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Development and validation of an accurate smartphone
application for measuring waist-to-hip circumference ratio
Siddharth Choudhary 1✉, Ganesh Iyer1, Brandon M. Smith1, Jinjin Li1, Mark Sippel1, Antonio Criminisi1 and Steven B. Heymsfield 1,2

Waist-to-hip circumference ratio (WHR) is now recognized as among the strongest shape biometrics linked with health outcomes,
although use of this phenotypic marker remains limited due to the inaccuracies in and inconvenient nature of flexible tape
measurements when made in clinical and home settings. Here we report that accurate and reliable WHR estimation in adults is
possible with a smartphone application based on novel computer vision algorithms. The developed application runs a
convolutional neural network model referred to as MeasureNet that predicts a person’s body circumferences and WHR using front,
side, and back color images. MeasureNet bridges the gap between measurements conducted by trained professionals in clinical
environments, which can be inconvenient, and self-measurements performed by users at home, which can be unreliable.
MeasureNet’s accuracy and reliability is evaluated using 1200 participants, measured by a trained staff member. The developed
smartphone application, which is a part of Amazon Halo, is a major advance in digital anthropometry, filling a long-existing gap in
convenient, accurate WHR measurement capabilities.
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INTRODUCTION
More than seven decades ago, in 1947, the French professor of
medicine Jean Vague first reported body shape phenotypes
associated with the metabolic derangements of obesity1. Vague’s
seminal observations were carried forward in the early 1980s by
Krotkiewski and his colleagues who associated metabolic dis-
turbances with regional adipose tissue deposits and fat cell size
and number2. Men with obesity, according to the investigators,
had a high-risk adipose tissue distribution characterized by
abdominal obesity compared to women whose adipose tissue
was located primarily in the gluteofemoral region. The high-risk
abdominal obese phenotype was characterized, independent of
sex, by a high waist-to-hip circumference ratio (WHR). The
following year Larsson et al. found in a 12-year follow-up study
of men that abdominal obesity, characterized by a large WHR, was
associated with an increased risk of myocardial infarction, stroke,
and premature death independent of generalized obesity as
defined by body mass index (BMI)3. WHR soon became recognized
as an index of intra-abdominal and subcutaneous adipose tissue
distribution4. These early observations prompted a World Health
Organization (WHO) Expert Consultation in 2008 that critically
reviewed technical measurement and clinical aspects of both
waist circumference and WHR5. Of the many biometrics for
characterizing the health risks of excess adiposity, the WHR
consistently ranks as the best or one of the best predictors of
disease outcomes6–10. Our group recently introduced a calculus-
derived, normalized sensitivity score to compare the predictive
power of diverse adiposity biomarkers11. Our findings, using the
National Health and Nutrition Examination Survey (NHANES)
database, again confirmed, among the multiple available adiposity
biomarkers, that WHR has the strongest associations with the risks
of common health conditions. Despite these findings, extending
now over several decades, WHR is rarely measured in clinical or
home settings. One reason is that healthcare workers and people
with obesity are not well trained on the nuances of anthropo-
metric measurements as recommended by the WHO and other

health organizations. Sebo and colleagues conducted extensive
studies of the anthropometric measurement skills of primary care
physicians12. Even with training, measurement error was consis-
tently highest for WHR and lowest for weight and height13,14. The
potential value of WHR as a health risk biomarker is thus not being
realized outside of specialized research laboratories and clinical
facilities.
Recent developments in computer vision now have the

potential to transform the measurement of biometrics, including
WHR. Our group has introduced a smartphone application that is
highly accurate and reproducible in quantifying a person’s
anthropometric dimensions, including circumferences, lengths,
surface areas, and volumes15,16. The possibility thus exists to
accurately estimate WHR using a smartphone application based
on computer vision algorithms.
Here we report that accurate and reliable WHR estimation in

adults is possible with a smartphone application based on novel
computer vision algorithms. The application analyzes color images
taken from various angles and employs a Convolutional Neural
Network to predict body circumferences and WHR. This bridges
the gap between clinical measurements by professionals and
often inconsistent self-measurements at home. We validate
MeasureNet’s accuracy and reliability with 1200 participants, all
measured by a trained staff.

RESULTS
Over 1200 participants were evaluated in the current study
(Supplementary Note 3). The CSD dataset included 270 men and
280 women, the Human Solutions dataset included 215 men and
326 women, and the noise evaluation sample included 71 men
and 83 women. The demographic characteristics of these samples
are summarized in Supplementary Note 9. Overall, the datasets
included a range of race/ethnicities and average BMIs were in the
overweight range. Men had average WHRs that were larger than
those in women (~0.90 vs. 0.85). WHR measurements range for
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CSD is 0.877 ± 0.201 and for Human Solutions dataset, it is
0.857 ± 0.240.

