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Deep learning based phenotyping of medical images improves
power for gene discovery of complex disease
Brianna I. Flynn1,8✉, Emily M. Javan 1,8, Eugenia Lin2, Zoe Trutner2, Karl Koenig2, Kenoma O. Anighoro2, Eucharist Kun1,
Alaukik Gupta 1,3, Tarjinder Singh4,5,6, Prakash Jayakumar2✉ and Vagheesh M. Narasimhan 1,7✉

Electronic health records are often incomplete, reducing the power of genetic association studies. For some diseases, such as knee
osteoarthritis where the routine course of diagnosis involves an X-ray, image-based phenotyping offers an alternate and unbiased
way to ascertain disease cases. We investigated this by training a deep-learning model to ascertain knee osteoarthritis cases from
knee DXA scans that achieved clinician-level performance. Using our model, we identified 1931 (178%) more cases than currently
diagnosed in the health record. Individuals diagnosed as cases by our model had higher rates of self-reported knee pain, for longer
durations and with increased severity compared to control individuals. We trained another deep-learning model to measure the
knee joint space width, a quantitative phenotype linked to knee osteoarthritis severity. In performing genetic association analysis,
we found that use of a quantitative measure improved the number of genome-wide significant loci we discovered by an order of
magnitude compared with our binary model of cases and controls despite the two phenotypes being highly genetically correlated.
In addition we discovered associations between our quantitative measure of knee osteoarthritis and increased risk of adult
fractures- a leading cause of injury-related death in older individuals-, illustrating the capability of image-based phenotyping to
reveal epidemiological associations not captured in the electronic health record. For diseases with radiographic diagnosis, our
results demonstrate the potential for using deep learning to phenotype at biobank scale, improving power for both genetic and
epidemiological association analysis.
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INTRODUCTION
For most complex disease traits, clinical endpoints are usually
binary (case–control) in nature. In particular, data on disease
outcomes from population-scale biobanks are only available
through recorded ICD-10 billing codes or self-reported diagno-
sis1–3. While these datasets have provided invaluable insights into
the genetic basis of disease, case ascertainment based solely on
information available in the electronic health record (EHR) or from
self-reports can be biased by a multitude of factors, including
differences in how patients were billed4, differential diagnosis due
to assessment by clinicians (non-specialist vs specialist)5, or
differences in classification or diagnosis based on disease
severity6.
An alternate approach to ascertaining disease status might be

to directly perform clinical-grade assessment from a patient’s
medical images using a consistent diagnosis protocol. However,
this is difficult to achieve at large scale such as in population
biobanks where sample sizes range from hundreds of thousands
to millions of individuals1. For musculoskeletal diseases such as
knee osteoarthritis (OA), radiography is the routine course of
diagnosis in the clinic and the primary means to assess disease
progression through sclerosis, osteophytosis (bone spurs), and
narrowing of the space between the femur and tibia (knee joint
space)7. For such radiographically diagnosed diseases, computer
vision approaches for automated phenotyping based on training
data from clinicians offer the potential to ascertain both case
status and disease severity at scale. Such approaches have already

been used for determining pneumonia and SARS-CoV-2 cases
from chest X-ray images, with reported accuracy even higher than
expert radiologists based on ground truth from molecular
information8,9.
Taking advantage of these developments in computer vision,

recent genetic studies have successfully applied deep-learning
methods to generate image-derived phenotypes (IDPs) of body fat
distribution, heart structure, liver fat percentage, and brain
morphology, and have linked them with genome-wide significant
loci10–14. While some recent studies on musculoskeletal disease
employ these novel phenotyping approaches15–17, neither these
nor the studies on other traits have specifically investigated how
generating quantitative IDPs that underlie binary disease status
could be used to improve power for gene discovery at biobank
scale.
Quantitative measurements which provide information about

variation in the severity of the progression of the disease are
already routinely utilized in predicting an individual’s risk for
complex disease in the clinic. For example, LDL cholesterol levels
are a quantitative biomarker measured in blood samples, as a
primary biomarker to assess risk for myocardial infarction, one of
the leading causes of death worldwide18. Multiple lines of
functional evidence suggest that LDL cholesterol levels are also
causally linked to heart disease and lowering LDL levels over an
entire lifetime through the use of statins is the most widely used
long-term prescription medication19. In theoretical work, it has
been demonstrated that with equal sample size and when the
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proportion of cases in a case–control design is equivalent to the
prevalence of the disease in the population, the power of a
case–control association study is considerably lower than that of a
quantitative association study. This is in part because key
information about variation in the trait in the sample population
is lost when transforming a continuous trait into a binary one20.
Building on these foundational ideas, in this work we first

trained a binary classification model to identify knee OA cases at
clinician-level performance and deployed this at biobank scale to
compare our radiographically obtained results to the ICD-10
record. Second, we trained an image segmentation algorithm to
obtain a quantitative measurement highly correlated with knee
OA severity, minimum joint space width (mJSW), to examine
differences in power between genome-wide association studies
(GWAS) carried out using quantitative approaches versus a
case–control design. Third, we generate a polygenic risk score
(PRS) for each phenotype to evaluate if improvements in statistical
power to find novel loci translate to better prediction of ICD-10
record knee OA (M17) in a hold-out dataset of over 300,000
individuals. Finally, we examined epidemiological associations to
link our IDPs with fractures, an outcome of major clinical
relevance.

