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Deep representation learning identifies associations between
physical activity and sleep patterns during pregnancy and
prematurity
Neal G. Ravindra 1,2,3, Camilo Espinosa 1,2,3, Eloïse Berson 1,3,4, Thanaphong Phongpreecha 1,3,4, Peinan Zhao5,6,
Martin Becker 1,2,3, Alan L. Chang1,2,3, Sayane Shome1,2,3, Ivana Marić 1,2,3, Davide De Francesco1,2,3, Samson Mataraso1,2,3,
Geetha Saarunya 1,2,3, Melan Thuraiappah1,2,3, Lei Xue1,2,3, Brice Gaudillière 1, Martin S. Angst1, Gary M. Shaw2, Erik D. Herzog5,
David K. Stevenson2, Sarah K. England 6 and Nima Aghaeepour 1,2,3✉

Preterm birth (PTB) is the leading cause of infant mortality globally. Research has focused on developing predictive models for PTB
without prioritizing cost-effective interventions. Physical activity and sleep present unique opportunities for interventions in low-
and middle-income populations (LMICs). However, objective measurement of physical activity and sleep remains challenging and
self-reported metrics suffer from low-resolution and accuracy. In this study, we use physical activity data collected using a wearable
device comprising over 181,944 h of data across N= 1083 patients. Using a new state-of-the art deep learning time-series
classification architecture, we develop a ‘clock’ of healthy dynamics during pregnancy by using gestational age (GA) as a surrogate
for progression of pregnancy. We also develop novel interpretability algorithms that integrate unsupervised clustering, model error
analysis, feature attribution, and automated actigraphy analysis, allowing for model interpretation with respect to sleep, activity,
and clinical variables. Our model performs significantly better than 7 other machine learning and AI methods for modeling the
progression of pregnancy. We found that deviations from a normal ‘clock’ of physical activity and sleep changes during pregnancy
are strongly associated with pregnancy outcomes. When our model underestimates GA, there are 0.52 fewer preterm births than
expected (P= 1.01e− 67, permutation test) and when our model overestimates GA, there are 1.44 times (P= 2.82e− 39,
permutation test) more preterm births than expected. Model error is negatively correlated with interdaily stability (P= 0.043,
Spearman’s), indicating that our model assigns a more advanced GA when an individual’s daily rhythms are less precise. Supporting
this, our model attributes higher importance to sleep periods in predicting higher-than-actual GA, relative to lower-than-actual GA
(P= 1.01e− 21, Mann-Whitney U). Combining prediction and interpretability allows us to signal when activity behaviors alter the
likelihood of preterm birth and advocates for the development of clinical decision support through passive monitoring and exercise
habit and sleep recommendations, which can be easily implemented in LMICs.
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INTRODUCTION
Preterm birth is the single largest cause of death in children under
five1. While there is a plethora of research trying to build
predictive models to estimate the risk of preterm birth based on
various data, few effective, inexpensive, and low-risk interventions
exist2–4. Broadly, there remains a preponderance of clinical,
biological, genetic, sociodemographic, and environmental factors
that are known to influence the trajectory of pregnancy3.
Wearable devices that directly measure physical activity have

been shown to be capable of measuring stress-related variables,
such as sleep quality5–7. Given that health statuses relevant to
preterm birth can be measured from data on sleep and activity
that is inexpensive to collect, albeit difficult to interpret, we
hypothesized that developing predictive models from wearables
data may offer a unique opportunity for low-risk and cost-effective
interventions into reducing preterm birth.
While wearable devices that monitor physical activity have been

used to assess sleep quality and a growing number of health-
related variables, their effective integration into clinical workflows

remains challenging6,7. One problem lies in the difficulty of
analyzing wearable data, which is collected and recorded
continuously, and of long-length and low dimensionality, which
makes it difficult to identify the role that wearables should play in
addressing at-risk behaviors6. Existing analytical methods for
wearables-derived accelerometry data rely on black-box commer-
cial toolboxes, bespoke pipelines for narrow applications, or non-
parametric techniques with limited scope8. Given that measuring
physical activity and sleep quality is difficult and questionnaires to
associate wearables data with activity and sleep quality lack
resolution over time and are subjective and inaccurate, we sought
to develop a more general analytical pipeline. In particular, we
sought to analyze wearables data to uncover existing relationships
between stress and inflammation, and elevated risk of
preterm birth.
Disruptions to one’s circadian rhythm may affect the timing of

birth and negatively impact fetal and maternal health9,10. Few
studies have explored the utility of using wearables data to
extensively monitor pregnancy in humans, and even fewer in
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conjunction with chronodisruption. As a result, the extent to
which physical activity and sleep changes during pregnancy
remains largely unknown. Here, we used data from a unique
cohort utilizing wearable devices and a novel state-of-the-art deep
learning and inference pipeline to define, for the first time, the
dynamic changes that occur to sleep and physical activity during
pregnancy.
Our method, series2signal, differs from existing approaches in

several ways. Prior state-of-the-art time-series classification models
do not extensively use data augmentation techniques to improve
performance11,12, despite its demonstrated utility in other
machine learning domains13. In series2signal, we developed an
automatic and data augmentation pipeline applied to each
minibatch that is compatible with any time-series data. Addition-
ally, we developed a new deep learning architecture for time-
series classification and regression based on a model that was
inspired by ResNet architecture11,14. To do so, we adapted
bottleneck and convolutional layers to optimally capture informa-
tion at time-intervals consistent with wearable device data. Finally,
although prior works have applied machine learning to wearables
data, we developed a novel and extensive post-hoc inferential and
analysis pipeline. This pipeline automates downstream tasks to
build on our deep learning model’s hidden representations and
associate various model representations and outputs with
maternal health outcomes and clinical measures15.
In this study, we applied series2signal to a cohort of pregnant

study participants given wearable devices throughout their
pregnancy to discover whether deviations from sleep and activity
patterns are associated with PTB and other poor pregnancy
outcomes. Our series2signal inference and analytical pipeline
allowed us to combine prediction from wearables data with
explainable AI to interpret model output as a robust signal of
activity and sleep behaviors that are associated with preterm birth
and other pregnancy outcomes.
series2signal demonstrates the promise of using wearables data

and computation to personalize and identify the likelihood of
preterm birth based on relatively inexpensive data. Our results
suggest that consultation and intervention, informed by contin-
uous monitoring, may enable cost-effective and scalable mitiga-
tions to the unacceptably high prevalence of preterm birth
globally. This study serves as a platform for future randomized
controlled trials to study the causation of the associations
identified as well as investigations into possible implications for
the immune system2,4,16–18.

RESULTS
Data collection and cohort
To assess whether the combination of machine learning and
wearable device data can be used to monitor the progression of
pregnancy, we collated a dataset from a cohort of N= 1083
pregnant individuals (see Fig. 1a). Wearable actigraphy devices,
which capture physical activity and motion, were given to
pregnant individuals in their first trimester. Their gestational age
was predominantly measured by a combination of last menstrual
period (LMP) and < 14weeks ultrasound (N= 537(49.6%)). From
follow-up visits, we truncated actigraphy data to capture 1 week of
actigraphy data post-GA indication. This resulted in N= 2305 data
points capturing activity and sleep behaviors during pregnancy.
Actigraphy data consist of counts to a piezoelectric device,
measuring intensity of acceleration, integrated across 3 dimensions
every minute. The actigraphy devices also collect light intensity via
a photoelectric sensor, yielding a 2-dimensional time-series data
set at 1-min periods across 1-week (length L= 10,080, and
dimensionality d= 2). This medium-sized labeled dataset allowed
us to develop a supervised machine learning pipeline to monitor
pregnancy from wearable devices.

Electronic health record data was collected along with physical
activity data (see Table 1). Across N= 2305 measurement-GA pairs,
the median GA was 21.0 weeks (inter-quartile range (IQR),
11.0−30.0 weeks). Consistent with previous epidemiological studies,
we found that between pregnancies that resulted in prematurity
and those that came to term, BMI, history of prior PTB, and the
presence of comorbidities such as hypertension and diabetes were
higher for measurements associated with patients whose preg-
nancy resulted in PTB (P < 0.001, all, Kruskal-Wallis or chi-squared).
The chances of C-section, neonatal complications, and death were
also markedly higher amongst patients in the PTB+ group, as
expected (minimum enrichment between PTB+ vs. PTB-, 45.4%, all
P < 0.001).