Accuracy
The accuracy estimates for MeasureNet and self-measured WHR
are presented in Table 1. MeasureNet’s MAE and MAPE estimates
were about one half those of self-measured WHR (~0.015 and
1.4% vs 0.025 and 2.8%). Correlation between WHR measured by a
trained staff member and WHR predicted by MeasureNet is shown
in Fig. 1.

Comparison with state-of-the-art approaches
The direct SMPL mesh-based predictions are compared in Tables 2
and 3. MeasureNet, with semantically segmented three views
(front, side and back) as input and direct prediction, had the
lowest MAE. Using three views as input to MeasureNet had lower
error than using only the front view or front and side view. Using
direct prediction had lower error than first reconstructing the
body model and then extracting measurements from it. Direct
prediction allows the measurement of each body part to be
independent of the space of global SMPL parameters and results
in better prediction of subtle body shape details. Additionally,
using a silhouette as input to MeasureNet increased prediction
error as compared to using a segmentation image as input. For
Sengupta et al.17, we compared sex-specific and sex-neutral
models and we found that the sex-specific model had lower error
than sex-neutral model. Sex-specific model uses different model
for different sex allowing the model to learn unique features for
each sex. Sex-neutral model uses the same model for both the
sexes. Qualitative comparisons between predicted and ground
truth meshes are shown in Fig. 2. As seen from the figure,

MeasureNet’s predictions are more accurate when compared to
other approaches and have more accurate prediction of fat folds
near the torso. Head images were cropped for privacy reasons.
Additional comparisons for men and women are shown in
Supplementary Figs. 5 and 6, respectively.

Measurement noise
The noise distributions of MeasureNet predictions, self-measure-
ments, and trained staff-measurements are plotted as histograms
in Supplementary Figs. 7–9. The noise standard deviations are
shown in Table 4. The standard deviation of noise in self-
measurements was larger compared to MeasureNet and trained
staff measurements. The smallest standard deviations, and thus
noise, were for MeasureNet for both the men and women.

Synthetic dataset evaluations
The accuracy and repeatability for MeasureNet’s predictions
compared to synthetic data ground truth are presented in Table
5. MeasureNet’s accuracy MAE for body circumferences (hip, waist,
chest, thigh, bicep) on the synthetic dataset is lower than the
accuracy MAE on the Human Solutions dataset (Tables 2 and 3).
This is due to the remaining synthetic-to-real domain gap
between training (synthetic meshes) and test distributions (laser
scanned meshes). As we improve the realism of synthetic training
data, we expect this gap to reduce further. MeasureNet’s WHR
accuracy MAE is lower on the synthetic dataset compared to the
accuracy MAE on the CSD dataset (0.0079 on synthetic vs 0.0122
on CSD for men, 0.0078 on synthetic vs 0.0169 on CSD for
women). This is due to the combination of synthetic-to-real
domain gap and the measurement noise in tape measured
ground truth.

Table 1. Accuracy of MeasureNet and self-measured WHR estimates.

Sex N MeasureNet Self-measured

MAE MAPE (%) P90 MAE MAPE (%) P90

Men 270 0.0122 1.34 0.0406 0.0259 2.79 0.0728

Women 280 0.0169 1.35 0.0363 0.0239 2.87 0.0624

Accuracy is measured relative to ground truth staff measurements using mean absolute error (MAE), 90th percentile error (P90) and mean absolute percentage
error (MAPE). Lower is better.

Table 2. Comparisons of MeasureNet with state-of-the-art approaches for estimating body circumferences for men (MAE, mm).

