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Explainable deep learning approach for extracting cognitive
features from hand-drawn images of intersecting pentagons
Shinya Tasaki 1,2✉, Namhee Kim1,2, Tim Truty1, Ada Zhang 1, Aron S. Buchman 1,2, Melissa Lamar1,3 and David A. Bennett1,2

Hand drawing, which requires multiple neural systems for planning and controlling sequential movements, is a useful cognitive test
for older adults. However, the conventional visual assessment of these drawings only captures limited attributes and overlooks
subtle details that could help track cognitive states. Here, we utilized a deep-learning model, PentaMind, to examine cognition-
related features from hand-drawn images of intersecting pentagons. PentaMind, trained on 13,777 images from 3111 participants
in three aging cohorts, explained 23.3% of the variance in the global cognitive scores, 1.92 times more than the conventional rating.
This accuracy improvement was due to capturing additional drawing features associated with motor impairments and
cerebrovascular pathologies. By systematically modifying the input images, we discovered several important drawing attributes for
cognition, including line waviness. Our results demonstrate that deep learning models can extract novel drawing metrics to
improve the assessment and monitoring of cognitive decline and dementia in older adults.
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INTRODUCTION
Copying geometric or abstract figures is a complex behavior that
requires the integration of multiple cognitive domains, including
executive function to initiate the task, visuospatial abilities to carry
it out, and, to a lesser extent, semantic memory to construct the
correct image. Therefore, paper-and-pencil drawing tasks are
often employed independently or as part of a larger screening tool
to detect cognitive impairment, including Alzheimer’s dementia1,2,
and Parkinson’s disease3,4. For example, copying intersecting
pentagons, the Pentagon Drawing Test (PDT), is used as one of the
items in the 30-item Mini-Mental State Examination (MMSE) - a
common tool to evaluate a person’s mental health and identify
potential cognitive impairments5. PDT involves asking the
participants to draw two intersecting pentagons on a piece of
paper. In the MMSE, the intersecting pentagons are rated simply 0
(fail) or 1 (pass) based on limited factors. More detailed
evaluations of the intersecting pentagons have been shown to
provide granular-level information about a person’s cognitive
abilities and potential dementia status1,6.
While paper-and-pencil drawing tests, like the PDT, can be a

useful tool in assessing a person’s cognitive abilities, the conven-
tional scoring has some limitations. First, these tests are often prone
to subjective assessment and rater bias with different raters
potentially having different interpretations of the drawings, which
can lead to inconsistencies in the scoring and potentially impact
the accuracy of the results. Secondly, these tests can be labor-
intensive and time-consuming to score, particularly when used
within a larger population. Finally, these tests are typically focused
on a limited set of drawing attributes. For example, the PDT scoring
is based on only a few factors, such as the presence or absence of
intersections and the number of vertices5, which only capture
limited aspects of behavior and hence cognitive status1. Thus, while
paper-and-pencil drawing tests can be useful, their human-based
scoring has limitations in scope, accuracy, and scalability.
Automated scoring methods that utilize machine learning

methods offer the potential to address some or all of these

weaknesses. For example, deep-learning techniques have demon-
strated promising performance in automating ratings for the
PDT7,8, Rey Complex Figure Test9,10, and Clock Drawing Test11,12.
However, the primary objective of the previous automated scoring
is to reproduce human-based conventional ratings, and few
machine learning approaches directly predict cognitive perfor-
mance from drawings13. In addition, prior work has not been able
to explore the factors, such as motor abilities and brain
pathologies, that may confound or mediate the specific facets of
cognition when the construction of intersecting pentagons is
impaired. Identifying such integrated mechanisms requires draw-
ing images, various phenotypes, and multiple brain pathologies
assayed in the same set of individuals and the analytical
frameworks to integrate these data. Furthermore, none of the
studies utilized the models to discover the novel drawing features
associated with cognitive impairment, which may be important for
advancing our understanding of visuospatial memory ability and
motor coordination of drawing in older adults.
Here, we leveraged data from 3111 participants from three

ongoing cohort studies of aging and dementia at the Rush
Alzheimer’s Disease Center (RADC) to train a deep learning model
that predicts global cognition performance (Fig. 1a). By perform-
ing a thorough evaluation of 47 established deep-learning models
for vision recognition, we identified an architecture that demon-
strated high and robust performance. Along with detailed
cognitive tests, we were also able to incorporate comprehensive
motor examinations conducted with participants and a variety of
neuropathologies recorded for several hundred of participants.
We used these data to break down the non-cognitive and
pathological components of the model’s prediction. Furthermore,
to address the challenge of interpretability of deep learning
models, we developed a pentagon-drawing simulator. This
simulator is an explainable-AI approach that allowed us to
interrogate the deep learning model to suggest the key drawing
characteristics in people with lower cognitive function.
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RESULTS
Characteristics of study participants
Participants enrolled at the age of 77.4 (SD: 7.6) with a follow-up of
5.6 years (SD: 4.6) (Table 1), on average. Of participants, non-Latino
white (77.6%) is the most common ethnicity, followed by African

American (21.6%). At yearly home visits, participants received
comprehensive cognitive assessments, which included 19 tests
used to generate a composite measure of global cognition. In
addition, the PDT was administered as one of the items of the
standard MMSE. Note that the PDT is not included in global

Fig. 1 Development of a deep learning model for predicting global cognitive performance. a Schematic representation of the model
development and interpretation process for predicting global cognition performance. The process includes (1) Model Building: selection of a
high-performing vision recognition architecture from 47 established deep-learning models, (2) Output characterization: relations with
comprehensive motor examinations and neuropathologies, and (3) Key feature identification: development of a pentagon-drawing simulator
to identify key drawing characteristics in individuals with lower cognitive function. b Validation performances of the 47 deep learning models.
Spearman’s correlation and RMSE between predicted cognition scores from each model and measured values were computed for validation
samples. We repeated model training five times, each time using a distinct training set. The median and median absolute deviation of the
metrics from the five runs was plotted. Models were ranked based on the average ranking of Spearman’s correlation and RMSE. c Comparison
of model’s performances between validation and test sets. The composite ranking was obtained as an average of rankings based on
Spearman’s correlation and RMSE. The composite ranking, Spearman’s correlation, and RMSE are compared between validation (x-axis) and
test (y-axis) sets. The based on the VGG-19 BN architecture is highlighted as it showed the best permanence with the validation sets.
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cognition which is based on 19 measures independent of MMSE.
We scanned 13,777 drawings of intersecting pentagons obtained
throughout the visits.