Self-reported data and standard quantification of actigraphy
data do not identify signal associated with GA or PTB
Standard physical activity monitoring analyses rely on compar-
isons of non-parametric measures across groups8. For example,
circadian rhythmicity can be assessed in PTB+ vs. PTB-
pregnancies via day-to-day variance (IS=interdaily stability),
activity fragmentation (IV=intradaily variability), and the relative
difference between the mean activity during the 10 most active
hours and the 5 least active hours (RA=relative amplitude).
Standard actigraphy analytical methods, which use non-
parametric activity-related summary metrics, revealed no differ-
ence between preterm and non-preterm births (PTB+ vs. PTB-
groups, minimum Pcorrected= 1.18 for RA, Kruskal-Wallis).
Standard activity metrics can be correlated with each other, e.g.,

activity and sleep (Spearman’s ρ= 0.41(P < 0.001) for association
between Kaiser Permanente Activity Scale (KPAS) and PSQI in total
cohort; and across groups, ρPTB+= 0.36(P < 0.001) and
ρPTB−= 0.41(P < 0.001); see Supplementary Fig. 2A). In addition to
subtle differences between pre-term birth groups in this cohort,
non-parametric sleep and activity metrics mostly do not correlate
with progression of pregnancy (see Supplementary Fig. 2C);
however, IS and IV are weakly correlated with GA (max
ρ= 0.19(P < 0.001), IS) but do not significantly differ between pre-
term birth groups (Spearman’s ρPTB+= 0.15(P= 0.01) and
ρPTB−= 0.20(P < 0.001), IS). This suggests that non-parametric
activity monitoring metrics cannot be robustly used to assess
prematurity risk on an individual patient-level. Instead, the
combination of non-parametric physical activity monitoring analyses
and wearables data during pregnancy supports that pregnancy
disrupts circadian rhythmicity, as has been reported elsewhere9,10.
From visual comparison of raw actigraphy data traces, the perplexity
of analysis strategy for this data is more pronounced; furthermore,
group comparisons reveal no significant differences between
measurements associated with individuals whose birth results in
pre-term or term (Fig. 1b, c). While survey data indicates there may
be some differences in PTB+/PTB- in terms of sleep quality and
depression scales, these effect sizes are small (maximum median
difference of 1 point in the Edinburgh depression scale, higher for
PTB+), reiterating that the complexity of the data requires additional
analytical techniques to maximize the utility of collecting physical
activity monitoring data during pregnancy.

series2signal identifies sleep and activity patterns associated
with the progression of pregnancy with deep learning
To support the integration of information distilled from wearables
into pregnancy monitoring workflows, we developed a new
machine learning and explainable AI pipeline, dubbed series2-
signal, which ingests periods of wearables data from actigraphy
devices and builds a model of dynamic physical activity and sleep
changes during pregnancy. We further demonstrate that devia-
tions from this “normal” model signals disruptions to physical
activity and sleep, relative to healthy, and are associated with
adverse outcomes.
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Our series2signal method has four primary components (see
Fig. 1e): (1) a machine learning pipeline, which includes data
cleaning and pre-processing, a new model for multivariate time-
series regression using a convectional-based deep learning
architecture (Fig. 1d), and a new time-series data augmentation
scheme; (2) a trained model error analysis and automated tabular
correlation network function that identifies sub-groups within
error modes and clinical (or metadata) groups; (3) a feature-based
attribution module to interpret the trained model and address
why, on the basis of time-of-day and clinical group, the model is
making its predictions; (4) a lightweight addendum to the model
that can be used for predicting sub-group membership or other
ancillary tasks based on the trained models’ representations and
metadata, and phenotyping (relative to the trained cohort) based
on the models’ learned representation (see Fig. 1e and methods).

series2signal outperforms standard machine learning
approaches
Our machine learning pipeline achieves the best average and
maximal performance on predicting GA from actigraphy data
relative to other deep learning and machine learning approaches
(Fig. 1f, Table 2). In particular, on a held-out test set, series2signal
achieves a minimum of average absolute error of 7.52 weeks and,
across the test set, the model’s GA output correlates with the
actual GA (Spearman’s ρ= 0.45(P < 0.001)). Our model achieves
the absolute-lowest error on the test set of all comparison models
tried. In head-to-head comparisons with repeated trials (in which
were robustness tests were performed by assigning patients to
different training, testing, and validation splits per trial), series2-
signal consistently out-performs all other models and is signifi-
cantly better than all other ML/DL models in head-to-head
comparisons (Table 2). In particular, relative to a random model
trained with the series2signal architecture on randomized targets,
ours achieves the largest top-1 difference, with 18.1% lower error.
On average, the non-deep learning TimeSeriesForest model
generalizes with a sub-2 month error on GA prediction; however,
the series2signal model still outperforms this and other ML
methods with only ~ 2000 actigraphy measurement - GA pairs
(max P= 0.0001, Mann-Whitney U). Furthermore, the output of the
TimeSeriesForest is significantly less correlated with the actual GA
than the series2signal output, on average across trials (ρOurs= 0.40
vs. ρTimeSeriesForest= 0.31). This suggests that series2signal is, to-
date, the best method to monitor pregnancy using just 1 week of
wearables data.
With small training size (Nmeasurements,train= 1411 vs.

Nmeasurements,test= 691), we expected to suffer from over-fitting.
To address this, we developed a new procedure for data
augmentation to mitigate this problem. We selected a number
of augmenting filters and applied them all or randomly selected
one per mini-batch or epoch, optimizing the procedure to
minimize generalization error. Including this data augmentation
in our training implementation, we mitigated over-fitting, obtain-
ing similar performance on the train and test set (see Methods,
compare train/test error in Fig. 1g, h). However, stratifying the
model output on whether the pregnancy resulted in full-term or
pre-term birth reveals that the model’s error (model minus actual
GA) is significantly higher in the pre-term birth group compared to
the non-preterm birth group in both training and validation splits
(mean difference in error, 2.31 weeks, P= 0.005; Fig. 1h). In
particular, stratifying on whether the measurement is associated
with a pregnancy that did or did not result in a preterm birth, we
find that the top-1 model output on the train set is correlated with
the actual GA in both groups, which is maintained in the test set
(ρPTB−= 0.39 vs. ρPTB+= 0.41, max P= 2.1e− 4, test PTB+)
Fig. 1g). Thus, for the groups of interest, the model performs
nearly as well, suggesting that the top-1 model can address
differences between PTB groups. Ta
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Deviations from the activity and physical clock of pregnancy
is associated with adverse outcomes
series2signal includes a new pipeline to analyze the best
performing model (top-1 model), comparing its predicted GA
output to the actual output and analyzing the association of that
error with clinical variables. The error analysis module consists of
two parts: (1) first, we identify error trends with an automated
process that leverages a correlation network and the metadata or
clinical data associated with each patient; (2) then, we assess the
significance of these groupings and error group differences using
permutation testing and determine which differences generalize
to the test set (Fig. 2a). By comparing the model output to the
actual GA, we identify at least three error modes: measurements
where the predicted GA is higher than the actual GA (higher-than-
actual GA group), measurements where the predicted GA is lower
than the actual GA (lower-than-actual GA group), and a small error
group ( < 10weeks, or lt10wks, where the threshold determined by
balancing the number of samples in the higher- and lower-than-
actual error modes; Fig. 2c). These error groups are also present in
similar proportions in the held-out test set, suggesting that these
error groups can be identified with series2signal (Supplementary
Fig. 3A). With these error groups, we can automatically associate
each error group with metadata or clinical data available per
patient via a custom tabular association function that accounts for
mixed categorical and continuous associations (see Methods).
Once we have these error groups, in the training and test set we
sample from each error mode and shuffle the group labels to
create an observed and null set. Then, via permutation testing, we
can compare whether the observed versus expected ratio (where
the expected ratio uniformly mixes a particular label across
groups) is significantly different, allowing us to validate whether
the observed differences amongst error groups are robust.
We leverage m= 124 metadata variables, spanning patient-

level data on stress and depression, surveys and scores on sleep
and activity, social determinants of health, and various clinical
outcomes, comorbidities, and procedural details, comparing and
contrasting the differences within each variable across error
groups. This yields a correlation network where the node size is
given by differences between groups (by the negative logarithm
of the p-value derived from statistical hypothesis testing between
groups, namely, ANOVA or Fisher’s exact test for continuous or
categorical data, respectively; Supplementary Fig. 3B, C). This
correlation network, unsupervised, clusters variables tracking
similar quantities, e.g., activity-related variables, together, high-
lighting its ability to reflect health-relationships consistent with
common sense understanding. The strongest and most numerous
interactions occur between sleep, comorbidities, and social
determinants of health, while activity and stress are more distally
related, albeit to one another. One of the largest differences across
groups occurs in the prevalence of preterm birth. Other important
clinical variables differ across error groups, including whether the
patient used alcohol during pregnancy, whether the patient asked
for an epidural, a few sleep quality metrics, the delivery mode of
the birth, and the presence of hypertension during pregnancy.
Differing across error groups, however, does not necessarily

