ASCVD events

5-year AUC Harrell C-statistic 5-year AUC Harrell C-statistic

Stanford SEER 0.795 (0.762–0.831) 0.782 (0.759–0.817) 0.668 (0.647–0.687) 0.661 (0.652–0.669)

PCE 0.651 (0.593–0.707) 0.658 (0.614–0.672) 0.708 (0.689–0.726) 0.703 (0.688–0.714)

Composite 0.804 (0.771–0.842) 0.795 (0.781–0.817) 0.704 (0.685–0.722) 0.697 (0.687–0.714)

Cedars-Sinai SEER 0.779 (0.724–0.835) 0.776 (0.724–0.802) 0.632 (0.591–0.674) 0.635 (0.619–0.652)

PCE 0.787 (0.727–0.859) 0.759 (0.706–0.799) 0.658 (0.615–0.700) 0.642 (0.612–0.668)

Composite 0.823 (0.769–0.882) 0.811 (0.794–0.861) 0.672 (0.632–0.715) 0.666 (0.643–0.692)
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To understand how SEER might fit into current clinical practice,
we next explored how it classified patients versus the PCE score in
the Stanford PCE comparison set (Fig. 2). We considered groups
determined to be low, moderate, and high risk by the PCE risk
score, and examined how SEER would have classified them. We
used SEER to separate patients into three tertiles of risk based on
cutoffs at the bottom and top thirds of the cross-validation set.
The 11,247 patients categorized as low-risk by the PCE risk score
(with a PCE-estimated 10-year ASCVD rate below 7.5%3) had an
actual 10-year ASCVD rate of 4.89% (Kaplan–Meier estimate; 95%
CI 4.31%–5.55%) and a 10-year cardiovascular mortality rate of
1.04% (0.79%–1.38%). Within that group, the 1788 patients with a
SEER score in the top tertile had a 10-year ASCVD rate of 9.93%
(8.03%–12.24%), above the 7.5% cutoff for recommending statins,
and a significantly higher cardiovascular mortality rate of 3.54%
(2.45%–5.11%). SEER therefore reclassified 16% of patients
classified as low risk by PCE into a moderate risk category,
identifying additional patients who may benefit from statin
therapy. SEER is also able to reclassify patients with moderate
10-year ASCVD risk. Among the 3932 patients with moderate
ASCVD risk (7.5–20%) according to the PCE score, the 1411 with a
low SEER risk score had a 10-year ASCVD rate of 7.43%
(5.73%–9.60%), while the 1060 with high SEER risk had a rate of
15.93% (12.51%–20.17%). Over 35% of patients were reclassified
as being slightly below the 7.5% statin cutoff, and over 25% had a
higher risk than the moderate PCE risk group overall. Those
patients were similarly stratified with respect to cardiovascular
mortality risk. SEER also stratified patients with high PCE scores,
with patients with low SEER risk experiencing a 13.67%
(10.03%–18.48%) 10-year ASCVD rate versus 29.57%
(25.34%–34.32%) for patients with high SEER risk. In the Stanford
test set the up-risking and stratification trends were generally
similar, but the number of patients in each subgroup was much
smaller (Supplementary Fig. 3). Risk of cardiovascular mortality
followed a similar pattern of up and down-risking (Supplementary
Fig. 4). When combined with a weighted average, the composite
score achieved an AUC of 0.80 (0.77–0.84) at Stanford and 0.82
(0.77–0.88) at Cedars-Sinai in predicting cardiovascular mortality
(Table 2). The optimal weighted average was found to be 16 parts
unnormalized SEER score to 1 part unnormalized PCE.

SEER performs well across diverse populations
To understand potential biases in SEER, we performed additional
validation on a range of demographic subgroups in the Stanford
test set (Supplementary Table 4). To mirror expected clinical use,
we set a cutoff for positive prediction at the top third of patients
and compared sensitivity and specificity. For all race, ethnicity and
sex sub-groups, performance was not significantly different from
the entire population. We additionally compared based on AUC
and found no significant difference between groups. Survival
curves for ASCVD for various demographic groups are shown in
Fig. 3, demonstrating robust differentiation across groups.