Model architecture for predicting cognition via drawing
(PentaMind)
To develop models that predict global cognition from intersecting
pentagon drawings, we comprehensively evaluated 47 published
convolutional neural network models for image recognition
(Methods). The 47 models were designed and trained to
categorize images into 1000 object classes14. We modified the
model structures so that the final output layer outputs a numeric
value instead of object classes. As we collected multiple images
from the same participant across the period, we used a person-
based split rather than an image-based split to ensure that models
were not trained with images from the same participants in both
the training and validation/test sets. Specifically, we randomly
divided 3111 participants into a training set (80%), a validation set
(10%), and a test set (10%). To improve the reliability of

performance evaluation, we repeated the training procedure five
times using five distinct sets of training and validation samples.
Figure 1b indicates the comparative performance of the models

based on Spearman’s correlation and root mean squared error
(RMSE) for the validation sets. We selected a model that
demonstrated superior performance in both correlation and RMSE
metrics for further investigation. Specifically, we calculated a
composite ranking as an average of the rankings based on
Spearman’s correlation and RMSE. The model that ranked highest
overall among the 47 models was the model based on VGG19
with batch normalization (VGG19-BN), which we named Penta-
Mind. This model ranked second in Spearman’s correlation (0.41)
and fourth in RMSE (0.40). The accuracy of PentaMind on the test
sets was reasonably high, with a Spearman’s correlation of 0.44
and an RMSE of 0.42. Importantly, the performances of models on
validation and testing sets are highly congruent, indicating that
selecting a representative model based on validation sets did not
introduce bias (Fig. 1c).

Evaluation of PentaMind using test dataset
To conduct a series of evaluations for our PentaMind, we
predicted the global cognition from all 13,777 images. However,
applying the model to training samples may introduce bias into
the estimates. To prevent this, we retrained PentaMind using an
out-of-fold prediction strategy. Specifically, we divided the images
into ten non-overlapping folds. Then, we trained the model using
nine folds and tested it on the left-out tenth fold. This procedure
was repeated for each of the ten folds, resulting in ten models,
each trained on different sets of training and holdout images. By
concatenating the predicted global cognitive function for the
holdout samples, we obtained an unbiased prediction for all
13,777 images, which could then be used to calculate overall
prediction accuracy and examine the characteristics of our
prediction (Supplementary Fig. 1).
The predicted cognition score explained 23.3% of the variance

in global cognition, which is 1.92 times greater than that of
manual standard binary scoring (Fig. 2a and Supplementary Table
1) that is based on the presence or absence of intersections and
the number of vertices. A regression model using PentaMind-
predicted scores and human binary scores as covariates was able
to explain 24.7% of the variance in global cognition together.
Notably, PentaMind’s predictions were the primary contributor as
compared to the binary scoring, independently explaining 18.0%
of the variance (Supplementary Table 1). Next, we investigated
whether PentaMind could differentiate cognitive status with the
images scored as 1 (pass/normal) by the conventional clinical
evaluation. Intriguingly, the PentaMind exhibited a Spearman
correlation of 0.32, accounting for 10.0% of the variance in the
global cognition score (Fig. 2b and Supplementary Table 2). The
PentaMind accounted for more variance (24%) in a group of failed
pentagons (score= 0 from binary scoring). However, according to
a linear regression analysis with an interaction term for the two
groups, there was no significant difference in the variance
explained between the groups (p-value= 0.41).These findings
demonstrate that our PentaMind can capture nuanced character-
istics of human drawings that are undetectable, unquantifiable, or
omitted by the conventional clinical assessment.

Relationship of PentaMind’s prediction with age and
education
Age and education level are well-known factors that influence
cognitive function. Therefore, it is important to investigate the
extent to which these elements affect the predictive accuracy of
PentaMind. By examining the interplay between age, education,
and cognitive scores predicted by PentaMind, we aim to elucidate
the potential effects of these demographic variables on the
performance of our model.

Table 1. Demographic information for the ROS, MAP, and MARS
cohorts.

ROS MAP MARS

Number of participants 1093 1508 510

Number of samples 5575 6849 1353

Ethnicity (%)

American Indian or Alaska
Native

5 (0.5) 3 (0.2) 0 (0.0)

Asian 1 (0.1) 6 (0.4) 0 (0.0)

Black or African American 90 (8.2) 82 (5.4) 510 (100.0)

Native Hawaiian or Other
Pacific Islander

1 (0.1) 1 (0.1) 0 (0.0)

Unknown 3 (0.3) 2 (0.1) 0 (0.0)

White 993 (90.9) 1414 (93.8) 0 (0.0)

Female (%) 777 (71.1) 1110 (73.6) 381 (74.7)

Education year (mean (SD)) 18.18
(3.34)

14.61
(3.20)

14.93
(3.52)

Age at enrollment (mean (SD)) 75.38
(7.28)

80.00
(7.32)

73.64
(6.29)

Age at visit (mean (SD)) 79.52
(6.85)

82.11
(7.37)

75.58
(6.24)