portend significance. To ensure that these clinical variables
differing across error groups also can be modeled, reliably, from
actigraphy data, we compare both the difference in prevalence or
value for each metadata variable against its difference across error
group (Supplementary Fig. 3B). This shows that while there are
differences in the amount with which epidurals are received
across the error groups, it is hard to model this using actigraphy
data, which may suggest that the model error analysis may not as
robustly identify these modes across error groups, given
significant differences in the cohort but poor accuracy from input
data for the model. In contrast, hypertension and sleep metrics
and, in particular, the outcome of preterm birth, all differ across

error groups and have high predictability. This suggests that
preterm birth differing across error groups is a detectable signal
using series2signal. Indeed, the largest magnitude of difference for
pregnancy outcome across error groups is infant length, which is
itself known to be correlated with preterm birth (Supplementary
Fig. 5A). In addition, several sleep-quality-related variables differ
across error groups, which suggests that disruption to sleep-
quality is associated with model error, which is in turn associated
with differences in pregnancy outcome. Activity-related metadata
variables are highly predictable from actigraphy data (Supple-
mentary Fig. 3B), while other categories of metadata are less
predictable, reinforcing the utility in setting the primary task of
series2signal to modeling of GA. The high-predictability of social
determinants of health and differences across error groups,
however, may suggest an association between sleep and activity
and model output.
We further explore and validate the assertion, based on initial

results, that the model’s output, “actigraphy-GA” itself can be
compared with the actual GA to indicate deviations to sleep and
activity and indicate a heightened risk for preterm birth and
adverse outcome and a decreased risk of preterm birth and
adverse outcome when the model thinks the pregnancy is not as
far along as it is (namely, when the “actigraphy-GA” is lower-than-
actual GA). Based on the proportion of samples in each group and
the prevalence of a particular value, e.g., whether a pregnancy
resulted in preterm birth or not, we can use a χ2 metric to compare
the observed to expected ratio. For example, if there were n= 100
preterm births and the proportion in each error group was 80/10/
10%, then we would expect to observe n= 80, n= 10, and n= 10
in the respective groups, each with an observed/expected
ratio= 1. Instead, we observe that when the model outputs an
“actigraphy-GA” that is higher-than-actual (the model thinks the
pregnancy is further along than it actually is), there is a 44%
increased prevalence of preterm birth in that error group (Fig. 2d).
In contrast, the prevalence of preterm birth is reduced by more
than a factor of 2 (0.52X expected) when the model thinks the
pregnancy is less far along than it actually is (lower-than-actual
error group). In the low-error mode, the prevalence of preterm
birth does not differ significantly from expected by chance. To
assess the significance of this result, we performed permutation
testing, finding that after repeated sampling from the held-out
test set, the model’s output can consistently be used to indicate
higher prevalence of preterm birth for higher-than-actual GA
estimations (prevalence of preterm births is higher by a factor of
1.5 than expected, P < 0.001). On the test set, the model’s output
consistently can be grouped into a lower-than-actual GA group
where the prevalence of preterm birth is less-than-expected by a
factor of 2.0 (P < 0.001, permutation test) (Fig. 2e). Thus, while the
model’s error may have a high-magnitude in some cases, the
placement of a week-long measurement into a high-error group
can indicate deviation to sleep and activity that portend
heightened (or reduced) risk of preterm birth.
We perform similar analyses for metadata variables that

significantly differed across error groups (Fig. 2f). However, given
the small size of the dataset and error groups (� Oð2Þ) and the
rarity of some conditions, e.g., pregestational diabetes, there are
not always examples of the metadata variable value being
observed across all error modes, i.e., the power is low. None-
theless, some trends are noticeable, such as the prevalence of a
postpartum diagnosis (pre-term birth, neonatal complication)
being significantly higher in the higher-than-actual GA error
group and significantly lower in the lower-than-actual GA error
group (P < 0.001, both, permutation test). Generally, several sleep-
related variables, pregnancy outcome variables, and social
determinants of health significantly differ across error groups,
suggesting that series2signal may pick up a number of broadly
and clinically relevant signals from just 1wk of wearable device or
physical activity and sleep monitoring.
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In our cohort, some individuals may have had iatrogenic
preterm births, where delivery was scheduled before
GA=37 weeks due to maternal and/or fetal causes. Induction
was indicated for various reasons in our cohort, including pre-
eclampsia, individual election, intrauterine growth restriction, fetal

demise, gestational diabetes, and others19. To assess the
sensitivity of our primary results to spontaneous vs. iatrogenic
births, we split our dataset into two groups: one in which
induction is indicated for any reason and another group,
representing spontaneous births, where no induction is indicated
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for the delivery of the pregnancy (Nno induction= 623 and
Ninduction indicated= 460; see Supplementary Fig. 4A). In both
subgroups, series2signal model output remains correlated with
actual GA (ρ= 0.61 and ρ= 0.57 for no induction and any
induction indicated, P < 0.001 both, see Supplementary Fig. 4B, E).
Average series2signal model error is also higher in PTB+ for both
groups (0.3 vs. 2.5 weeks, P < 0.001 and 0.1 vs 2.6 weeks, P= 0.001,
for spontaneous and induction groups respectively in the training
set, Mann-Whitney U; see Supplementary Fig. 4D, G), consistent
with our findings for the full cohort. Lastly, trends in error groups
remain consistent with results on the full cohort (OR for
enrichment of PTB+ in higher-than-actual error 1.13 vs. 1.81 for
spontaneous vs. any induction births, P= 9.7e− 6 vs.
P= 6.7e− 55 by permutation tests, respectively, and OR for
enrichment of PTB+ in lower-than-actual error group is 0.45 vs.
0.87 in spontaneous vs. any induction births, P= 2.3e− 137 vs.
P= 5.0e− 6, respectively; see Supplementary Fig. 4C, F). These
results suggest that series2signal can be used to indicate risk of
preterm spontaneous or iatrogenic birth based on physical
activity, sleep, and light exposure patterns and behavior.

series2signal relies on deviations from general sleep and
activity patterns in predicting higher- or lower-than-actual GA
Why the model error is a useful pregnancy monitoring indicator
was an open question and, to ensure trustworthiness and
robustness of the series2signal method, as well as the ability of
future users to modify the model without losing the ability to
interpret and validate its utility, we include a model interpret-
ability module in the series2signal method. We rely on a gradient-
based feature attribution method, which allows us to query each
actigraphy data sample and obtain local explanations, i.e., per
actigraphy data sample, which individual measurements are
important in influencing the model’s predictions (Fig. 3a). With
these feature attributions, we can then globally frame post-hoc
model inference for interpretability across the cohort and group
analyses into sub-groups identified from metadata or other
means. Broadly this allows us to interrogate why the model
makes its predictions and why the predictions that signal
heightened (or decreased) risk of preterm birth are made, which
may facilitate the development of correcting interventions. Briefly,
we developed an automated method that associates the model’s
error or feature attribution score (feature importance, absolute
value of integrated gradient method) with clinical variables per
feature and per sample group. Groups can be flexibly defined, and
in our application, we include error groups, feature groups
stratified by time-of-day, e.g., higher-than-actual and morning vs.
evening times, respectively, and clinical groups, e.g., whether a
particular measurement was associated with a preterm or full-term
birth. Then, we can rely on statistical hypothesis testing to
determine whether the error or feature importance differs
significantly between these groups.