SEER-based risk correlates with high-risk ECG and clinical
features
Understanding how well-known ECG risk markers affect the SEER
score is a challenge, as the model does not take them directly as
inputs (for example, the model does not receive a binary “atrial
fibrillation” label, but rather a waveform from which it might
extract features related to heart rate variance). To address this
issue, we utilized odds ratios to interpret the outputs of the model.
For each of 16 features parsed from the ECG physician overread,
we calculated the age and sex-adjusted odds ratio of falling in the
top third of SEER scores given each clinician overread-based
diagnosis in the Stanford test set (Fig. 4A). All odds ratios were
above 1. The features with lowest odds ratios were right
ventricular hypertrophy, left axis deviation, and first-degree AV
block with odds ratios of 1.19 (0.93–1.50), 1.24 (1.08–1.43), and
1.56 (1.32–1.86). The highest were atrial flutter, atrial fibrillation,
and pacing, with odds ratios of 10.1 (5.27–19.2), 11.1 (8.43–14.5),
and 12.9 (9.01–18.4). To understand the degree to which SEER
relies on standard ECG markers, we trained a random forest model
on 38 standard ECG markers (listed in Supplementary Table 6),
which achieved an AUC of 0.68 (0.65–0.70) in predicting 5-year
cardiovascular mortality (Supplementary Table 7; versus SEER’s
AUC of 0.82).
Increased and severely decreased heart rate both were

associated with higher SEER risk, (Fig. 4B), reflecting the
elevated risk associated with bradycardia and tachycardia.
SEER also correlated with some continuous PCE risk factors. It
closely reflected the true risk of elevated age (Fig. 4C). Still, it
was not completely driven by age, with a Pearson correlation of

Fig. 2 SEER adds value beyond the Pooled Cohort Equations. 10-year incidence of atherosclerotic cardiovascular disease in different groups
(Kaplan–Meier estimates) in the Stanford PCE comparison set, with group counts. Top panel is the entire population; middle row of panels are
broken down by pooled cohort equation risk; bottom row is broken down by pooled cohort equation risk and SEER risk, dividing at the
bottom and top quartiles. Colors represent re-classified binning into low-risk (green), moderate (yellow), and high (red) ASCVD risk according
to guidelines.
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0.18 (P < 10−139). Increased risk among 20–40 year olds
was likely due to ascertainment bias of only sicker young
patients receiving ECGs. SEER also captured the risk of low
blood pressure (Fig. 4D) associated with heart failure, but
only predicted a slight increase in risk for elevated blood
pressure.
In Fig. 4E, F we show 8 randomly selected low-risk and high-risk

ECG examples. Qualitatively, the ECGs in Fig. 4E appear mostly
normal: all ECGs are sinus rhythm, and the only abnormalities
noted are premature complexes and 1st degree AV Block.
Conversely, the ECGs in Fig. 4F show a range of arrhythmias and
morphologic abnormalities.

SEER performs well using a single ECG lead and outperforms
more limited data
The main SEER model makes predictions based on 12-lead ECG
waveforms. To understand which features are important for
prediction, we additionally trained and evaluated models on more
limited input data. Using only lead I of each ECG, SEER was still
able to predict 5-year cardiovascular mortality in all patients with
an AUCs of 0.78 (0.76–0.79), 0.77 (0.76–0.78), and 0.76 (0.75–0.76)
in the three test sets, at most a 0.06 drop in AUC from the 12-lead
model (Table 1). Supplementary Fig. 5 reproduces Fig. 1 using the
single-lead model. A random forest model based on the 11
common ECG parameters (Supplementary Table 6) generated by
the Philips Tracemaster software achieved an AUC of 0.71

Fig. 3 SEER stratifies patients across time and subgroups. A–I Cumulative incidence of atherosclerotic cardiovascular disease in the Stanford
PCE comparison set (Kaplan–Meier estimates), among patients in various demographic groups. The blue and red lines represent the bottom
and top third of patients as ranked by SEER. The dotted red line shows the 7.5% risk cutoff used in the decision to prescribe statins.
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(0.66–0.75) and a Harrell’s C-statistic of 0.70 (0.67–0.73; Supple-
mentary Table 7) in the Stanford test set. This result suggests that
SEER makes substantial use of features other than the ones used in
standard ECG algorithms.

DISCUSSION
In this work we have presented SEER, the Stanford Estimator of
ECG Risk, a deep neural network for estimating long-term risk of
cardiovascular disease and mortality from the 12-lead ECG. We
evaluated its performance in three held-out test sets and two PCE
comparison sets from three different institutions with two
different ECG vendors, demonstrating robust accuracy across sites
and vendors. We demonstrated its performance relative to the
existing PCE risk score, the most commonly used method in the
United States for estimating long-term cardiovascular risk and
guiding lipid therapy. We showed that SEER encompasses known
ECG risk factors, but also performs at a level beyond a model
based solely on those risk factors. SEER also performed well when
trained and evaluated on single-lead ECGs.
We have demonstrated our risk score’s utility in improving the