Follow-up year (mean (SD)) 8.29 (5.21) 4.33 (3.45) 3.37 (3.00)

Demented (%) 278 (25.4) 250 (16.6) 26 (5.1)

Global cognitive function
(mean (SD))

−0.01
(0.73)

−0.11
(0.73)

−0.13
(0.57)

MMSE (mean (SD)) 27.25
(3.23)

26.94
(3.39)

27.68
(2.27)

No cognitive impairment
(NCI) (%)

579 (53.0) 896 (59.4) 386 (75.7)

Mild cognitive impairment
(MCI) (%)

243 (22.2) 370 (24.5) 103 (20.2)

MCI, multiple causes (%) 11 (1.0) 14 (0.9) 1 (0.2)

Alzheimer’s dementia (Probable
AD) (%)

218 (19.9) 196 (13.0) 18 (3.5)

Alzheimer’s dementia, multiple
causes (Possible AD) (%)

28 (2.6) 17 (1.1) 0 (0.0)

Other dementia (%) 12 (1.1) 8 (0.5) 1 (0.2)

Vascular dementia (%) 46 (4.2) 39 (2.6) 6 (1.2)

Pentagon score = 1 (%) 509 (47.1) 822 (55.1) 307 (60.2)

Deceased (%) 769 (70.4) 924 (61.3) 155 (30.4)
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Our investigations revealed a statistically significant negative
Spearman’s correlation of −0.28 between age and the cognitive
scores predicted by PentaMind (p-value= 8.2 × 10−182), accounting
for approximately 5.8% of the variance. This suggests an inverse
relationship, where PentaMind’s predicted cognitive scores decrease
as an individual’s age increases. Conversely, a positive correlation of
0.20 was found between education level and predicted cognitive
scores, accounting for approximately 3.0% of the variance. This
correlation, which is also statistically significant (p-value= 7.3 × 10−94),
indicates that PentaMind tends to predict higher cognitive scores for
individuals with more advanced education.
To adjust for the potential confounding effects of age and

education, we included these variables as covariates in a linear
model. In this adjusted model, the cognitive scores inferred from
the pentagon drawings served as predictors, while the actual
cognitive scores were treated as the outcome. The results of this
adjustment yielded two significant findings. First, even after
controlling for age and education, the cognitive scores derived

from the pentagon drawings continued to provide crucial
cognitive information, explaining 18.4% of the variance in
cognition. This underscores the pivotal role of pentagon drawings
in cognitive assessment. Second, the inclusion of age and
education in the model accounted for an additional 9.2% of the
variance in cognition, for a total of 32.7% of the variance
explained. Sex did not improve cognitive variance explained,
contributing only 0.17% to the total variance.

Relationship of PentaMind’s prediction with ethnicity
By leveraging the ethnic diversity of our observational community-
based cohorts, we examined the generalizability of our model across
ethnicity. To do this, we calculated prediction performance separately
for white participants (77.6% of participants) and those identifying as
African American (21.6% of participants). The predictive performance
based on Spearman’s correlation for the two ethnic groups were 0.42
and 0.43, respectively (Fig. 2c), while the percentage of variance in

Fig. 2 Performance evaluation of PentaMind. a Relationship of the predicted cognition scores and actual scores. We employed an out-of-
fold prediction strategy to generate an unbiased predicted cognition score for all 13,777 images. The scatter plot compares the actual and
predicted cognition scores with a linear regression line. Spearman’s correlation and p-value are also displayed. b PentaMind’s performance
stratified by the conventional binary rating. The images are stratified based on the conventional rating: success (1) or failure (0). Spearman’s
correlation and p-value for each group are displayed. c PentaMind’s performance stratified by the ethnicity of participants. The performance
metric is calculated for white individuals and African Americans separately.
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cognitive score explained by PentaMind for white and African
American participants were 23.2% and 24.1%, respectively (Supple-
mentary Table 3). This comparable performance demonstrates that
our model may successfully generalize across both white and African
American participants.
In our ongoing examination of the relationships between

ethnicity, education, and the predictive efficacy of PentaMind, we
conducted a further analysis that included these factors.
We used a multivariate regression model that included age as a

covariate, PentaMind-derived cognitive scores as predictors, and
introduced a three-way interaction term. This term linked
predicted cognition, years of education, and ethnicity, with actual
cognitive scores as the outcome. This analysis focused specifically
on white and African American individuals. Consistent with the
results in Fig. 2c, our model did not identify a significant
interaction between ethnicity and predicted cognition (estimate=
0.262, p-value= 0.104). However, we found a moderately
significant negative three-way interaction term (−0.0318)
between ethnicity, education, and predicted cognition (p-
value= 3.22 × 10−3). Specifically, the effect of predicted cognition
on actual cognition appears to be higher for African Americans
with higher levels of education compared to their white counter-
parts, underscoring the importance of considering these complex
relationships when interpreting drawing test results.

Assessing PentaMind’s ability to distinguish between
dementia states
Next, we assessed the discriminatory capacity of PentaMind
between non-cognitive impairment (NCI), mild cognitive

impairment (MCI), and dementia (DM) and contrasted this against
a conventional rating approach. Receiver Operating Characteristic
(ROC) curves were employed, with the area under the curve (AUC)
serving as a proxy for these tests’ accuracy in differentiating these
cognitive states.
Figure 3a delineates the comparative efficacy of these models.