Comparing measurements’ feature importance in the higher-
than-actual error group versus lower-than-actual error group
reveals no differences during wake periods in feature attribution
scores between error groups (Fig. 3b). However, during sleep
periods, the feature importance scores for the higher-than-actual
group are significantly higher than the feature importance scores
for the lower-than-actual group (P < 0.001, Mann-Whitney U). This
suggests that the higher-than-actual error group relies on
deviations to sleep patterns to make its predictions more so than
the low and lower-than-actual GA error groups, which could be
interpreted as the model paying closer attention to sleep patterns
in mis-predicting the progression of the pregnancy and that sleep
disruption causes the model to “think” the pregnancy is further
along than it actually is. When we stratify by time-of-day rather
than error group, however, the model’s behavior has a less clear
interpretation. For example, during wake periods, the model relies
more heavily on measurements in the evening than the morning
to make its GA prediction (Fig. 3c); however, for sleepy mornings
or evening naps, the model does not significantly attribute
influence in its prediction. Broadly, looking at the proportion of
non-zero feature importance scores, the activity during the wake
periods in the mornings, weekdays, and daytime broadly influence
the model’s output. Indeed, for the held-out test set, activity
during wake periods are more heavily attended to by the model in
making its predictions, even though this trend breaks between
error groups. Indeed, feature importance scores are associated
with activity metrics, such as RA (Fig. 3d) but the correlation is
negligible during wake periods and small during sleep periods
(Spearman’s ρsleep=− 0.17 vs. ρwake=−0.04), which may suggest
that large deviations to sleep periods are particularly important in
the model’s predictions. The error (model minus actual GA) is
significantly correlated with daily rhythmicity (IS, ρall= 0.45,
P < 0.001) during sleep periods but not during wake periods
(ρwake=− 0.31, P= 0.86), which may suggest that individuals with
higher day-day activity variability and sleep disruption have higher
error.
Broadly, we investigated the association of feature importance

across all metadata variables (Supplementary Fig. 6A–D) as well as
the association of error with metadata variables (Supplementary
Fig. 7A–E) to explain why series2signal can be useful for
pregnancy monitoring. We relied on a new, custom function for
association with mixed categorical and continuous tabular data
(see Methods) and scaled the association to a number between 0
and 1. This analysis revealed that surprisingly, activity-related
variables are more correlated with feature importance in sleep
periods, relative to wake periods, while other metadata variables are
similarly associated with feature importance regardless of sleep or
wake periods (Supplementary Fig. 6A). In addition, the magnitude
of the model’s error is most differentially correlated with activity-
related variables between sleep and wake periods (Supplementary
Fig. 7A). Comparing across error groups, stress-related variables are

Fig. 3 Model interpretation reveals that series2signal relies on deviations to sleep and activity in predicting higher- or lower-than actual
GA error groups. a Use of gradient based feature attribution method to calculate feature importance per input time from the input actigraphy
data using the top-1 series2signal model and its downstream association with error groups and metadata groups to search for associations
between clinically relevant variables and model error and feature weighting. b Comparison of feature attribution scores during wake (yellow,
left) and sleep (blue, right) periods between the higher- and lower-than-actual error groups. Top distribution shows the top n= 200 feature
importance scores. c Comparison of feature importance scores by time-of-day or week. Inset shows the proportion of 0s (within
tolerance= 1e− 8) of feature importance during the indicated period. d Spearman’s ρ correlation of feature importance or error against
relative amplitude (RA) or interdaily stability (IS). e The average association score per metadata variable category against top-1 series2signal
model error and feature importance (rows) per error group (columns). Color bar annotation is denoted in the first column and carries over,
representing variable category. f Comparison of feature importance across PTB+ vs. PTB- groups across feature importance and model error.
g AU-ROC curves showing true positive rate (TPR) against false positive rate (FPR) for a logistic regression classifier discriminating between
sleep and wake using the continuous feature importance scores and error from PTB+/PTB- groups. Lineplot intervals show 95% confidence
intervals. h Spearman’s ρ correlation between model error and IS for PTB+ vs. PTB- groups. Significance key: P > 0.05: `n.s.', P ≤ 0.05: `*', P ≤ 0.01:
`**', P ≤ 0.001: `***'. Continuous variables were compared with Mann-Whitnuey U test or Spearman’s ρ. Barplot error bars represent standard
deviation. Box plots show median and first and third quartiles with outliers as 1.5 times IQR.
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broadly the most highly associated with feature importance and
model error (Supplementary Fig. 7E, F) while the association with
activity-related variables is decoupled, albeit differential across error
groups. Averaging the associations across metadata variable
categories highlights that sleep-quality is most associated with
model error in the lower-than-actual GA error group, while social
determinants of health are particularly more strongly associated
with model error in the higher-than-actual GA group (Fig. 3e).
Comorbidities and feature importance are also uniquely more
associated in the higher-than-actual error group, which may
suggest that when the model thinks the pregnancy is further
along than it really is, the individual is sicker, as detectable from
series2signal and wearable device data. Broadly, these results
suggest that deviations from sleep and activity vary significantly
across series2signal error modes and can thus be used as indicators
for other clinically relevant variables, such as the presence of
comorbidities.
We lastly sought to distinguish the model’s error associations

and feature attributions across prematurity groups (Fig. 3f–h). In
the PTB- group, the model’s output is more highly dependent on
sleep than wake periods (mean difference, 4%, P < 0.001, Mann-
Whitney U), a trend reflected in the PTB+ group as well (mean
difference, 4%, P < 0.001). The error (model’s “actigraphy-GA”
minus actual GA) is significantly higher in the pre-term birth group
during sleep and wake periods (mean difference, sleep minus
wake periods, 24%, P= 0.03) but between sleep and wake in the
PTB- group, there is no difference in the error (P= 0.36, Fig. 3f).
Digging into this more deeply, in both the PTB+ and PTB- group,
sampling feature importances from this periods and predicting
whether the feature importance was drawn from sleep or wake
periods reveals that importance can be used to discriminate
between sleep and wake periods (AU-ROC= 0.94, both) whereas
the error is a much poorer discriminator of sleep vs. wake (max
balanced AU-ROC= 0.53, PTB- group; Fig. 3g). This suggests that
the error in sleep periods is significantly higher in the pre-term
birth case and not confounded, as the importance is, by sleep and
wake. We also show that model error (model-actual GA) is
negatively correlated with interdaily stability (ρ= 0.08,
P= 2.7e− 4, Fig. 3h), which indicates that our model assigns a
more advanced GA for individuals with decreased precision of
daily sleep-wake rhythms, although this effect is subtle. In broader
support of this, our model attributes higher importance to sleep
periods in predicting higher-than-actual GA, relative to lower-
than-actual GA (P < 0.001, Mann-Whitney U Fig. 3b). Collectively,
this suggests that the model attends particularly closely to activity
patterns in sleep when over- and under- estimating the
prematurity or stage of the pregnancy.

series2signal embeddings are useful for predicting ancillary
metadata tasks and phenotyping patients based on time-
series clustering
Deep learning models learn non-linear representations of the
input data that can be then used for predicting the primary task.
We tested whether the embeddings that we learned in using
actigraphy data to monitor the progression of pregnancy would
be useful in other tasks, namely predicting other metadata
variables given wearables device data (Fig. 4a). The ability to
extract embeddings depends on the construction of the network,
in part. We adapt a state-of-the-art deep learning for time-series
architecture in a way that allows us to add linear layers for
regression tasks, in addition to providing non-linear embeddings
that summarize the entire week of actigraphy data into a vector
(Methods, Fig. 1a). Once we have an optimally trained model
(top-1), series2signal can then output time-series or actigraphy
embeddings via an input query, where the input query is the pre-
processed actigraphy data from any given patient. To benchmark
and compare the utility of using model embeddings we took two

primary approaches: we developed an automated unsupervised
clustering pipeline for comparing phenotyping based on the pre-
processed actigraphy data that utilizes dynamic time warping as a
distance metric for the time-series actigraphy data, and then we
use a high-dimensional distance metric (Manhattan distance) to
compute pairwise distances for samples’ learned embeddings,
where “learned embeddings” refer to the top-1 model’s non-linear
representation of the long time-series in a 128-dimensional vector.
Using these pairwise distances, we can construct a graph via affine
transformation and identify communities; we can visualize the
high-dimensional embedding using standard dimensionality
reduction algorithms, such as UMAP, and then finally, parse
through the metadata to search for enrichment of meaningful
value instantiations in each cluster. To assess the predictability of
series2signal’s model on other clinically relevant tasks, despite
training the model only to monitor the progression of pregnancy,
we compare the same lightweight machine learning algorithm
(kNN classification or regression) on various tasks using the top-1
model’s learned representation of the actigrahpy time-series
versus the pre-processed actigraphy data.
We found that series2signal’s top-1 model, on the MOD cohort,

learned representations that yield higher-on-average performance
with a lightweight machine learning model than actigraphy data
(Fig. 4b, P= 0.01, Mann-Whitney U). This suggests that series2-
signal can be used to compress actigraphy data (from R1 ´ 10;080 ´ 2

dimensional input per measurement to R1 ´ 128, a reduction of
160 × ) and used for various clinically relevant tasks that speed up
complete re-training by ~ 10h per task, while also providing signal
on the progression of pregnancy. While the average boost in
predictability (absolute value of Spearman’s correlation for
regression or AU-ROC for classification) using series2signal’s
model embeddings is significant, the effect size is small (based
on series2signal embeddings, Predictability= 0.46(0.2) vs. Predict-
ability= 0.45(0.2) based on raw actigraphy data). There are also
differences in which tasks, specifically are more or less predictable
with the model’s learned representation of the input wearable
device data (Fig. 4c, Supplementary Fig. 8B). In particular,
series2signal’s representations excel at predicting social determi-
nants of health, sleep-quality, comorbidities and stress-related
metadata targets; however, the raw actigraphy data can be more
easily used to discriminate activity-related metadata labels per
measurement. This may indicate that the series2signal approach
learns to reduce the impact of activity-related differences between
the population which a less-useful model over-exploits, while our
model learns more subtle patterns hidden in the wearable device
data that are more closely related to important clinical variables,
including indicators of sleep and stress that can signal heightened
risk of prematurity.
Given that the model embeddings are predictable, we also