stratification of 10-year ASCVD risk through use alongside the PCE.
SEER uncovers 16% of patients misclassified as low-risk by the PCE,
highlighting a new cohort of patients who may benefit from
statins and would be missed following current practices. SEER also
stratifies patients with intermediate risk according to the PCE
score, showing potential to perform a similar role to what the CAC
score currently plays23. Given the advantages of ECGs over CAC
scans—lower expense, lack of radiation, clinical ubiquity, and
presence in resource-limited environments – SEER or similar
models could potentially present an attractive alternative after

further validation. Our model is similar in accuracy to that of the
CAC score23,24, which in one study achieved an AUC of 0.702 in
predicting 5-year, all-cause mortality25. Given the strong perfor-
mance based on a single-lead hospital ECG, it is also likely that
SEER could also be deployed on smartwatch ECGs for widespread
screening. And the model’s ability to predict a range of
cardiovascular disease, including heart failure and cardiomyo-
pathy, make it potentially more broadly applicable past screening
for ASCVD and cardiovascular mortality risk.
Previous studies6,26 have estimated the benefit of different

strategies for improving targeted statin usage, in terms of
estimated reductions in mortalities. Closely following their
methods, we estimate that following a conservative up-risk-only
strategy, if SEER up-risked 10.1% (9.6–10.7%) of the population 40-
75 without diabetes from statin-ineligible to statin-eligible, it
would make eligible 20,405 (19,331–21,479) patients per year who
are at risk of cardiovascular death. Given 100% statin uptake, this
could prevent an additional 3468 (775–6029) cardiovascular
deaths per year in the US. With a more conservative 63% uptake,
2185 (487–3789) cardiovascular mortalities would be averted.
We selected 5-year cardiovascular mortality as the training

outcome to study for several reasons. Cardiovascular mortality is
ultimately the main outcome that cardiovascular screening and
interventions such as statin therapy aim to prevent. We chose a
5-year cutoff to balance our goal of predicting longer-term events
with the availability of followup data, given that only a fraction of
the ECGs in our dataset were taken more than ten years ago. We
focused our comparison to the PCE score on 10-year ASCVD
prediction (making use of Kaplan-Meier estimates) to contextua-
lize our model within current clinical guidelines.

Fig. 4 SEER is consistent with known ECG risk factors. A Age and sex-corrected odds ratios for being in the top third of SEER risk, given each
diagnosis present in the electrocardiogram cardiologist overread, in the Stanford test set. B–D Age and sex-corrected odds ratios for falling in
each bin of three continuous variables (age is not age-corrected). E Examples from 8 different patients from the bottom third of SEER risk, lead
I. F Examples from 8 different patients from the top third of SEER risk, lead I. All error bars represent 95% bootstrap confidence intervals. All
error bars represent 95% bootstrap confidence intervals.
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This study has a few key limitations, which also present
directions for future work. While we tested SEER retrospectively
across three different hospital systems, prospective trials are
necessary to verify how the score will perform in clinical practice.
Large cohort studies could provide a good evaluation group, but
most either do not have available digitized ECGs or do not have
sufficient followup to allow for evaluation. SEER was trained on
data from only one medical center, and thus may suffer from
demographic biases based on the specific training population,
although we did not find major differences in performance across
demographic groups. And while we presented results on single-
lead hospital ECGs, additional evaluation is required to fully
understand how SEER would perform on smartwatch data. Finally,
while we had sufficient followup data to compute Kaplan-Meier
estimates of ten-year survival, there was insufficient data to
compute AUC and other metrics at a 10-year cutoff.
Our risk score, SEER, identifies groups of patients to be up-risked

and successfully stratifies intermediate risk patients for risk of
ASCVD and cardiovascular mortality. Given that cardiovascular
disease is a leading cause of death in the United States and
globally, if fully deployed alongside the PCE score and other risk
tools SEER could lead to a substantial decrease in mortality
through more accurate risk stratification. The relative low-cost and
ubiquity of the ECG makes common application possible.