For the NCI versus DM differentiation, PentaMind yielded an AUC
of 0.768, exceeding the conventional assessment’s AUC of 0.672
(DeLong’s test, p-value < 2.2 × 10−16). In distinguishing between
MCI and DM, PentaMind displayed an AUC of 0.679, surpassing the
conventional scoring with an AUC of 0.625 (p-value= 1.6 × 10−5).
In the distinction between NCI and MCI, PentaMind once more
excelled over the conventional rating (p-value= 5.2 × 10−16), with
AUCs of 0.635 and 0.557, respectively.
For comparative analysis, we also examined the actual global

cognition and MMSE scores, which constitute composite measures
that incorporate multiple tests. As anticipated, global cognition
and MMSE outperformed the AUC values across all cognitive
contrasts compared to PentaMind and the conventional assess-
ment (Fig. 3a). It’s important to note that dementia diagnosis
definition relied on five domain scores within the global cognition
score. This likely explains its extremely high accuracy in
distinguishing cognitive status.
Collectively, these results highlight two critical findings. Firstly,

the PentaMind consistently surpasses the conventional PDT in
differentiating between different cognitive states, indicating that
PentaMind’s integration may enhance the precision in discerning
these states over the traditional rating method. Secondly, despite
PentaMind’s promise, current composite measures, such as global

Fig. 3 Evaluation and enhancement of dementia assessment with PentaMind. a PentaMind’s distinguishing capacity between dementia
states. Receiver operating characteristic (ROC) curves show differentiation of non-cognitive impairment (NCI) vs. dementia (DM), mild
cognitive impairment (MCI) vs. DM, and NCI vs. MCI. Predictors used were: actual global cognition, MMSE, global cognition predicted by
PentaMind, and conventional pentagon drawing rating. Corresponding area under the curve (AUC) values overlay each curve. b Improving
MMSE performance with PentaMind. Four scores were constructed: the standard MMSE30, MMSE29 (MMSE excluding pentagon drawing test),
MMSE29+PentaMind (substituting conventional pentagon drawing rating in MMSE30 with PentaMind), and MMSE30+PentaMind.
Incremental AUC improvements over MMSE29 are shown in a bar plot for each contrast: NCI, MCI, and DM. P-values displayed were
derived using DeLong’s test.
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cognition and MMSE scores, remain the most precise instruments
for distinguishing between NCI, MCI, and DM.

Enhancing MMSE performance with PentaMind
Given the promising discriminative capacity of PentaMind over
the conventional rating approach in differentiating between NCI,
MCI, and DM, we sought to determine whether incorporating
PentaMind into the MMSE could further improve this accuracy. To
this end, we conducted ROC analysis with four scores: the
MMSE30 (the standard 30-item MMSE score), the MMSE29 (the
MMSE score without the PDT), the MMSE29+PentaMind (replacing
the conventional rating of the pentagon drawing in the MMSE30
with PentaMind), and the MMSE30+PentaMind.
Our analysis first examined the differential contributions

between conventional rating and PentaMind (Fig. 3b). Interest-
ingly, the AUC of the MMSE29+ PentaMind consistently exceeded
that of the MMSE30 across all cognitive state contrasts between
NCI, MCI, and DM. Of particular note were the discriminations
between NCI and DM and NCI and MCI, where the MMSE29+-
PentaMind significantly outperformed the MMSE30 with statisti-
cally significant AUC differences of 0.003 (DeLong’s test, p-
value= 0.010) and 0.009 (p-value < 0.001), respectively.
Next, we evaluated the influence of PentaMind on the

MMSE30 score. The MMSE30+PentaMind consistently produced
higher AUCs than the MMSE30 across all contrasts. Specifically, the
AUC differences were statistically significant: 0.003 for MCI/DM
(p-value= 0.004), 0.004 for NCI/DM (p-value < 0.001), and 0.012 for
NCI/MCI (p-value < 0.001). These figures signify a significant
enhancement in discriminatory capacity by integrating PentaMind
into the MMSE30. Although these increments may seem small at
first glance, the practical implications of this improvement are
profound, as the inclusion of PentaMind transformed the PDT into
the most impactful component for differentiating NCI and MCI
among the 30 MMSE items (Supplementary Fig. 2).
Lastly, we evaluated the contribution of conventional scoring to

the MMSE29+PentaMind score. Although we observed slight
performance improvements, these were not large enough to
reach statistical significance.
In summary, our results corroborate the superior performance

of PentaMind over the conventional rating in differentiating
between cognitive states again. More importantly, we show that
incorporating PentaMind into the MMSE30 significantly enhances
its discriminatory capacity, particularly in distinguishing between
NCI and MCI. Consequently, including PentaMind in the MMSE30
could improve its accuracy in differentiating cognitive states.

Relationship of PentaMind’s prediction with clinical
phenotypes
Global cognition is a summary representation of various aspects of
cognitive functions. To understand whether the improvement of
PentaMind over the conventional clinical assessment is attributed
to the model’s ability to capture specific cognitive components,
we analyzed various phenotypic measurements acquired simulta-
neously from the same individual. Specifically, we explored the
link of the predicted global cognition with five domains of global
cognition and ten motor functions that are known to be
associated with cognitive impairment (Supplementary Table 4).
Motor function is a complex phenotype that may necessitate the
use of many clinical instruments to capture the various
deficiencies that appear in older adults. Therefore, we investigated
two interrelated motor phenotypes, a global parkinsonism score
and a global motor score, and their domains.
All 15 phenotypes were significantly associated with global

cognition score predicted by PentaMind as determined by linear
regression analysis (Bonferroni-corrected p-value < 0.05). However,
only eight were associated with the conventional binary scoring
(Fig. 4 and Supplementary Table 5). Overall, PentaMind accounted

for about five times more variance than the manual binary scoring
alone. Notably, this tendency was more pronounced for motor-
related phenotypes than for cognition domains, where the
predicted score of PentMind was significantly more strongly
associated with motor phenotypes than the manual binary scores,
with a magnitude of 6.4 times. While for cognitive scores, the
predicted score was also more strongly associated than the
manual binary scores, the effect size was smaller, with a
magnitude of 2.6 times. The result implies that PentaMind’s
improved performance is partly due to its capability to extract
signals pertaining to motor impairment from a handwriting image
that may be associated with global cognition. The result also
highlights the limitation of the conventional scoring, which is
dependent on basic indicators such as the number of vertices and
the presence of the intersection of two pentagons.