wondered whether series2signal can produce quick visualizations
for complex wearables device data that would give a global
positioning of a patient at any stage in pregnancy, relative to the
MOD cohort, where the localization is semantic or clinically useful.
To benchmark series2signal’s top-1 model, we also developed an
unsupervised learning approach, which does not require training.
The unsupervised approach does not yield much structure and
differences in space do not show a clear clustering of GA or model
error (Fig. 4d). In this regard, the spatial distribution of GA and
error is more similar to a random model (series2signal model
applied with randomly shuffled labels, Supplementary Fig. 8A).
However, with the top-1 model’s embeddings, series2signal learns
a more structured embedding that shows a clear spatial trend
across GA. Applying a new, automated approach to identifying
semantic clusters (see Methods), we also find a number of
interesting clusters in the series2signal embedding. In particular,
we find enrichment of depression-related variables in one cluster
of the model embeddings, enrichment of comorbidities, and a
healthy cluster measurements that indicate low stress and good

N.G. Ravindra et al.

10

npj Digital Medicine (2023)   171 Published in partnership with Seoul National University Bundang Hospital



D
iff

er
en

ce
 in

 p
re

di
ct

ab
ilit

y 
(E

m
be

dd
in

gs
 - 

ra
w

)

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

U
ns

up
er

vi
se

d 
le

ar
ni

ng
 (D

TW
)

B
es

t m
od

el
’s

 re
pr

es
en

ta
tio

n
a

Pr
ed

ic
ta

bi
lit

y 
(|R

ho
| o

r A
U

-R
O

C
)

Stress-related
Social determinants of healthProcedural

Sleep quality
Depression-related
Pregnancy outcomeComorbidities

Activity related

N
m

ea
su

re
m

en
ts

...

...

Model representation

Raw actigraphy 
data

Best model

Graph clustering

DTW

Pairwise
distance

UMAP

Semantic cluster 
annotation

Rest2

Phenotyping
utility

kNN

1

Predictability
utility

Task 1 Task n

Inp
ut

Le
arn

ed

Pe
rfo

rm
an

ce ... b

c

d

Raw Embeddings

0.0

0.2

0.4

0.6

0.8

1.0

**

av
e_

lo
gp

se
ud

oc
ou

nt
_d

ay
m

in
_r

es
t

av
e_

lo
gp

se
ud

oc
ou

nt
_w

kd
ay

IS
m

av
e_

lo
gp

se
ud

oc
ou

nt
_n

ig
ht IS

av
e_

lo
gp

se
ud

oc
ou

nt
_w

kn
d

av
e_

lo
gp

se
ud

oc
ou

nt
_s

le
ep IV
m

ra
ce IV

ab
us

e
m

ar
ita

l
sm

ok
e

pr
eg

es
ta

tio
na

l_
di

ab
et

es
dr

ug
s

as
si

st
_r

ep
ro

al
co

ho
l

in
su

r rh
de

liv
_m

od
e

et
hn

ic
ity

as
th

m
a_

ye
s_

__
13

ed
uc

at
io

n
ed

in
b1

0_
1t

rim
ed

in
b2

_1
tri

m
de

at
h_

ba
by

ot
he

r_
di

se
as

e
in

co
m

e_
an

nu
al

1
ed

in
b6

_1
tri

m
st

re
ss

2_
1

pa
id

jo
b1

sl
pe

ne
rg

y1
as

th
m

a_
ye

s_
__

20
as

th
m

a_
ye

s_
__

18
ca

rtr
af

fic
1

w
or

k_
hr

s1
pe

rio
d_

w
in

do
w

1
as

th
m

a_
ye

s_
__

2
sl

ee
p_

qu
al

1
tv

1
in

co
m

e_
su

pp
or

t1
af

te
rlu

nc
h1

ed
in

b5
_1

tri
m

ge
st

at
io

na
l_

di
ab

et
es

ne
on

at
al

_c
om

pl
ic

at
io

n
ch

oo
se

sl
ee

p_
1t

rim R
A

ed
in

b8
_1

tri
m

as
th

m
a_

ye
s_

__
8

re
gu

la
r_

pe
rio

d1
si

tti
ng

1
ed

in
b4

_1
tri

m
bc

_p
as

t1
pp

vi
si

t_
dx

hy
pe

rte
ns

io
n

st
re

ss
3_

1
st

re
ss

4_
1

as
th

m
a_

ye
s_

__
19

st
re

ss
1_

1
sl

pw
ak

e_
1t

rim
co

rti
co

st
er

oi
ds

st
re

ss
7_

1
su

rg
hx

_n
on

e
sl

p3
0_

1t
rim

st
re

ss
6_

1
re

se
t1

st
re

ss
10

_1
an

es
_t

yp
e

w
or

kr
eg

_1
tri

m
pr

io
r_

pt
b_

al
l

st
re

ss
9_

1
pt

b_
37

w
ks

ed
in

b7
_1

tri
m

ta
lk

in
g1

ge
st

ag
e_

by
st

re
ss

5_
1

m
en

st
ru

al
_d

ay
s1

m
on

th
s_

no
pr

eg
o1

ep
id

ur
al

ed
in

b9
_1

tri
m

as
th

m
a_

ye
s_

__
4

as
th

m
a_

ye
s_

__
7

st
re

ss
8_

1
fu

llt
er

m
_b

irt
hs

pa
ss

en
ge

r1
as

th
m

a_
ye

s_
__

1
pr

ee
cl

am
ps

ia
ed

in
b3

_1
tri

m
pr

em
at

ur
e_

bi
rth

1
in

ac
tiv

e1
as

th
m

a_
ye

s_
__

3
as

th
m

a_
ye

s_
__

5
gh

tn
ed

in
b1

_1
tri

m
er

vi
si

t
as

th
m

a_
ye

s_
__

10
gy

n_
in

fe
ct

io
n

av
e_

lo
gp

se
ud

oc
ou

nt
_w

ak
e

bc
_y

ea
rs

1
ag

e_
en

ro
ll

G
A

in
fa

nt
_w

t
he

ad
_c

irc
cb

c_
m

cv
in

fa
nt

_l
en

gt
h

KP
AS

cb
c_

hc
t

bm
i_

1v
is

ve
n_

pc
o2

ve
n_

la
ct

at
e

Ep
w

or
th

SS
m

at
er

na
l_

de
l_

w
ei

gh
t

PS
Q

I
ar

t_
la

ct
at

e
cb

c_
w

bc
ve

n_
po

2
ar

t_
po

2
ve

n_
ph

ar
t_

ex
ce

ss
Ed

in
bu

rg
h

ar
t_

pc
o2

cb
c_

pl
ts

0.0

0.2

Ground truth (train set)

5

10

15

20

25

30

35

Ac
tu

al
 G

A 
(w

k)

Model error (train set)

−20

−10

0

10

20

Er
ro

r (
m

od
el

 - 
ac

tu
al

 G
A,

 w
ks

)

Only 1 supported by income(72.8%)

Unsupervised learning and clustering
0
1
2
3

Amost never stressed 
(145.9%)

Ground truth (train set) Model error (train set)

12.0: irregular work (231.6%)

l2FC Years on BC (c-rest)=-1.11

Married (57.5%)

Unsupervised learning and clustering 0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0

5

10

15

20

25

30

35

Ac
tu

al
 G

A 
(w

k)

−20
−15
−10
−5
0
5
10
15

Er
ro

r (
m

od
el

 - 
ac

tu
al

 G
A,

 w
ks

)

Model embedding gains

Overview of investigating usefulness of learned representations

Clustering analysis comparisons

Predictability comparison

Fig. 4 series2signal module to investigate model utility demonstrates that series2signal embeddings are useful for predicting ancillary
metadata tasks and for phenotyping patients. a Overview of model utility module that compares an unsupervised learning approach
harnessing dynamic time warping (DTW) to measure distances between pairs of time-series with supervised learning and graph clustering
approach based on representations of input actigraphy data that our model learns. b Predictability, defined as AU-ROC for classification tasks
and the absolute value of Spearman’s ρ for regression tasks, of metadata tasks using input, pre-processed actigraphy data (Raw) or learned
model embeddings (Embeds). Box plots show median and first and third quartiles with outliers as 1.5 times IQR. c The difference in
predictability between models built using learned model representations (Embeddings) minus those built with input actigraphy. Color shows
category of metadata target. d Dimensionality reduction of actigraphy data using DTW (top row) versus model embeddings (bottom row)
with individual measurement-GA pairs in the train set colored by actual GA, error, and graph-based clustering with semantic identification of
cluster enrichment across metadata variables (columns). Far right numbers indicate cluster ID.
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sleep measurements. In contrast, the unsupervised learning
approach only identifies missingness in one clinical variable,
lower stress and less daytime drowsiness, and lower-than-
expected enrichment of no past birth-control. Similarly, some of
the random clusters are enriched for clinically irrelevant variables
or variables confounded by missingness. This suggests that,
especially with a larger cohort, series2signal may identify sub-
populations of measurements that indicate not just GA but also,
the co-occurrence of enrichment of clinically relevant variables
and could provide for a fast visualization and summary of the
health status of an pregnant individual over the past week, which
may also be useful in treatment support or suggesting consulta-
tions for behavioral modifications that reduce the risk of
prematurity.