METHODS
Study populations and data sources
SEER was trained, developed, and evaluated using a dataset of
resting ECGs from Stanford University Medical Center (Stanford)
consisting of all non-low quality ECGs from patients above the age
of 18 taken during the course of clinical care between March 2008
and May 2018. In total we extracted 910,966 ECGs from 307,557
patients from the Phillips TraceMaster system (Supplementary
Table 1, Supplementary Fig. 1). All ECGs were saved as 10 s signals
from all 12 leads of the ECG, sampled at 500 Hz. We applied band
pass and wandering baseline filters to the signals, normalized on a
per-lead basis, and downsampled to 250 Hz for performance
reasons and to match data from other sites. Measurements and
text overreads were also extracted from TraceMaster, and ECG
diagnoses were extracted from text cardiologist overreads using
string matching. ECGs were randomly partitioned by patient into
the training/cross-validation, validation, and test sets in an 8:1:1
ratio. For training and validation, we only considered ECGs with
either a cardiovascular mortality (defined below) within 5 years
after the ECG, or more than 5 years of followup after the ECG
(defined in detail below), resulting in 311,334 (38,970) ECGs in the
training (validation) set. Model parameters were fit using the
training set, and hyperparameters were chosen based on the
validation set. All ECGs from each patient were used during model
training. All model development, training, and hyperparameter
selection was performed using this split. The Stanford University
Institutional Review Board approved this study under protocol
41,045 and it complied with all relevant ethical regulations; the
review board waived the requirement for informed consent owing
to the retrospective nature of the data and project.
During model evaluation, we only considered the first ECG from

each patient. Once a final model was selected, we performed
8-fold cross-validation on the training set to obtain model
predictions on 244,839 ECGs from a set of 244,839 patients who
were not part of the validation or test set (not all of whom had 5
years of followup), which we refer to as the cross-validation set.
Cross-validation predictions on each fold were generated based
on models trained on all other cross-validation folds and the
validation set. We additionally report results on the PCE
comparison set, the subset of the cross-validation set consisting
of 18,370 non-inpatients who had no record of a prior

cardiovascular disease event at baseline, were non-diabetic, and
had an LDL cholesterol measurement below 190mg/dL and any
blood pressure measurement within the year prior to the ECG.
To understand how SEER performs on a range of populations,

we additionally evaluated SEER on three held out test sets from
Stanford, Cedars-Sinai Medical Center (Cedars-Sinai), and Colum-
bia University Irving Medical Center (Columbia; Supplementary
Fig. 2). The Stanford test set consists of 31,899 first resting ECGs,
from patients not in the Stanford training or validation sets. The
Cedars-Sinai test set consists of 46,095 first resting ECGs taken at
Cedars-Sinai from the General Electric MUSE system, with
mortality and event data from EPIC Clarity. The Columbia test
set consists of 458,455 ECGs first resting ECGs taken at Columbia
from the General Electric MUSE system, with mortality and event
data from their OMOP database. Demographic data for the
Cedars-Sinai and Columbia test sets are in Supplementary Tables 2
and 3. We additionally created the Cedars-Sinai PCE comparison
set, with same inclusion criteria as the Stanford PCE comparison
set but derived as a subset of the Cedars-Sinai test set, with
4065 ECGs.
Followup mortality and disease data were queried from STARR-

OMOP27, a common data model for accessing Stanford electronic
health records, and extended to December of 2020 for model
training and February of 2022 for evaluation. During evaluation we
supplemented mortality data from Stanford’s health record
system with data from the social security death index. Our
primary outcome of interest was cardiovascular mortality, defined
following previous work28 as a mortality in the EHR falling within
thirty days of a condition-record of myocardial infarction, ischemic
stroke, intracranial hemorrhage, sudden cardiac death, or hospi-
talization for heart failure. During training we only considered
ECGs with a cardiovascular mortality within 5 years of the ECG or 5
years of followup after the ECG, defined as a measurement,
admission, or mortality more than 5 years after the ECG. The same
definition was used for censoring times in survival analyses, but
the 5-year cutoff was not applied, so as to understand how SEER
performs in both shorter and longer timespans. The same OMOP
queries were used on Columbia’s OMOP database to pull
outcomes. Separate queries were written for Cedars-Sinai’s EPIC
Clarity-based system.
Additional data was queried from STARR-OMOP as selection

criteria and for the computation of the PCE risk score. Blood
pressure and cholesterol measurements were taken within the
year prior to the ECG. Smoking, diabetes, and antihypertensive
status were determined using any label prior to the ECG, and in
the case where there was no prior label were by default set to
false. Atherosclerotic cardiovascular disease was defined as the
first incidence of myocardial infarction, ischemic stroke, intracra-
nial hemorrhage, or sudden cardiac death in the electronic health
record. Atrial fibrillation, heart block, cardiomyopathy, pulmonary
artery disease, and aortic stenosis were all defined as the first
incidence in the electronic health record. OMOP concept codes for
all conditions and measurements are shown in Supplementary
Table 8. The PCE are a proportional hazards model, meaning that
they order patients by risk in the same order across different time
scales. Thus, computing 5-year AUROC and any other ordering-
based metric does not require adjustment. Similarly and using the
same proportional hazards assumptions, training a model to
predict 5-year cardiovascular mortality should also correctly order
patients by ten-year cardiovascular mortality risk.