Relationship of PentaMind’s prediction with brain pathologies
The existence of brain pathologies is the leading cause of
cognitive impairment. Consequently, it is important to determine
if the global cognition score predicted by the pentagon represents
cognitive impairment tied to specific brain pathologies. Therefore,
we associated a broad spectrum of brain pathologies, including
classical AD pathologies, Lewy bodies, TDP-43, and cerebrovas-
cular pathologies, with the global cognition score predicted by
PentaMind based on the PDT closest to death (Supplementary
Table 6).
Out of 20 pathologic indices, nine were associated with the

predicted global cognition as determined by linear regression
analysis (Bonferroni-corrected p-value < 0.05). Six were associated
with the conventional binary score (Fig. 5 and Supplementary
Table 7). Comparable effect sizes for classical AD pathologies,
including NIA-Reagan and global AD pathology, were observed
between the predicted global cognition by PentaMind and the
conventional score. PentaMind accounted for 2.05% and 2.06% of
the variance in these pathologies, respectively, while the
conventional rating explained 2.06% and 2.43%. The Spearman’s
correlations for PentaMind were 0.060 and −0.056, compared to
0.075 and −0.086 for the conventional rating.
By contrast, only PentaMind’s prediction showed statistically

significant associations with cerebrovascular disease, specifically
vessels disease of atherosclerosis and arteriolosclerosis, as well as
loss of pigmented neurons in the substantia nigra. Specifically, it
accounted for 1.47% of the atherosclerosis variance, 1.21% of
arteriolosclerosis, and 1.77% of the loss of pigmented neurons in
the substantia nigra, all with respective negative Spearman’s
correlations of −0.095, −0.077, and −0.058. In comparison, these
pathologies contributed significantly less to the variance in the
conventional rating, with values of 0.41%, 0.12%, and 0.97%,
respectively.
Since PentaMind appeared to have an advantage in detecting

motor-related cognitive impairment, as outlined above, these
pathologies might be tied to their known effects on motor
function15. To examine this hypothesis, we contrasted motor
dexterity with the 20 brain pathologies. We found that the
cerebrovascular pathologies of atherosclerosis and arteriolosclero-
sis and nigral neuronal loss were more robustly associated with
motor dexterity than the other classical AD pathologies (Supple-
mentary Table 8). These congruent clinical and pathological
associations indicate that the deep learning approach can detect
the signs of motor dysfunction from pentagon drawing.

Identification of crucial drawing features
Although PentaMind improved performance in predicting global
cognition from the pentagon drawing, elucidating the drawing
features contributing to this accuracy is crucial for gaining novel
clinical insights. To pinpoint vital elements within the image, we
utilized DeepSHAP16, a technique for comprehending how a model
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generates its predictions (Supplementary Fig. 3). DeepSHAP
indicated that the model penalizes the poor shape of the pentagon
and the lack of well-formed interlocking pentagons. However, it was
challenging to specify key drawing features from the result of SHAP.
Therefore, we developed a simulator to generate intersecting
pentagons with specified parameters. By providing the simulated
images to PentaMind and monitoring the predicted cognition
values, we were able to identify influential drawing features linked
to cognition. To generate a synthetic pentagon drawing, the
simulator takes eight parameters, including (1) the number of
vertices, (2) the distance between pentagons, (3) alignment of two
pentagons, (4) angle distortion, (5) size equality, (6) pentagon size,
(7) line width, and (8) line waviness.
First, we examined the number of vertices and the presence of

intersections—two qualities that are evaluated in the conven-
tional clinical assessment (Fig. 6). As the number of vertices in a
drawing increases or decreases, PentaMind’s prediction of global
cognition score drops, demonstrating that the model accurately
recognizes the geometry of the pentagon (Fig. 6a). Additionally,
the distance between two pentagons affects the predicted
cognition. Consistent with the conventional evaluation, we
observed a lower cognition score when no intersection was
present (Fig. 6b). However, PentaMind indicated that excessive
overlap is also indicative of diminished cognitive ability (Fig. 6b).
Furthermore, the parts of pentagons that intersected influenced
the prediction. Specifically, the prediction for global cognition
score was highest when vertices of the two pentagons over-
lapped. However, the predicted cognition score was reduced
when one pentagon’s vertex intersected the other’s side (Fig. 6c).
This is noteworthy given that in the conventional assessment, any

sort of overlap is a prerequisite for pass of the PDT. Nonetheless,
PentaMind model dissects the overlaps with respect to cognitive
performance in greater detail. This demonstrates how PentaMind
can quantify nuanced drawing features.
With the aid of PentaMind, we further explored key drawing

features associated with cognition, including the shape and size of
the pentagons. As anticipated, PentaMind assigned a higher
cognition score to regular pentagons—a five-sided polygon in
which all sides and angles are equal (Fig. 6d). The proportionality
of the size of the two pentagons was also correlated with a higher
predicted cognitive score (Fig. 6e). We observed a sharp decline in
the prediction cognition when the size of the drawing was
reduced (Fig. 6f), which is in line with the fact that micrographia
often seen in Parkinson’s disease17. Regarding line width, the
cognition score decreased when the line was too thin but had a
moderate effect otherwise (Fig. 6g). Notably, the increase in line
waviness had a strong influence on the prediction, even if the
shape still appeared to be regular pentagons (Fig. 6h). The line
waviness likely reflects motor impairment, as drawing a straight
line requires proper motor executions. Therefore, the model’s
ability to quantify the line waviness may contribute to the
enhanced accuracy of detecting motor-related cognitive impair-
ment shown in Fig. 4. This finding suggests line quality as a
significant parameter for the cognitive assessment of hand
drawing, which the conventional visual inspection mostly ignores.