Method Hip Waist Chest Thigh Calf Bicep

SPIN20 104.71 128.34 162.48 71.84 32.22 69.73

STRAPS21 73.59 66.36 50.25 31.34 24.84 21.74

Sengupta et al. (Sex-neutral model)17 45.88 47.13 60.83 30.57 19.65 25.56

Sengupta et al. (Sex-specific model)17 39.13 42.78 50.76 25.92 18.18 22.72

Smith et al.30 24.04 25.56 25.85 17.33 15.96 11.32

MeasureNet (1 view + Sil + SMPL) 31.80 35.90 33.19 21.61 16.63 11.48

MeasureNet (1 view + SMPL) 25.36 28.43 29.49 17.86 15.38 10.29

MeasureNet (2 views + SMPL) 24.70 25.75 28.86 15.79 13.83 11.95

MeasureNet (3 views + SMPL) 23.83 24.83 24.38 14.40 11.88 9.99

MeasureNet (1 view + Direct) 17.72 23.25 22.86 14.02 13.18 8.96

MeasureNet (2 views + Direct) 15.97 17.47 17.83 12.04 12.02 9.44

MeasureNet (3 views + Direct) 14.38 16.38 15.90 11.69 9.67 7.95

One view (front view), two views (front and side) and three views (front, side and back) are the number of input views to MeasureNet. SMPL or Direct is the
circumference prediction method. “Sil” uses silhouette as input. Sample size is 215 men. Lower is better.
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Table 3. Comparisons of MeasureNet with state-of-the-art approaches for estimating body circumferences for women (MAE, mm).

Method Hip Waist Chest Thigh Calf Bicep

SPIN20 106.59 119.13 116.07 66.74 26.01 40.57

STRAPS21 90.78 82.31 73.34 43.10 28.97 28.75

Sengupta et al. (Sex-neutral model)17 51.64 44.53 42.56 29.74 18.33 18.34

Sengupta et al. (Sex-specific model)17 40.05 40.01 41.18 31.13 18.16 21.21

Smith et al.30 36.74 42.10 38.00 21.57 15.89 15.23

MeasureNet (1 view + Sil + SMPL) 40.50 36.14 38.95 17.57 12.54 11.12

MeasureNet (1 view + SMPL) 32.62 35.20 36.85 18.66 14.66 11.11

MeasureNet (2 views + SMPL) 31.10 26.95 35.80 20.02 12.95 10.74

MeasureNet (3 views + SMPL) 26.48 28.70 28.64 17.19 11.08 10.60

MeasureNet (1 view + Direct) 23.07 28.91 25.44 15.12 11.19 9.73

MeasureNet (2 views + Direct) 21.91 24.03 22.30 11.66 8.85 9.14

MeasureNet (3 views + Direct) 14.43 21.67 20.07 11.07 7.14 8.16

One view (front view), two views (front and side) and three views (front, side and back) are the number of input views to MeasureNet. SMPL or Direct is the
circumference prediction method. “Sil” uses silhouette as input. Sample size is 326 women. Lower is better.

Fig. 1 Quantitative comparisons. (left) Correlation between WHR measured by a trained staff member and WHR predicted by MeasureNet.
The dashed line is identity and the solid line is the fitted regression line. (right) Bland-Altman analyses of the differences between WHR
measured by a trained staff member and WHR predicted by MeasureNet. The horizontal dashed black lines are at mean ± 1.96 standard
deviations.
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DISCUSSION
The current study confirms that accurate and reproducible
estimates of the WHR can be acquired with a smartphone
application. Specifically, our developed MeasureNet application
provided WHR estimates with respective MAEs and MAPEs of
~0.012–0.017 and 1.3–1.4% relative to those of flexible tape
measurements made by skilled technicians, used as ground truth.
These MAEs and MAPEs were less than half those of self-
measurements. These proof-of-concept observations, the first of
their kind, indicate that smartphone applications such as
MeasureNet can now fill the void in WHR measurements made
in clinical and home settings. The smartphone approach can
potentially displace 3D scanning methods18 that are more costly
and impractical to implement outside of specialized research and
clinical facilities.
Human shape and pose estimation are active areas of research

in the computer vision and machine learning (CVML) commu-
nities. Most of the current approaches predict body shape using a
learned model or fit body shape using an optimization-based
approach with SMPL19, a parametric 3D body model given
observations such as 2D key points, silhouettes, or images20–24.
Recent developments as reported by Sengupta et al.17 are the
closest to our current approach as the investigators used synthetic
data to learn human pose and shape estimation networks. In
contrast to their approach, we focused directly on estimating body
circumferences and derived measures such as the WHR, a strategy
we found more accurate than estimating body circumferences
from the reconstructed body model. Our MeasureNet model
estimates circumferences and the WHR directly, and uses SMPL,
the parametric 3D body model only as a regularizer during
training. This allowed the circumference predictions to be
independent of the space of SMPL parameters. Several challenges
needed to be overcome on the path to developing MeasureNet.
First, MeasureNet needed to generalize to different body shapes
and be invariant to lighting and background conditions, clothes
worn, user distance from the smartphone, and smartphone type.
Our MeasureNet algorithms account for all of these factors and
conditions that became apparent during the software develop-
ment phase. Another factor posing a development challenge was
that training accurate CVML models required access to accurate
ground truth measurements. Manual measurements of waist and
hip circumferences, however, tend to be error prone as reported
by Sebo et al.12,14 and in the current study (Table 4). On the other
hand, using highly accurate 3D laser scanners to extract ground
truth measurements is expensive and time consuming. We
addressed both problems by training a CNN on realistic-looking
synthetic data sampled according to an empirical distribution, and
we demonstrated strong generalization (high accuracy and
repeatability) to real, previously unseen test images. Adding
WHR estimates to clinical and self-evaluations improves health risk