DISCUSSION
We developed series2signal to analyze physical activity and sleep
patterns during pregnancy using deep learning and found that
deviations to activity and sleep, as measured with wearable
devices, are associated with prematurity. As a proof-of-concept,
we showed that the combination of wearables with machine
learning and model analysis can be used to signal behaviors that
heighten risk of preterm birth and suggest feasible interventions
to reduce the likelihood of prematurity. To predict GA from
wearables data, we used 1-week of activity data following 2305-
GA measurements from a cohort of 1083 pregnant individuals and
adapted a state-of-the art deep learning time-series classification
architecture to monitor the progression of pregnancy via
regression. We also developed a novel interpretability algorithm
that integrates unsupervised clustering, model error analysis,
feature attribution, and automated actigraphy analysis. series2-
signal allows for model interpretation with respect to activity,
sleep, and static clinical variables. We found that our approach
performs significantly better than 7 other machine learning
methods in predicting GA (max P= 7.4e− 13, Mann-Whitney U;
top-1 MAE, 7.52 weeks) and, generally, that with our deep learning
analysis, we can measure the progression of pregnancy from
wearables data (P < 0.001, compared to random models,
Spearman’s).
Primarily, however, we found that our models’ prediction and its

difference with the actual GA, an “actigraphy-GA,” is a robust
signal of heightened risk of preterm birth. In particular, the
incidence of preterm birth is a significantly different variable
amongst error modes (P < 0.001, chi-squared). When our model
predicts lower-than actual GA, there are 0.52 times as many
preterm births than expected (P < 0.001, permutation test), while
when our model predicts higher-than actual GA, there are 1.44
times as many preterm births as expected (P < 0.001, permutation
test). In parsing out whether this model error is meaningful and
robust, we found that model error (model-actual GA) is negatively
correlated with interdaily stability (P= 2.7e− 4, Spearman’s),
which indicates that our model assigns a more advanced GA for
individuals with decreased circadian rhythmicity. Supporting this,
our model attributes higher importance to sleep periods in
predicting higher-than-actual GA, relative to lower-than-actual GA
(P < 0.001, Mann-Whitney U). We found that our deep learning
analysis with series2signal also yields semantically meaningful
clusters through phenotyping and that our pre-trained models’
representations can be used for improved and lightweight
prediction on several ancillary, but clinically relevant, tasks,
broadly suggesting the utility of analyzing wearables data for
signaling various health-related statuses during pregnancy.
Broadly, we showed that combining prediction with interpret-
ability allows us to robustly signal activity and sleep behaviors that
reduce the likelihood of preterm birth, which supports the future
development of clinical decision support and intervention
through relatively inexpensive passive monitoring.

Preterm birth remains the largest cause of death amongst
infants. While there may be biological risk factors in an appreciably
large percentage of pregnancies that result in prematurity,
behavioral components, such as sleep and physical activity habits,
may also increase the risk of preterm birth20. We sought to
demonstrate that inexpensive monitoring of pregnancy using
wearables can signal deviations from physical activity and sleep
patterns that are associated with full-term births with no
complications. If this proof-of-concept were demonstrated, then
wearables could be used to shift activity and sleep to mimic
healthier individuals, perhaps reducing the incidence of prema-
turity and infant mortality with inexpensive monitoring.
Despite several biological studies, it has been hard to change

the landscape of preterm birth from a global health perspec-
tive20,21. Studies of preterm birth that involve biological samples
are expensive to conduct and their scale is limited. Wearable
devices, on the other hand, can more easily distributed and have
been shown to be useful in other fields7. Thus, if we are able to
use computational techniques to identify patients at heightened
risk for preterm birth, we can target sample collection and
improve the efficiency with which we more deeply understand the
biological versus environmental underpinnings of preterm birth.
Indeed, series2signal identifies measurements that are associated
with higher prevalence of preterm birth when the model thinks
the measurement comes from an “older” pregnancy and a lower
prevalence of preterm birth when the model thinks the
measurement comes from a “younger” pregnancy (Fig. 2). Using
this information, we can use wearable devices to follow the
trajectories of pregnant individuals, indicate which phenogroup
they may belong to and then select a sub-sample for more
detailed followup. This would especially improve enrollment in
LMICs, where access to biological samples is more difficult.
Despite the advances in our study, prediction is not enough:

while monitoring the progression of pregnancy and sleep and
activity behaviors may signal to clinicians that heightened
attention is in order, longer-term, we hope that our study can
also help in the development of effective intervention and
correction. series2signal may be useful in suggesting inexpensive
interventions. For example, one significant difference amongst
error groups is in the extent of weekend activity (Supplementary
Fig. 3A). This suggests that series2signal can identify when a
pregnant individuals’ past week of activity emulates a higher-risk
form of activity and sleep pattern, given the GA. Signaling poor
sleep-quality or activity that progresses to the point of heightened
risk may enable clinicians to alert pregnant individuals about their
sleep status in the past week and help individuals prioritize proper
sleep hygiene to mitigate the risk of prematurity and neonatal
complications. Thus, while predicting the progression of preg-
nancy was the main task in the paper, we view that series2signal
will be most helpful in developing relatively inexpensive
interventions in the future, since the combination of LMP and
ultrasound remain more accurate than wearables in determining
GA (Fig. 1f).
Previous studies have shown that heightened stress portends

an increased likelihood of prematurity. Outside of pregnancy, it is
broadly known that physical activity and sleep are amongst the
strongest modulators of stress and physiological inflammation.
This suggests that connecting stress to prematurity can effectively
be studied with wearables; however, there remains a preponder-
ance of processing such data and converting it into actionable
insight. We developed series2signal to fill that gap. In particular,
wearable devices allow us to objectively quantify physical activity
and sleep, and serve as a proxy for stress measurement. However,
they produce a large amount of data and their analysis is not
trivial. Here, we build a new machine learning pipeline that takes
1 week of raw actigraphy data and converts it into GA, namely,
how far along the pregnancy is. Then, relative to the actual GA
(measurable through LMP or ultrasound), we show that deviations
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from normal activity and sleep is associated with poor pregnancy
outcomes (Figs. 2, 3). This gives us an opportunity to use an
accessible, non-pharmaceutical intervention to modulate the
biological mechanisms that drive pregnancy outcomes or prevent
negative outcomes. series2signal will also allow us to further
investigate pathways affected by altering sleep and activity,
including inflammatory signalling and HPA axis activation.
There are a number of limitations to this work. In particular,