DISCUSSION
This work revisited data from a traditional paper-and-pencil
drawing test collected for decades with deep learning technology,

Fig. 4 Relationship of Pentamind’s prediction with clinical phenotypes. The percent of the variance in each clinical phenotype explained by
the predicted cognition (y-axis), and the conventional clinical rating of PDT (x-axis) is compared. Dashed lines indicate the fold improvements
in percent of variance explained by the PentaMind over the conventional rating.
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bringing innovation to healthcare and life science. Results
obtained with cutting-edge data analysis outperformed the
standard human-based rating by about two-fold for predictions
of cognitive function, revealed the novel relationships of hand-
drawn pentagons with motor and related brain pathologies, and
nominated specific drawing attributes affected by cognitive
function. Our approach quantifies the contributions of diverse
cognitive and motor neural systems underlying a commonly
employed drawing task that can advance our understanding of
the well-known association of cognitive and motor decline in
older adults.
Our results suggest that quantifying facets of motor function

underlying the drawn image was the primary source of the
improved model performance compared to the conventional
scoring. The subsequent analysis of brain pathologies, including
cerebral atherosclerosis, arteriolosclerosis, and nigral neuronal
loss, also supported the involvement of motor function. For
instance, cerebral atherosclerosis and arteriolosclerosis are asso-
ciated with dementia and Parkinsonism18 by triggering neurovas-
cular dysfunction such as decreased blood flow in the brain and
impairment of blood-brain barrier integrity19,20. Also, the connec-
tion between the loss of nigral dopaminergic neurons and
Parkinsonism is well-established21. Furthermore, the line waviness
greatly impacted the predicted cognition, which also supports the
connection between hand-motor execution and cognitive impair-
ment. Recently, digital pen technology has enabled the measure-
ment of intricate graphomotor data and shown its utility for
cognitive evaluation22,23. Thus, incorporating time-series hand-

drawing movement into the deep learning model may further
improve the predictive accuracy for cognitive status. The success
of this approach in highlighting the importance of quantifying
sequential drawing for improved performance suggests that this
approach may be useful for the assessment of other conventional
motor skills, which currently assess only limited facets of the actual
movement and do not even capture the duration of cognitive
planning prior to the initial movement. Therefore, the significance
of deep learning techniques will become even more crucial in
analyzing other more complex behaviors, such as gait, whose 3D
features are difficult to quantify during the routine clinical
assessment of walking. These efforts may lead to a new lexicon
of movement features derived from deep learning analysis that
can be further examined using simulation, as was done in the
current study.
The emergence of digital tools underscores the need to

understand their influence on cognitive assessment, especially
when comparing traditional pencil-and-paper methods with
digital media. We propose to fine-tune an existing model,
originally trained on pencil-and-paper drawings, with images
produced by digital devices. This calibration is intended to better
understand and compensate for the differences between these
two media. Digital tools offer the added benefit of capturing
nuanced details such as drawing speed, the presence of tremor,
and pen pressure. Such dynamic data contribute to a more robust
and comprehensive assessment of cognitive function. However,
we also intend to leverage the vast amount of historical data
collected from pencil and paper drawings. To optimize the use of

Fig. 5 Relationship of Pentamind’s prediction with brain pathologies. The percent of the variance in each brain pathology explained by the
predicted cognition and the conventional clinical rating of PDT is compared. Dashed lines indicate the fold improvements in percent of
variance explained by the PentaMind over the conventional rating.
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this static information, we propose a model capable of inferring
subtle motion characteristics from the final image. Consequently,
this model can be applied to traditional drawings to extract
additional information, thus enhancing the significance of these
historical data sets.
We leveraged our cohorts’ ethnic diversity to examine the

model’s applicability to white and African American populations.
The model performed similarly for both ethnicities, indicating that
the model is well-generalized across two ethnicities. This
comparable performance may suggest that the number of training
samples was adequate to detect signals specific to both white and
African American individuals. Alternatively, it could indicate that
cognition-related drawing characteristics are not influenced by
ethnicity. Clarifying these possibilities will guide the development
of a generalized biomarker model based on hand drawings, which
warrants further investigation. However, due to the small number
of deceased people from the African American population
(n= 225), the findings on brain pathologies mostly reflect the
data from the white population. Therefore, follow-up research is
required to confirm the relationships between pentagon drawings
and vascular pathologies in the African American population.
One of the challenges of using deep learning models is the

need for more interpretability, or the ability to understand which
image features are being used by the model to make

predictions24. This is because deep learning models are often
complex and have many layers, making it difficult to understand
how the model reaches its conclusions. Various methods have
been proposed to analyze an image’s most important parts for
making predictions. These methods highlight the areas of an
image that contain the most predictive information. Still, they may
not explain which specific drawing characteristics are associated
with cognitive decline. To address this challenge, we developed a
fully parametrized simulator to generate a range of synthetic
pentagon images. Then we analyzed the model’s predictions on
these images to determine which features are most important for
making a prediction. Having successfully identified a set of
drawing attributes associated with predicted cognition, our
approach could provide a novel way to explore handwritten
biomarkers. Our result will serve as a resource to develop
complementary computational approaches that automate the
extraction of drawing features25. By quantifying each drawing
attribute, we can examine the correlations between each attribute
and the various phenotypes in greater depth.
Rapid and accurate assessment of complex behaviors resulting

from diverse neural systems is critical to identifying the underlying
neural mechanisms that can be targeted for treatment. By using
deep learning technology to analyze handwriting images, it may
be possible to design a faster and more accurate method for