Model development and training
We trained a convolutional neural net to predict 5-year
cardiovascular mortality among ECGs with either a positive event
within 5 years or a record in the EHR more than 5 years afterwards.
Model development was performed using Python 3.9 and PyTorch
1.11, and models were trained on single Nvidia Titan Xp GPUs
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using Stanford’s Sherlock computing cluster. We explored several
convolutional architectures and chose the one yielding the
highest validation accuracy, described in Supplementary Fig. 6
and similar to architectures described in previous work15.
Convolutional architectures are well-suited to ECG data due to
the repetition of motifs across time and examples, allowing for
convolutional filters to be fit to share information and reduce
complexity. The model was chosen and all hyperparameters were
tuned by training on the training set and evaluating on the
validation set. We used a batch size of 128, a weight decay
hyperparameter of 10−4, and the ADAM optimizer29. We initialized
the learning rate to 10−3 and reduced it by a factor of 10 each
time the validation loss plateaued for more than five epochs, and
stopped training once the learning rate fell to 10−6. Models were
selected based on area under the receiver operator characteristic
curve (AUC). We explored a number of model architectures from
previous papers and a range of hyperparameters and selected the
ones best-performing on the validation set.
Once a model and hyperparameters were chosen, we trained

eight more models using cross-validation on the training and
validation sets to generate model predictions on the portions of
the training set not used to evaluate the model during training.
We averaged the results of those eight models and the original
model to make predictions on the test set. All results are based on
models trained at Stanford. ECGs from Cedars-Sinai Medical
Center and Columbia Medical Center were treated exactly as ECGs
at Stanford, downsampled from 500 to 250 Hz, pre-processed
using band pass and high pass wandering baseline filters, and
normalized per-lead, based on normalization parameters specific
to Cedars-Sinai. Both Cedars-Sinai and Columbia use the General
Electric MUSE ECG software and General Electric ECG machines.
We converted the continuous model prediction to a categorical risk

prediction by taking the two tertiles of the SEER score in the Stanford
cross-validation set (i.e., the 33.3… and 66.6… percentiles). All
references to bottom and top thirds of model predictions are based
on the cutoffs from this group, including validation at other sites and
experiments in the Stanford PCE comparison set. These cutoffs are
equivalent to 1.1% and 3.9% risk of cardiovascular mortality (which
should not be directly compared to 10-year risk of ASCVD).
Single lead ECG models were trained using the same architecture

and hyperparameters as 12-lead models, but using only lead I of the
ECG and using 1 by 1 convolutions in place of the 1 by 12
convolutions. Random forest models were developed and trained
using XGBoost 1.5, using the features in Supplementary Table 6.

Statistical analysis
We primarily compared models based on the area under the
receiver operator characteristic (AUC) and the Harrell’s
C-statistic20. The former is a standard metric used for evaluating
stratification in binary classification tasks, while the latter is a
similar score for evaluating stratification in survival prediction
tasks with censoring. The AUC was computed using the scikit-
learn Python package, and 95% confidence intervals were
constructed using the bootstrap method with 100 samples. Unless
otherwise noted, all binary metrics were computed at a 5-year
time horizon, comparing all examples with an event within 5 years
versus all examples with no event but other followup data after 5
years. The c-statistic was computed using the lifelines Python
package, and 95% confidence intervals were constructed using
the bootstrap method with 100 samples. C-statistics were
computed including the entire population. We additionally
compute sensitivity, specificity, and positive predictive values
using standard definitions and using the top tertile as the cutoff
for positive predictions, and NRI based on up-risking the top tertile
and downrisking the bottom tertile.
We computed hazard ratios to measure how predictive SEER is

of future outcomes, and odds ratios to measure how current

ECG and clinical features affect SEER. Hazard ratios were
calculated using the lifelines Python package using Cox
proportional hazards models, correcting for age and sex. All
hazard ratios indicate the hazard of a patient being in the top
third of SEER risk. Kaplan–Meier estimates were computed using
the lifelines Python package. All confidence intervals on Kaplan-
Meier curves are 95% Kaplan–Meier confidence intervals. The
observed event rates in Fig. 2 are Kaplan–Meier estimates, since
the high number of censoring events would otherwise bias the
event rates to be higher. Odds ratios were calculated using the
statsmodels Python package using logistic regression models
correcting for age and sex (with the exception of the odds ratios
for age, which were only corrected for sex). All odds ratios
indicate the odds of a patient being in the top third of SEER risk
given the characteristic.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The raw patient data is not publicly available due to institutional policy and human
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