small data will plague the generalizability of our conclusions (this
cohort is comprised of N= 1083 patients, with N= 2305
measurement-GA pairs). However, we developed new algorithms
to reduce over-fitting and improve generalization to a held-out
test set (see data augmentation in the Methods). Furthermore, our
goal was to conceptually demonstrate that wearable device data
can be used to indicate deviations from physical activity and sleep
associated with clinically relevant high-risk groups, such as
preterm birth. While the study is small on the scale of obstetrics,
our cohort population has 706 (56%) African American individuals.
Black, pregnant individuals are often under-representented in
obstetric studies22,23. Our study overcomes this barrier, while
maintaining sufficient numbers for training accurate machine
learning models without over-fitting. Other limitations include the
simplicity of sleep detection. More sophisticated methods may
reveal more subtle and preventable disruptions in sleep that
increase a patient’s risk for PTB. Here, we rely on a previously
developed method that builds on count-based thresholds for
sleep detection24. Though series2signal establishes the potential
usefulness of wearable devices in understanding the progression
of pregnancy and its relation to some clinical outcomes, including
PTB, we have not explicitly disentangled our “clock” of pregnancy
into independent sleep and physical activity disruptions, which
may offer fruitful further study in combination with improved
sleep annotations. In addition, given the size of our network, the
model is still best able to compare pregnancies within this cohort.
The generalizability to wearable device data collected in other
clinical settings, e.g., not in the US, may be more limited. Lastly, we
automatically filter measurements for which patients did not wear
the device, or remove it for an extended period of time during the
week prior to their GA measurement. In the future, with larger
data, we may improve data quality screening and collection by
relying on data that doesn’t span entire weeks. Furthermore, in
future work, we may benefit from harnessing activity data from
non-pregnant individuals. This can be used to score activity and
sleep quality and be drawn upon as source data to generate new
time series, augmenting our target data with activities typical of
non-pregnant individuals, which may amplify accuracy with
respect to later gestational ages25. We may also improve our
augmentation scheme to include latent space augmentations
rather than time-domain and frequency-domain augmentations,
which might facilitate comparison of actual and generated activity
traces and suggest more precise activities and sleep behaviors
that can reduce the risk for any given individual on a more
personal level, relative to the comparison against groups, that we
do here. Finally, an exciting future direction of work remains the
targeted collection of biological samples that will allow us to pair
behavioral modulation with physiological or pharmacologic
intervention to reduce the incidence of preterm birth.

METHODS
Cohort and data description
Human subject recruitment and data collection. Institutional
Review Board approval was obtained from the Washington
University School of Medicine Human Research Protection Office.
Patients from the Washington University School of Medicine and
local community who were planning pregnancy were recruited to
the study. Pregnant individuals were included in this study if they

were at least 18 years of age, preparing to conceive, and willing to
wear an actigraphy monitor throughout their pregnancy. Patients
that had multiple gestations, underwent in vitro fertilization, had a
uterine anomaly, or had used sedatives were excluded. Patients
who signed informed consent documents wore activity monitors
throughout their pregnancy until delivery. Gestational age was
measured at enrollment by last menstrual period (LMP)
and < 14 weeks ultrasound (N= 1189(49.6%)), LMP
(N= 651(29.0%)), < 14 weeks ultrasound (N= 413(18.8%)),
and > 14 weeks ultrasound (N= 38(1.9%)). From these, regular
follow-ups were used to assign a gestational age label to
downloaded actigraphy data.
We summarize our cohort using the PECOT framework (see

Supplementary Fig. 1). Population: 1260 individuals were enrolled
if they had a singleton pregnancy ≤ 20-weeks gestation during the
study period of January 2017 to January 2020. Inclusion criteria
were that the individual (A) planned to deliver at Barnes-Jewish
Hospital, (B) were English-speaking, and (C) were at least 18 years
old. Exclusion criteria were (a) prior incarceration, (b) conception
via in vitro fertilization, and (c) diagnosis of major fetal anomaly
that affected gestational age at delivery by attending physician.
Exposure: Study participants were seen at study visits long-
itudinally to obtain data and samples in each trimester. All study
participants were given validated questionnaires about sleep
habits and lifestyle and wore actigraphy devices (Motionwatch8,
CamNTech, United Kingdom) continuously (24/7) for two-week
time periods immediately following their first, second, and third
trimester study visits to assess circadian rhythms longitudinally
throughout pregnancy and delivery. Control: All participants in
this study received the exposure, as well as incentives and
reminders and fully charged, 90d actigraphy devices to ensure full
data collection. Retrospective sub-groups were created from these
participants based on associated clinical data. Outcomes: A
number of pregnancy characteristics and outcomes were tracked
(see Table 1). In particular, outcomes of interest included
pregnancy complications such as gestational hypertension or
preeclampsia, and delivery outcomes such as live births, stillbirths,
pregnancy losses, and type of delivery procedure. A primary
outcome of interest was whether or not participants with a live
birth delivered at term or delivered preterm. Neonatal complica-
tions were also tracked, including their birthweight relative to
their GA, and whether they were admitted to the neonatal
intensive care unit. Timeline: Study participants were seen at study
visits throughout their pregnancy and at delivery and aligned with
routine medical care. Study visits fell within each of the trimesters,
at which point patients were given questionnaires and devices
that were returned at the follow-up visit or during delivery, with
incentives and research staff reminding patients longitudinally to
complete all study data. Device data from preceding trimesters
were downloaded at the subsequent follow-up visit. Further
details on this cohort are available from our prior publication26.

series2signal algorithm
The series2signal algorithm is described in detail in the
Supplementary Material. Briefly, it consists of 5 modules:

1. Data pre-processing and automatic sleep-wake annotation.
2. Model training and data augmentation.
3. Model error analysis.
4. Model interpretability using gradient-based feature attribu-

tion and a new feature association score for mixed tabular
data of continuous and categorical variables.

5. Model utility in-terms of predictability from concise
representations and automatic phenotyping.

Data pre-processing. Data cleaning: To align the actigraphy data,
we arbitrarily chose to select 12 AM as a starting point for each
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tensor. In the worst case, for measurements starting at 12:01 AM,
this would amount to a full day of zero-padded data. To avoid
encountering this problem, we threw out the first day of
measurement entirely for all data. Thus, strictly speaking,
series2signal requires 8d of recording. Recordings are truncated
and, if trailing padding is required, they are excluded from
analysis, as a way to filter out for measurement-GA pairs without a
full week of recording. Raw actigraphy data was read in from
device files (.mdn files) using pyActigraphy8 and paired with
the appropriate metadata, collected in the clinic, using custom
scripts. Data that had any mismatch between raw data filename
and metadata record identifier, no light intensity information,
missing data from minute-to-minute, or less than 1d of recording
were excluded from analysis to ensure quality input to series2-
signal. Metadata was also cleaned and pre-processed to give
categorical encodings to indicate missingness and to mean
impute missing continuous data. Specification of each variables’
pre-processing is stored in the GitHub repository for series2signal
and for different metadata, providing a similarly structured
dictionary mapping variables as keys to a set of transformations
can be custom-designed by users for their application in a text file,
which series2signal can read. The top-1 model was trained using
patient data from N= 658 individuals (with N= 1399 samples),
validated on N= 100 individuals (with N= 216 samples), and
tested and evaluated on N= 325 individuals (with
N= 690 samples). Data splits for all trials were separated by
patient so that no measurement from the same patient leaked
into different splits. From a cohort of N= 1260 patients with full
outcomes data, we filtered out individuals whose devices did not
have light data, had corrupt data, or less than 1wk of recording
post GA-measurement, yielding a total dataset size of N= 1083
patients with N= 2305 samples.
Data transformation and normalization: Raw count data (sum of

accelerometer counts over a 1-min interval and light intensity
measurement in lux) was log-pseudocount transformed
(log10ðx þ 1:0Þ), where x represents the filtered actigraphy
sequence data, which is standard for the field of actigraphy
analysis27. We represent the data as a 2 dimensional time-series of
length L= 10,080 min (1 week), leading to an actigraphy
representation of shape N × 2 × 10,080. This sequence, post-log
pseudocount transformation, served as input to the series2signal
model. We also add a number of standard non-parametric
analyses by writing a wrapper for pyActigraphy in our
codebase, which allowed us to include IS, IV, RA, ISm, IVm, and
other summary metrics of actigraphy data as part of each sample’s
metadata8.
Automatic sleep detection: Previous studies have examined

different methods and established benchmarks for sleep vs. wake
detection based on paired polysomnography with actigraphy
data24. Their results show that traditional algorithms for sleep
detection with re-scoring rules work well for sleep vs. wake
detection whereas deep learning algorithms perform better
without re-scoring rules24. Based on these results, we take the
best traditional algorithm, due to the marginal improvement of
more complicated methods, applying the Oakley method after
data cleaning and raw mtn file reading (with Oakley’s threshold
θ= 80) with pyActigraphy24.

series2signal machine learning pipeline – data and prediction
ResNet-inspired series2signal deep learning model. In the field of
time-series classification, deep learning has not consistently
outperformed feature engineering and classical machine learning
approaches and non-deep learning approaches do not scale well;
for example, the non-DL state-of-the art with N= 1500 samples
and sequence length L= 46 takes more than 8 days to learn11. Our
dataset is considerably larger, and therefore, many algorithms
from the time-series classification field are not applicable.