Fig. 6 Identification of crucial drawing features. The effect of eight drawing attributes on predicted cognition sore is examined using
synthetic images of PDT. The eight drawing attributes include (a) the number of vertices, (b) the distance between pentagons, (c) alignment of
two pentagons, (d) angle distortion, (e) size equality, (f) pentagon size, (g) line width, and (h) line waviness. A point represents the median
value and the absolute median deviation of 20 images, respectively.
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evaluating cognitive status. This could help healthcare providers
more quickly identify individuals at risk for developing dementia
and other cognitive impairments, allowing for early intervention
and improved outcomes. Additionally, using handwriting samples
as a biomarker for cognitive performance could provide insight
into the molecular status of the brain, potentially advancing the
development of precision medicine for dementia and other
conditions. Overall, this study highlights the potential of using
deep learning technology in healthcare to improve our under-
standing of cognitive impairments and to develop more effective
treatment strategies.

METHOD
Study cohorts
All eligible participants were enrolled in one of three prospective
aging studies at the RADC, the Religious Orders Study (ROS)26, the
Rush Memory and Aging Project (MAP)26, and the Minority Aging
Research Study (MARS)27). These are prospective analytic
community-based cohort studies. As community-based cohorts,
the studies are far less susceptible to referral bias, which can
introduce substantial sociodemographic, clinical, and genetic
variations in patient research. These studies collected ethnic data
from participants through self-identification. At the time of
enrollment, the average age was 77.4, the average length of
education was 15.9 years, 72.9% were female, 77.4% were non-
Latino white, and 21.9% were African American. All participants
consent to undergo yearly comprehensive clinical examinations.
Brain donation at the time of death is a condition of ROS and MAP
study entry; it is optional for MARS. An Institutional Review Board
of Rush University Medical Center approved all studies and
participants gave written informed consent in accordance with
the Declaration of Helsinki. As applicable, participants also sign an
Anatomical Gift Act (AGA) for brain donation at death.

Pentagon drawing test administration and pipeline
processing
PDT was administered yearly to the participants as a part of items
of the MMSE5. The MMSE is a 30-item screener for gross cognitive
impairment and dementia. It evaluates the severity of cognitive
impairment across various cognitive domains. In one section,
participants are asked to replicate a sample of intersecting
pentagons on paper. The pentagons are then rated 0 (fail) or 1
(pass) based on the presence or absence of intersections and the
number of vertices.
To prepare the obtained PDT data for training and testing the

PentaMind model, we first converted each pair of intersecting
pentagons into a digital image. During this digitization process,
random noise can sometimes be introduced, which could distort
the true representation of the original hand drawings. To address
this, we applied a noise removal step using the OpenCV library,
specifically utilizing a morphological operation known as opening,
which consists of erosion followed by dilation. This technique
effectively enhances the image quality by eliminating noise and
reducing variations not intrinsic to the original hand drawings.
Following the noise removal, we used an object detection method

based on a C-Support Vector Classification algorithm (https://
github.com/ttruty/object-detector) to identify and clip the region
containing the intersecting pentagon. On the test set, the accuracy
of the pentagon detection was 97.7%. We also conducted a manual
evaluation to filter out images without pentagon drawings.
Subsequently, to standardize the image size, the images were

padded with a white area around the edge of the pentagon. This
process ensured the size of each image was standardized to 500
pixels by 500 pixels, while maintaining the original size of the
pentagon. Through these steps, we prepared our data for further
processing and analysis.

Cognitive assessments
Each participant underwent comprehensive clinical evaluations at
baseline and at each annual follow-up28. In summary, the
cognitive battery includes 21 cognitive performance tests, 19 of
which are used to develop a global composite measure of
cognitive function (global cognition score) and 17 of which assess
relatively dissociable cognitive domains, including episodic
memory (7 measures), semantic memory (3 measures), working
memory (3 measures), perceptual speed (2 measures), and
visuospatial ability (2 measures).
A clinical diagnosis of cognitive status involves a three-step

process. First, participants take 19 computer-scored cognitive tests
that provide severity ratings for five cognitive domains. Next, a
neuropsychologist reviews these scores and other clinical data and
judges the presence and degree of cognitive impairment. Finally, a
clinician evaluates all the data and examines the participant,
providing a final diagnostic classification. The diagnosis of dementia
and Alzheimer’s disease follows NINCDS/ADRDA guidelines. If a
participant is found to have a cognitive impairment but doesn’t
meet the criteria for dementia, they are diagnosed with MCI.

Motor assessments
Each participant was scored with two motor-related assessments: a
global parkinsonism score and a global motor score. The global
parkinsonism score was calculated by averaging the scores from
each of the four parkinsonian domains26, which include bradykine-
sia, tremor, rigidity, and parkinsonian gait. The parkinsonian domains
were assessed by qualified nurse clinicians using a modified version
of the United Parkinson’s Disease Rating Scale (UPDRS)29,30. A higher
score suggests more severe parkinsonian impairment of motor
function. The global motor score is a summary of ten motor tests
from four categories (1) hand strength (two items), (2) motor gait
(four items), (3) motor dexterity (two items), and (4) motor balance
(two items)31. To retain consistency with the global parkinsonism
score, the sign of the global motor score and its components has
been inverted such that a higher score reflects a more severe motor
impairment. These two scores are independently linked with worse
health outcomes when evaluated together32.