predictions beyond those of BMI and other currently available
biometrics11. The underlying mechanism appears to be captured
by the WHR of an individual’s body shape as defined by the sizes
of their visceral and gluteofemoral adipose tissue depots. Larger
visceral adipose tissue volumes and waist circumferences are
associated with greater risks of adverse health outcomes7–10. By
contrast, larger subcutaneous gluteofemoral adipose tissue
volumes and hip circumferences are associated with a reduced
risk of developing multiple cardiovascular and metabolic out-
comes6. Their combination in the WHR thus is a sensitive body
shape phenotype that establishes a person’s health risks.
Smartphones or similar devices capable of generating two-
dimensional images can thus be used to classify a person’s shape
risk phenotype in clinical and even home settings; changes with
aging or interventions can be tracked over time. WHR or the
individual waist and hip circumferences can also be added to
health outcome prediction models now in development by our
group and others. Large-scale studies designed to identify health-
risk genetic markers can use programs like MeasureNet to
accurately capture participant shape using their own smart-
phones. Anticipated camera advancements and future machine
learning algorithm refinements over time will further expand the
applicability of smartphone phenotyping methods.
There are several limitations with our developed model that

form the potential basis of future research. As part of the realistic
sampling process the current SMPL 3D mesh model was estimated
using 3500 3D scans covering the US general population and
therefore is biased towards the average North American popula-
tion. This kind of potential bias can be removed by including 3D
scans of participants outside of the US when estimating the SMPL
3D mesh model. Future studies with ground truth estimates are
needed to further define MeasureNet accuracy and reproducibility
in “real world” settings.
A subset of participants In the CSD dataset had only one

measurement taken by trained clinical staff. Therefore, the
resulting ground truth measurement can be noisy and it can
affect the accuracy metrics. A larger scale study where each
participant is measured by multiple trained clinical staff members
and includes 3D scanner ground truth can be useful to further

Table 4. Noise distributions (standard deviations, mm) of staff-
measurements, MeasureNet predictions, and self-measurements.

Hip Waist Chest Thigh Bicep WHR

Men

Self-measured 24.72 23.69 24.05 27.07 19.40 0.033

Staff-measured 14.48 12.94 14.90 15.07 9.99 0.015

MeasureNet 0.01 0.01 0.01 0.005 0.003 0.011

Women

Self-measured 19.46 34.77 26.75 27.10 18.05 0.036

Staff-measured 11.84 15.02 13.93 16.35 8.82 0.017

MeasureNet 0.008 0.010 0.009 0.006 0.005 0.010

Sample sizes are 73 men, 83 women. WHR is waist to hip ratio.

Table 5. Accuracy and repeatability of MeasureNet predictions on
synthetic data.

Accuracy Repeatability

Men MAE P90 MAE P90

Hip 6.96 15.34 5.39 11.53

Waist 7.22 16.10 5.29 11.14

Chest 6.24 13.41 5.03 10.58

Thigh 4.45 9.76 3.50 7.41

Bicep 4.04 9.15 2.81 5.98

WHR 0.0079 0.0175 0.0057 0.0127

Women

Hip 7.11 16.00 5.09 10.89

Waist 7.69 16.12 5.82 12.02

Chest 7.13 15.40 5.66 12.20

Thigh 5.20 11.62 3.82 8.25

Bicep 3.92 8.46 3.01 6.44

WHR 0.0078 0.0166 0.0058 0.0120

Body part circumference (hip, waist, chest, thigh, bicep) accuracy and
repeatability are measured in mm. Sample sizes are 100 men, 100 women.
WHR is waist to hip ratio.
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validate MeasureNet’s accuracy and robustness as compared to
tape measured ground truth.
The MeasureNet model is trained using synthetic training data.