Recently, a deep learning architecture based on ResNet recently
outperformed more traditional time-series classification algo-
rithms11. We adapted this time-series classification architecture
for time-series regression. We also modified the internal batch
normalization to a layer normalization within the blocks, finding
that this achieved better performance. We also add a novel
training scheme involving data augmentation in order to improve
this ensemble of deep convolutional neural networks general-
ization and reduce over-fitting to a small training set size. Lastly,
we add a non-linear prediction block to allow for us to capture
non-linear embeddings of any set of input actigraphy data, which
we reasoned would be useful for phenotyping, data visualization,
and more lightweight classification and regression applications on
auxiliary tasks. Additional details are provided in the supplement.
Benchmarking series2signal model architecture with other ML

methods: To compare and justify the use of a more complicated
ensemble of CNNs for analyzing actigraphy data, we compared
our series2signal model to various convolutional neural networks
(VGG-1D and a simple CNN of d= 256 hidden units) and recurrent
neural networks (bi-LSTM and bidirectional GRU, each of 3 layers
and d= 64 hidden units) using custom implementations in
PyTorch v1.9.0, available on our GitHub. We also compared
our series2signal model to standard machine learning methods
using scikit-learn28 (kNN with k= 5 neighbors, elastic net
logistic regression with λ1

λ2
¼ 0:1, and RandomForest with default

parameters) and k= 5 fold cross-validation, split on patient groups
and wrote wrappers for sktime’s adaptations of RandomForest
and kNN algorithms for time-series29. Lastly, we compared our
series2signal model to a popular gradient boosting method with
default parameters using lightgbm30.

series2signal model training and implementation. Model training:
To adapt the InceptionTime time-series classification model to a
regression task on a small data set, we added a λ1 penalty in
addition to the loss function, in addition to the standard weight
decay on MSELoss. We found that a small penalty of λ1= 1e− 6
and λ2= 0.001 minimized error in a hyperparameter search. To
train the series2signal model, we used Adam optimization31 and
used PyTorch’s implementation of reducing the learning rate once
our loss function, Lm ¼ λ2 � 1

m �Pm
i¼1 ðy � ŷÞ2 þ λ1 �

Pm
i¼1 jy � ŷj

reached a plateau of patience= 10 epochs32 for mini-batches of
size m and for various labels, y, including GA. Models were
evaluated on a validation set after a minimum of 200 epochs, and
then passed to the learning rate scheduler.
Data augmentation: We used PyTorch’s data loaders to load

actigraphy data into tensors during optimization. Once a mini-batch
of samples was loaded, we then applied a new augmentation
procedure, which we optimized for minimizing error (see Supple-
mentary details; Supplementary Table 1). To select data augmenta-
tions for the architectures we attempted, we rely on a categorization
scheme used in the UCR dataset33, relating our time-series data most
closely to the ECG data category (selection is the same if we rely on
the motion category recommendations). With this categorization, we
apply the recommendations from a 2021 survey of data augmenta-
tion techniques for time-series classification34. To simplify their
suggestions, we took the top-5 methods after a union of methods
for CNN-based architectures and RNN-based architectures and then
took the intersection of the two (⋃ (VGG, ResNet)⋂⋃ (LSTM,
BLSTM)). This suggested that we use scaling, rotation, none, window
warping, and jittering augmentations. For window warping, we
selected a random window that is 10% of the time-series length, T,
and which warps the time dimension by a factor of 2 or 12, following

35.
For jittering, noise is added to the time-series after drawing from the
normal distribution, Nðμ; σ2Þ and we set μ= 0 and σ= 0.03,
following36. For scaling, α was drawn from Nðμ; σ2Þ and the time-
series was modified as follows, x0 ¼ αx1; ¼ αxt where the random
scalers, α is drawn from a Gaussian with μ= 1 and σ= 0.2 per time-
series, as in ref. 36. Window slicing was performed to crop each time-
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series to 90% of the original sequence length, T, starting the window
at a random t∈ T and interpolating the cropped time-series back to
the original length, T, as in ref. 35. However, rotation actually reduces
accuracy across datasets, so we omit this transformation34, replacing it
with slicing, which is shown to perform well across all UCR datasets
and has low computational requirements. We abbreviate these
transformations N (None), Sc (scaling), J (jittering), W (window
warping), and slicing (Sl). To implement these augmentations during
training, we randomly select a single transformation per mini-batch
and per epoch, finding that the XXX is better. For inference, we query
the trained network for each test sample and average the output
across transformations. To our knowledge, this approach is novel with
respect to data augmentation for time-series because it combines
data augmentation methods during training, uses a majority-voting or
average inference method, and evaluates whether transformations
should be applied at the top of the mini-batch or epoch37. To
optimize data augmentation in series2signal algorithm, four different
schemes were tested to select from a set of time-series data
augmentation functions during model training; either a random
augmentation was selected for the whole optimization process
(randaug), all augmentations in random order (allaug), or a different
iteration of each of these per epoch. Augmentations were selected
based on a recent meta review12. Supplementary Table 1 shows the
data augmentation schemes we implemented during training of our
networks, as well as the schematic for evaluation, and results showing
the superiority of selecting a random augmentation per epoch from
our set of augmentation filters results in the best performance with
respect to the primary task.

Evaluation
Details of the series2signal modules for knowledge discovery and
model interpretability are provided in the supplement. Briefly,
error analysis modules comprise a new correlation network
methods and sub-group analyses to identify error modes in
model output and performance. Similar statistical approaches are
then applied to gradient-based feature attribution methods to
automate series2signal model interpretation with respect to
identified key variable and observation groups.

Metrics used in benchmarking for series2signal algorithmic develop-
ment. For balanced accuracy in multi-class classification, we
follow the approach of ref. 38, computing the average of sensitivity
and specificity per class, then averaging over the total number of
classes. This adjusted balanced accuracy allows us to evaluate
classifiers even where there is class imbalance using the area under
the precision-recall curve. We evaluate regression tasks via
Spearman’s ρ, such that higher correlation between model output
and label indicates a better regressor. We also compute the mean
absolute error, and the mean absolute percentage error (MAPE, to
compare to metrics on a range of 0 to 1). To evaluate classifiers, we
use AU-PRC and an adjusted AU-PRC metric, that re-scales the AU-
PRC after subtracting the AU-PRC of a random classifier with the
same labels as the inference set (see Supplement for details). We
also compute a balanced accuracy score using sklearn28. We
benchmark to other machine learning pipelines on the basis of
these metrics per task and define tasks as classification or
regression based on the data type, where all categorical metadata
variables are treated as classification tasks, and all continuous
metadata variables are assigned as regression targets. To imple-
ment classical machine learning algorithms, we wrote wrappers for
sktime, allowing us to use TimeSeriesForest, an adaptation to the
widely-used RandomForest algorithm for time-series, and kNN-
TimeSeries, a dynamic time warping modification to kNNRegres-
sor29. To compare clustering, we apply the same pipeline but
develop a custom unsupervised learning approach to contrast
series2signal’s supervised learning embeddings. Internal parts of all
algorithms also used these metrics to inform design choices.

Statistical analysis. To summarize data, if data were normal (by
D’Agostino and Pearson’s test39) then mean and standard
deviation were shown, otherwise median and inter-quartile range
was shown. Categorical variables were assessed for differences
across groups by Fisher’s exact test and continuous variables were
compared across groups by a Kruskal-Wallis test. In head-to-head
comparisons for continuous data, either Spearman’s ρ or Mann-
Whitney U tests were used and categorical, when ordinal and
compared with other categorical data, was assessed by the
Goodman Kruskal Gamma. Categorical-continuous variables were
compared by logistic regression, using the categorical variable as
binary or multi-class classification and micro-averaging perfor-
mance per class after adjusting for class imbalance via SMOTE40. χ2

tests were used to compute observed and expected ratios for the
prevalence of various metadata variables. Permutation tests were
performed for derived metrics for at least n= 1000 iterations and
after the null distribution was created by random sampling over
groups and preserving group ratios, a Mann-Whitney U test was
performed to statistically compare the difference between
observed and null metrics. All P-values were corrected for multiple
comparisons by applying the Bonferonni correction method
(pcorrected= p*ncomparisons) where appropriate, unless specified. All
statistical analyses were performed with scipy, numpy, and
scikit-learn in Python v3.8.1228,41,42.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Raw wearables data, processed wearables data, and the static analysis source code
used in this study are available from https://nalab.stanford.edu/series2signal-
gestational-age-clock-for-pregnancy-monitoring/.

CODE AVAILABILITY
Our series2signal software is available for use on custom datasets through GitHub at
https://github.com/nealgravindra/wearables under an MIT License. Models can be
trained and post-hoc inferences can be generated using our new series2signal
approach with existing PyTorch models and either CPU or GPU versions. All analyses
and results presented in this paper are also available on our GitHub repo for
reproducibility and the code used to generate each figure and table is specified in a
reproducibility table within the same GitHub repository (see here).
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