RESULTS
Dataset and quality control of DXA imaging and genetic data
To study the genetic basis of knee phenotypes, we jointly
analyzed paired dual energy X-ray absorptiometry (DXA) imaging
and imputed genome sequence data of 42,284 individuals in the
UK Biobank (UKB). We first restricted the dataset to individuals of
white, British ancestry, applied standard variant and sample
quality control (QC), and analyzed 12.1 million common biallelic
SNPs with minor allele frequency greater than 0.1%1 (“Genetic
QC”). Next, as the bulk imaging data from the UKB consisted of
DXA images that reflect scans of different body parts, we used a
deep-learning approach15 to subset the imaging dataset to only
anterior-posterior (AP) view knee scans. We then removed
individuals that had outlier image resolutions or poor quality
DXA scans, and padded images to a standard size for processing
(see “Image segmentation, phenotype measurement and quality
control”). Post quality control, we were left with combined
imaging and genetic data for a total of 29,257 individuals aged
between 46 and 81 with a mean age of 64. The ratio of males to
females was 50.2% (n= 14,676) to 49.8% (n= 14,581) of the
participants used in this analysis, consistent with the overall
distribution in the UKB (see “UKB participants and dataset” and
Table 1).

Automated phenotyping of knee OA achieves clinician-level
performance
To perform automated phenotyping for knee OA based on
radiography, we used a binary classification approach based on
the Kellgren-Lawrence (KL) grading system21 (usually graded 0–4,
where a 4 is considered the most severe case of radiographic OA)
to determine case or control status for each individual reflecting
different levels of joint space narrowing, subchondral sclerosis,
and the presence of osteophytes. Cases were considered
individuals with a KL grade of 3 or higher—severe enough that
annotating clinicians would consider a candidate for joint
replacement surgery in the clinic. Controls were considered
individuals who would not be candidates for joint replacement
—a grade 2 or lower (see “Binary classification: DXA scan
annotation procedure”). To train the deep-learning model, we
obtained case–control assessment on 546 images based on the
annotations of three board-certified orthopedic surgeons who
independently assessed each image. We then split the dataset so
that 80% (436 images) of the data was used for training and 20%

(110 images) was used for validation. First, we compared several
architectures and found the performance of the ResNet-101
architecture the best for our task (see “Binary classification: model
selection” and Fig. 5). We next trained a binary classifier (which we
refer to as DL-binary) using transfer learning with the ResNet-101
architecture22 (see “Binary classification: Network architecture and
model training” and Figs. 1d, e and 6). The sensitivity and
specificity of our model on the validation data (that is not used as
part of the training process) was within the range of the sensitivity
and specificity obtained between three clinicians grading the
same set of images (clinician sensitivity: 0.77 ± 0.05, DL-binary
sensitivity: 0.82 ± 0.07 Clinician specificity: 0.97 ± 0.05, DL-binary
specificity: 0.95 ± 0.06) (Fig. 1c, d). The DL-binary model achieved
an AUROC and AUPRC of 0.96, reflecting the model’s effectiveness
in identifying true positives while minimizing false positives
(Fig. 1e). We further validated the interpretability of the DL-binary
model’s case–control assessment through an additional Grad-CAM
analysis (see “Binary classification: Grad-CAM analysis for inter-
pretation of model predictions” and Fig. 7).

Image-based phenotyping reveals twofold more cases
compared with ICD-10 records
We next deployed our trained model on the remaining 28,725
images of knee DXA scans from the dataset. We considered an
individual a “case” if our model predicted the individual to have
knee OA on either the left or the right knee and a control
otherwise, in line with the ICD-10 code M17 for knee OA. We then
assessed how many cases were determined by our deep-learning-
based binary classification of radiographic OA as compared to
what already exists in the ICD-10 code M17. We found that after
deploying the DL-binary classifier, we determined 1931 more
cases compared with the ICD-10 code for knee OA (ICD-10 code
M17 1085 cases, DL-binary 3016 cases) (Fig. 1a). To provide
additional support for cases reported by DL-binary that were not
already reported in the ICD-10 code M17, our clinical team
examined 100 individuals manually and confirmed the presence

Table 1. Relevant population characteristics for the subset of
participants used in GWAS, heritability, and PRS analyses.

Population characteristic Mean (s.d.)