However, the current synthetic data generator can only represent
the shape and pose of a minimally clothed body and fails to
model complex topology of loose clothing. This results in a
synthetic-to-real domain gap that reduces the accuracy of
MeasureNet. A more realistic synthetic data generator that can
model loose clothing can help alleviate this issue.
Another limitation of this study is that no research has yet been

conducted to investigate the relationship between MeasureNet’s
predictions and health risks. Further studies to understand the
relationship between MeasureNet and health risks can help
determine the desired accuracy level needed for an accurate
health risk prediction.
Human Solutions dataset has a racial bias since it predominantly

consists of 90% of individuals from Black and White racial groups,
with limited representation from other races. Addressing this bias
requires the inclusion of participants from underrepresented
groups to foster a more balanced and equitable dataset.
In conclusion, the current study fills a long-held gap in

accurately and reproducibly quantifying the WHR, an extensively
researched health-risk biometric, outside of specialized facilities.
The developed novel software, MeasureNet, can operate on
conventional smartphones and thus vastly extend shape pheno-
typing capabilities to a large percentage of the global population,
even to remote settings. Future studies are needed to extend
software capabilities to populations beyond those in North
America and to non-adult age groups.

METHODS
Experimental design
The study hypothesis was tested in two phases. A smartphone
application based on computer vision algorithms was developed
in the first study phase. The development of this algorithm,
MeasureNet, is described in the methods section that follows.
The second phase involved testing MeasureNet performance in

a series of experimental studies (Supplementary Fig. 3). First, the

accuracy of MeasureNet and self-measurements were compared
to flexible tape measurements taken by trained staff in a sample of
healthy adults referred to as the Circumference Study Dataset
(CSD). Accuracy metrics are defined in the Statistical Methods
section. Front-, side-, and back-view images of users were
collected with a smartphone along with “ground truth” flexible
tape circumference measurements taken by trained staff and by
the user themselves. Circumferences were measured according to
NHANES guidelines (Supplementary Note 1). MeasureNet and self-
measurements were compared to the ground truth tape
measurements.
A second experimental study involved comparison of Measur-

eNet to state-of-the-art approaches for three-dimensional (3D)
shape estimation. Specifically, we compared MeasureNet, SPIN20,
STRAPS21, and recent work by Sengupta et al.17 to ground truth
estimates from 3D circumference made in men and women with a
Vitus Smart XXL (Human Solutions North America, Cary, NC)25 laser
scanner. This dataset is referred to as the Human Solutions dataset.
We had front-, side-, and back-viewpoint color images, height, and
body weight for each participant along with their 3D laser scan.
The Skinned Multi-Person Linear (SMPL) model was fit to each 3D
scan to estimate the shape and pose of the scan19. We extracted
the ground truth circumferences from the fitted SMPL model at
predefined locations (corresponding to hip, waist, chest, thigh, calf
and bicep) as shown in Supplementary Figs. 1, 2. Third, we
measured the noise in tape measurements compared to
MeasureNet using data from a subset of healthy men and women
evaluated in the CSD dataset. Each person was measured twice by
a trained staff member (staff measurements) and two sets of
images were also taken by the staff member (MeasureNet). Each
person also measured themselves twice using measuring tape
(self-measurements). For staff measurements, each person was
measured by two different staff members to ensure minimal
correlation between consecutive measurements. We used the
difference between two consecutive measurements to analyze the
noise distributions of staff-measurements, MeasureNet, and self-
measurements.
Lastly, we compared accuracy and repeatability of our approach

to the ground truth on a synthetic dataset. We created the dataset

Fig. 2 Qualitative results. Qualitative comparisons of the SMPL mesh predicted by MeasureNet and state-of-the-art approaches for 3D
human shape and pose estimation17,20,21. Images correspond to results presented in Tables 2 and 3. The ground truth (GT) mesh is shown in
the left.
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by rendering each synthetically generated mesh using different
camera parameters (height, depth, focal length) and different
body poses placed in front of randomly selected backgrounds.
The dataset was generated using synthetic meshes of 100 men
and 100 women. This data is referred to as the Synthetic Dataset.
We considered all of the renderings for a particular mesh to
measure repeatability (robustness) of our approach. Repeatability
metrics are defined in the Statistical Methods section. Different
factors such as background, camera parameters, and body pose
changes were present across multiple renderings of the same
mesh. A repeatable approach should ideally predict the same
output for different renderings of the same mesh. We also use this
dataset to evaluate accuracy given all of the renderings and their
ground truth.
A flow diagram showing the multiple study human participant

evaluations is presented in Supplementary Fig. 3. Consent was
obtained for the collection and use of the personal data
voluntarily provided by the participants during the study.