Neuropathologic evaluations
We generated continuous measures for neuritic plaques, diffuse
plaques, and neurofibrillary tangles. The modified NIA-Reagan
criteria for diagnosing Alzheimer’s disease comprise the CERAD
score for neuritic plaques and the Braak stage for neurofibrillary
tangles33. Global AD pathology burden is a quantitative summary of
AD pathology derived from counts of three AD pathologies: neuritic
plaques, diffuse plaques, and neurofibrillary tangles, as determined
by microscopic examination of silver-stained slides from five regions.
For molecular specificity, we also quantified the load of parenchymal
deposition of β-amyloid, and the density of abnormally phosphory-
lated paired helical filament tau (PHFtau)-positive neurofibrillary
tangles, as previously described34. Additionally, we evaluated the
extent of nigral neuronal loss, the presence of Lewy bodies35, the
TDP-43 staging36, hippocampal sclerosis37, chronic macroscopic and
microinfarcts38, cerebral amyloid angiopathy (CAA)39, the severity of
atherosclerosis40, and arteriolosclerosis40.

Model training
The convolutional neural network, a type of deep learning model,
excels in image recognition tasks. Its architecture incorporates a
convolutional layer that extracts features from the input image
using learned filters, which scan the image for meaningful
patterns and features. The output of the convolutional layer then
goes through a series of fully connected layers for the final
classification or regression task.
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For our specific application in predicting global cognition from
pentagon drawings, we used 47 vision recognition models provided
by Torchvision (v0.11.1), a Pytorch-based library offering various
model architectures and pre-trained weights for computer vision.
We modified the final layer of these model architectures to output a
single numeric value representing the global cognition score.
To initialize the model parameters, we used pre-trained weights

from ImageNet14. Further fine-tuning was performed with a
stochastic gradient descent (SGD) optimizer, configured with
specific learning rates, momentum, weight decay, and batch size
parameters. For AlexNet and SqueezeNet, we used a different
learning rate. Our images were resized to 224 pixels by 224 pixels,
and we set the maximum number of training epochs at 90, with
an early termination threshold based on validation loss.
To enhance the robustness of our model and to reduce the

chances of overfitting, we employed a comprehensive data
augmentation strategy with imgaug (version 0.4.0)41. This involved
applying a range of transformations to the input images. These
transformations included flipping, rotation, affine transformations
(which involve translating and rotating the images), as well as
adjustments in contrast, brightness, and sharpness. Additional
transformations, such as adding Gaussian noise or salt-and-pepper
noise, were also selectively applied. These transformations did not
introduce random noise but rather controlled, systematic changes
that help the model generalize better across various scenarios and
conditions. The order of these transformations was randomized, and
the operations were performed in a sequential manner. This strategy
ensured a diverse set of augmented images for training, enabling
our model to handle a broad range of data variations effectively.
A similar data augmentation approach is applied during the

prediction phase. Each image is subjected to systematic alterations,
generating 30 variations per image. Subsequently, the model
generates predictions for each variation and averages the results.
This process effectively mitigates any potential bias from minor
image quality differences that might persist after noise removal.
All these processes were managed with the workflow system

Snakemake42 and executed on the Google Cloud Platform using
an NVIDIA Tesla T4 GPU.

ROC analysis
We used the pROC library43 to perform ROC analysis to evaluate the
discriminative ability of PentaMind across different cognitive
statuses, namely NCI, MCI, and DM. To categorize the participants
into their respective cognitive groups, we used the clinical diagnosis
of cognitive status. Specifically, participants were grouped into NCI,
MCI, and DM based on this clinical diagnosis. To evaluate
PentaMind’s ability to detect early stages of MCI or DM, we used
data from the first diagnosed visits for the MCI and DM groups, and
baseline data for the NCI group. This approach allowed us to assess
PentaMind’s ability to identify individuals with MCI or DM at an early
stage. The ROC curve for each metric was then constructed, and the
AUCs were compared using DeLong’s test for two correlated ROC
curves, which provided associated p-values.

Incorporating PentaMind into the MMSE30
We aimed to incorporate PentaMind, a predictor of continuous global
cognition scores, into the MMSE. However, there are inherent
differences in scale and distribution between the PentaMind score
and the MMSE score. Specifically, the MMSE uses a binary scoring
system, assigning either a 0 or a 1 to each item, in contrast to
PentaMind’s continuous global cognition estimates. Consequently,
simply adding the PentaMind score to the MMSE score would not be
appropriate because of these differences. To address this issue, we
used logistic regression to model the cognitive diagnosis using
PentaMind’s output. This allowed us to transform the PentaMind
output into a probability ranging from 0 to 1 that could be effectively
integrated with the MMSE score. To ensure the accuracy and integrity

of the probability estimates, we used an out-of-fold prediction
strategy. This strategy involved strictly separating the data used to
optimize the logistic regression model from the data to which the
logistic regression model was applied. After converting PentaMind’s
output into probability estimates, we added these values to the
corresponding MMSE scores. We then examined the discriminative
power of the combined PentaMind-MMSE score using ROC analysis.
This analytical method allowed us to assess the ability of our
integrated measure to discriminate between different cognitive states.

Pentagon simulation
We developed a simulator for drawing intersecting pentagons using
the Matplotlib visualization library. In this simulation study, we
examined eight drawing attributes, including angle distortion, line
waviness, line width, the number of vertexes, alignment of two
pentagons, the distance between pentagons, pentagon size, and size
quality. For each parameter, we tested eight values that deviated
from the standard pentagons. For each value of the main parameter
tested, we generated 20 images with slight variations by randomly
varying the rest of the parameters in a small range around the regular
pentagons. A reproducible code and generated images are available
at https://github.com/stasaki/PentaMind/. Generated images were
supplied to the ten deep learning models, each of which had been
trained with a distinct subset of data, and the predicted global
cognition scores from the ten models were then averaged.

Statistical analyses
To examine associations of the pentagon scores with clinical
parameters and pathologies, we used Spearman’s correlation and
linear regression as appropriate. For a multivariable linear
regression model, the proportion of the variance explained by
each variable was computed using the variance decomposition
approach developed by Chevan and Sutherland44, implemented
in the relaimpo R package45.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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