MeasureNet development
An overview of our approach for measuring WHR is shown in Fig.
3. The user inputs their height, weight, and sex into their
smartphone. Voice commands from the application then guide
the person to capture front-, side-, and back-viewpoint color
images. The images are then automatically segmented into 23
regions such as the background, upper left leg, lower right arm,
and abdomen by a specialized convolutional neural network
(CNN) trained to perform semantic image segmentation. Intui-
tively, this step suppresses irrelevant background features,
provides additional spatial context for body parts, and affords
important benefits during model training, which we will discuss
subsequently. The segmentation result is then passed as input
along with the user’s height, weight, and sex into the MeasureNet
neural network. MeasureNet then estimates the user’s WHR
together with other outputs such as body shape, pose, camera

position and orientation, and circumferences such as at the waist,
hip, chest, thigh, calf and bicep.
The MeasureNet architecture is built upon a modified Resnet-18

network26,27 that “featurizes” each of the three input segmenta-
tion images (i.e., transforms each image to a lower-dimensional
representation). Features from each view are then concatenated
together and fed to a Resnet-4 network and a self-attention
network28 followed by a fully connected layer to predict body
circumferences and WHR as illustrated in Fig. 3.
The following are the key features of the architecture that we

found improved accuracy the most:

● Direct prediction of circumferences: Predicting body circum-
ferences directly outperformed first reconstructing the body
model (3D SMPL mesh19) and then extracting measurements
from it.

● Number of input views: Using three views of the user as input
improved the accuracy as compared to using one or two
views of the user. Tables 2 and 3 shows the improvement in
accuracy with increasing number of input views and using
direct prediction of circumferences.

● Swish vs. ReLU activations: Resnet typically uses ReLU
activations26. We found that replacing ReLU with Swish
activations29 reduced the percentage of “dead” connections
(i.e., connections through which gradients do not flow) from
around 50% with ReLU to 0% with Swish and improved test
accuracy.

● Self-Attention and Squeeze-Excitation for non-local interac-
tions: Including squeeze-excitation blocks27 with Resnet
branches for cross-channel attention and a self-attention
block28 after the Resnet-4 block allowed the model to learn
non-local interactions (e.g., between bicep and thigh), with
further accuracy improvements. Supplementary Note 4 shows
the accuracy improvements due to self-attention, squeeze-
excitation and Swish activation blocks.

● Sex-specific model: Training separate, sex-specific MeasureNet

Fig. 3 MeasureNet architecture. Overview of the anthropometric body dimension measurement approach. The user first enters their height,
weight, and sex into the smartphone application. Voice commands then position the user for capture of front, side, and back color images.
The images are then segmented into semantic regions using a segmentation network. The segmentation results are then passed to a second
network referred to as MeasureNet that predicts WHR and body circumferences. Each input is passed through a modified Resnet-18 network
which is then concatenated and passed through Resnet-4, self-attention block and a fully connected layer (FC layer) before predicting WHR
and body circumferences. Resnet-18 is modified to include Squeeze-Excitation blocks (SE). CNN, convoluted neural network. Synthetic images
are used to train this model. Real images are used during inference after the model is trained. Color images shown in the figure are
synthetically generated.
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models further improved accuracy. As we show in Tables 2
and 3, sex-specific models have lower prediction errors
compared to sex-neutral models.

MeasureNet predicts multiple outputs, such as body shape,
pose, camera, volume, and 3D joints. Predicting multiple outputs
in this way (multi-tasking) has been shown to improve accuracy
for human-centric computer vision models30. Additionally, Mea-
sureNet predicts circumferences and WHR. Some of the outputs
(e.g., SMPL shape and pose parameters) are used only to
regularize the model during training and are not used during
inference31. The inputs and outputs to MeasureNet are shown in
Fig. S4. Important MeasureNet outputs related to circumferences
and WHR are:

● Dense Measurements: MeasureNet predicts 112 circumfer-
ences defined densely over the body. Details are presented in
Supplementary Note 2. Dense measurements reduce the
output domain gap between synthetic and ground truth by
finding the circumference ring (out of 112 circumference
rings) that minimize the error between tape measurements
taken by trained staff and synthetic measurements at a
particular ring. The table in Supplementary Note 2 shows that
the predicted error at the optimal circumference ring is the
lowest and therefore it is well-aligned with the staff
measurements.

● WHR Prediction: Our model can predict WHR both indirectly
(by taking ratios of waist and hip estimates) and directly (i.e.,
predicting WHR either through regression or classification).
WHR related outputs are shown in Fig. S4. The final WHR
prediction is an ensemble result, i.e., we average the individual
WHR predictions. As shown in Supplementary Note 5, we
found that the ensemble prediction had the lowest repeat-
ability error (most robust) without losing accuracy as
compared to individual predictions via regression, classifica-
tion or taking the ratio of waist and hip.

We include training losses on shape, pose, camera, 3D joints,
mesh volume, circumferences and waist-hip ratio (through
classification and regression). The losses are defined in Supple-
mentary Note 6. Since we have multiple loss functions, hand-
tuning each loss weight is expensive and fragile. Based on Kendall
et al.31, we used uncertainty-based loss weighting (Eq. 1) where

the weight parameter wið Þ is learned. Uncertainty based loss
weighting automatically tunes the relative importance of each loss
function Lið Þ based on the inherent difficulty of each task.
Supplementary Note 7 shows the improvement in accuracy when
using uncertainty-based loss weighting during training.

L ¼ 1
wi

´ Li þ log 1þ wið Þ (1)

Realistic synthetic training datasets
MeasureNet was trained with synthetic data. Using synthetic data
helps avoid expensive, manual data collection and annotation.
However, it comes at the cost of synthetic-to-real domain gap,
which leads to a drop in accuracy between a model trained with
synthetic data but tested on real data. We reduced the domain
gap by simulating a realistic image capture process on realistic 3D
bodies with lifelike appearance (texture). Examples of synthesized
body shapes for different BMI values are shown in Fig. 4.
The SMPL mesh model19 is parameterized by shape and pose

parameters. To encourage realism in the synthetic dataset and
minimize domain gap, it was important to sample only realistic
parameters and to match the underlying distribution of body
shapes of the target population. Our sampling process was used
to generate approximately one million 3D body shapes with
ground truth measurements, and consisted of three steps:

● Fit SMPL parameters: Given an initial set of 3500 3D scans (by
a laser scanner) as a bootstrapping dataset, we first fitted the
SMPL model to all scans19 to establish a consistent topology
across bodies and to convert each 3D shape into a low-
dimensional parametric representation. Due to the high
fidelity of this dataset and the variation across participants,
we used this dataset as a proxy for the North American
demographic distribution of body shapes and poses.

● Cluster samples: We recorded the sex and weight of each
scanned subject, and extracted a small set of measurements
from the scan, such as height, and hip, waist, chest, thigh, and
bicep circumferences. We trained a sex-specific Gaussian
Mixture Model (GMM) to categorize the measurements into 4
clusters (we found the optimal number of clusters using
Bayesian information criterion).

Fig. 4 Examples of synthetic body shapes. Examples of diverse synthetically generated body shapes varying in body mass index (BMI).
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● Sample the clusters using importance sampling: Finally, we
used importance sampling to match the likelihood of
sampling a scan to match the distribution across all clusters.
This allowed us to create a large synthetic dataset of shape
and pose parameters whose underlying distribution matched
the diversity of the North American population. As an
additional check, we found that our dataset created using
the above method closely matched the distribution of the
NHANES dataset (https://www.cdc.gov/nchs/nhanes/
about_nhanes.htm). NHANES was collected by the Center for
Disease Control and Prevention between the years 1999 and
2020 and consists of the demographics, body composition
and medical conditions of about 100,000 unique participants
from North American population.

We simulated a realistic capture process by sampling across the
range of all possible camera orientations (in the range of −15 to
+15 degrees around each axis) that yielded valid renderings of
the user in the input image. Valid renderings are images in which
body shapes are visible from at least the top of the head to the
knees. This ensures that the sampled camera parameters match
the realistic distribution of camera parameters observed for real
users. An example of realistic sampling of shape, pose, and camera
are shown in Fig. 5.
Once body shape, body pose, and camera orientation were

sampled, we transferred the texture from a real person onto the
3D mesh, placed it in front of a randomly selected background
image (of an indoor scene) and rendered a realistic color
rendering given the camera pose. The textured and realistic color
rendering was then segmented using the segmentation network
that was used as an input to train MeasureNet. The ground truth
targets used to train MeasureNet were extracted from sampled
synthetic mesh. Transferring the texture from a real person
allowed us to generate diverse and realistic samples and had two
main advantages. First, we transferred the texture from a real
person which avoided manually generating realistic and diverse
textures. Through this method, we generated a texture library of
forty thousand samples using trial users (different from test-time
users). Second, since we segmented the color images using a
trained segmentation model, we did not have to include
additional segmentation noise augmentation30 during training.
This is in contrast to the existing methods21,30 that add
segmentation noise to the synthetic image in order to simulate
the noisy segmentation output during test-time. We used the
segmented image as input to MeasureNet instead of a textured
color image to force MeasureNet to not use any lighting or
background-related information from the synthetic training data
which can have different distributions during training and testing.
In Supplementary Note 8, we show that training a model with
textured color image generalizes poorly when tested on real
examples as compared to segmented images. Intuitively, we
believe this is the case because synthetic textured color images

lack realism on their own, but generate realistic segmentation
results when passed through a semantic segmentation model.
Overall, the texture transfer process consisted of two steps. First,

we created a texture library by extracting textures from real
images using our participant pipeline. We extracted around forty
thousand texture images from trial users. Second, given the
texture images, we rendered a randomly sampled synthetic mesh
using a random texture image, rendered it on a random
background, and passed it through the segmentation. The process
of realistic textured rendering by transferring the texture from a
real person (synthetic in this case) is shown in Fig. 6. The
renderings when segmented (using fixed segmentation network)
were used as input to train MeasureNet. The end-to-end training
process for MeasureNet is shown in Fig. 7. The ground truth
targets used to train MeasureNet are extracted from sampled
synthetic mesh.

Statistical methods
The accuracy of MeasureNet and self-measurements were
compared to trained staff-measured ground truth estimates in
the CSD using mean absolute error (MAE; Eq. 2) and mean
absolute percentage error (MAPE; Eq. 3) metrics. MAE calculates
the average relative error of MeasureNet’s prediction or self-
measurements with respect to the ground truth tape measure-
ments. MAPE is similar to MAE but calculates mean relative
percentage error.

MAE ¼
Pn

i¼1 Gi � Pij j
n

(2)

MAPE ¼ 100%
n

Xn

i¼1

Gi � Pi
Pi

�
�
�
�

�
�
�
� (3)

Gi is the ground truth, Pi is the prediction, and n is the number
of users. MAE was also used for comparing MeasureNet to other
state-of-the-art approaches for estimating circumferences and
WHR.
The same procedures were used for evaluating noise in staff

measurements, MeasureNet predictions, and self-
measurements. This analysis is used to compare the measure-
ment noise of flexible tape-based measurements (staff and self)
and MeasureNet’s predictions. Noise was estimated by plotting
histograms of the between-measurement or prediction differ-
ences (meas1 and meas2). Biases in differences were removed
before plotting the histograms by including the Δs in both
directions: meas1 – meas2 and meas2 – meas1. We also fit
Gaussian curves on the resulting histograms to estimate the
noise standard deviations.
Repeatability was computed on the synthetic dataset and

measured as the mean and 90th percentile (P90) of absolute
differences. The repeatability metric was computed using the
following steps: (1) The mean estimate (µ) was computed for each

Fig. 5 Realistic shape sampling. Example of realistic sampling of body shape, pose, and camera simulating the image capture process.
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session consisting of renderings where the same synthetic mesh is
rendered given different camera parameters, different body poses,
and placed in front of a random background (2) for each scan we
computed the absolute difference to the mean of that session
(|pred−µ|), and (3) we computed the mean and P90 of absolute
differences across all scans.

Ethics review
The participant data evaluated in this study is approved by PBRC
Institutional Review Boards (clinicaltrials.gov identifier:
NCT04854421). The reported investigation extends the analyses
to anthropomorphic data (waist and hip circumference measure-
ments), and reflects a secondary analysis of data collected by
Amazon vendors in commercial settings. All participants signed

consents in these no-risk studies that granted full permission to
use their anonymized data. The investigators will share the data in
this study with outside investigators upon request to and approval
by the lead author.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that supports the findings of this study is available from the corresponding
author upon reasonable request and approval of Amazon Ltd.

Fig. 7 MeasureNet training. Training of MeasureNet model using realistic synthetic data. Given a sampled synthetic mesh, realistic synthetic
images are generated that are segmented. The segmented images are used as input to MeasureNet and corresponding predictions are
compared against the ground truth extracted from synthetic mesh.

Fig. 6 Realistic synthetic dataset generation. Generation of realistic color mesh renderings by transferring texture from a real person
(synthetic in this example). The renderings when segmented using a fixed network are used as input to train MeasureNet. The ground truth
targets used to train MeasureNet are extracted from sampled synthetic mesh.
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CODE AVAILABILITY
The code that supports the findings of this study is available from the corresponding
author upon reasonable request and approval of Amazon Ltd. Custom scripts for data
processing were developed in MATLAB 2020a and statistical analyses were
performed in Python version 3.7.
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