Participants, total 29,257

Age at DXA, years 64 (7.5)

Height, cm 169.5 (9.2)

BMI 26.5 (4.3)

On steroid medications, total (%) 424 (1)

Past knee trauma, total (%) 351 (1)

Male, total (%) 14,676 (50.2)

Age at DXA, years 64.6 (7.6)

Height, cm 176.2 (6.6)

BMI 27.0 (3.9)

Female, total (%) 14,581 (49.8)

Age at DXA, years 63.0 (7.3)

Height, cm 162.8 (6.2)

BMI 26.0 (4.6)

Bone mineral density, total 27,312

Legs, g/cm2 1.2 (0.18)

Body, g/cm2 1.2 (0.15)

Values are presented as the mean and standard deviation unless otherwise
specified as the total participants and percent in the population. A subset
of individuals (n= 1945) do not have bone mineral density calculations for
either legs or the body.
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of osteophytes, reduced joint space and in some cases
subchondral sclerosis (Fig. 1b). As these alone may not be
diagnostic, we also investigated associations with three self-
reported measures of knee pain in the UKB: knee pain
experienced in the past month (binary), knee pain for 3+ months
(binary, and reflecting knee pain experienced over a long
duration) and rating of knee pain in the past three months (scale
from 0 to 10). We found that in individuals who were newly
identified as cases, the rate of self-reported knee pain was
significantly higher compared to control individuals (individuals
not diagnosed by ICD-10 code M17 or by DL-binary) across all
three measures we examined (recent pain reported as knee pain
in the past month: 49.4% in cases and 27.2% in controls, chi-
square statistic = 536.6, P= <2.2 × 10−16, chronic pain as
determined by knee pain lasting 3 or more months: 80.4% in
cases and 70.6% in controls, chi-square statistic= 28.29,
P= 1.5 × 10−7 and severity of pain reported in the last 3 months:
mean rating of 3.33 in cases and 2.58 in controls, t test
P= 1.45 × 10−15). These results suggest that knee OA is likely
underdiagnosed in the ICD-10 record and that our approach is
capable of identifying additional true cases not already present in
the EHR.

Image segmentation to measure joint space width
To examine knee OA severity beyond simple case–control
assessment, we developed a method to obtain a quantitative
measurement from knee DXA scans known to be highly
associated with the disease: the minimum inter-bone joint space
between the femur and tibia, which we refer to as the mJSW
phenotype. To perform automated measurement on the UKB
dataset, we first collected training data for 63 DXA scan-derived
images of the knee (40 training, 23 validation). On each of these
images, we labeled the positions of the femur, tibia, and fibula at
pixel level, which were then validated by a team of clinicians. We
then trained a deep-learning model based on the U-Net
architecture23 with a 34-layer ResNet encoder22 to perform

semantic segmentation of the femur, tibia, and fibula in each
DXA image at pixel-level resolution (Fig. 2a). After quality control
and image normalization (see “DXA scan image quality control
and standardization”), we computed the mJSW phenotype by
measuring the distance between the femur and tibia along
multiple positions on the medial, lateral and center axes of the
joint. We then computed the average of these distances for each
leg (Fig. 2b). The mJSW measurement is defined as the smallest of
the two averages for either leg, returning one phenotype
measurement per individual. If the individual only had a right or
left leg DXA scan, this was used as the mJSW phenotype
measurement for that individual. To standardize mJSW measure-
ments across image resolutions, we regressed each of the joint
space lengths on the overall height of the individual (see “Image
segmentation: measurement and quality control”).
We evaluated the performance of the segmentation model in

several ways. First, the set accuracy, the correspondence between
labeled data and annotation of the trained model on validation
data, was 0.99. Second, the correlation between measurements
taken between the right and left leg was 0.82 (Fig. 2c). Third, the
correlation between images taken of the same person across two
imaging visits was 0.88, despite changes in image resolution,
scanner, technician, and imaging position, demonstrating that our
mJSW phenotype measurement process is fairly consistent across
biological replicates (Fig. 2d). We do not expect to see 100%
concordance across these replicates as joint space width often can
change in a period of more than 2 years particularly in older
individuals, in part due to possible knee joint cartilage degenera-
tion. Fourth, we examined the relationship between the mJSW
phenotype and OA status, both using the DL-binary model and
the ICD-10 code M17 case–control data (Fig. 2e). As expected, the
mJSW phenotype was significantly lower in cases compared to
controls regardless of which case annotation we used (t test
P < 2.2 × 10−16, and P < 2.2 × 10−16 for DL-binary and ICD-10 code
M17, respectively). Finally, we examined the relationships between
the mJSW phenotype and age—which is known to be highly
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associated with knee degeneration (Fig. 2f). Again, as expected,
we found that the mJSW phenotype decreased significantly with
age (linear regression, beta=−0.028, P < 2.2 × 10−16).

Genetic associations using image-derived phenotypes
Having obtained IDPs related to knee OA, we performed GWAS to
link these phenotypes to their genetic basis. After generating
summary statistics for each genetic association (Fig. 3), we
estimated SNP heritability using LD Score regression24 for the
three phenotypes: (1) knee OA as determined by the ICD-10 code
M17 data from UKB, (2) knee OA as determined using DL-binary,
and (3) mJSW, the quantitative phenotype highly correlated with
severity of knee OA. The heritability of both binary phenotypes
was low (ICD-10 code M17: 0.02 ± 0.02 and DL-binary: 0.04 ± 0.02).
In contrast, the heritability of the quantitative phenotype mJSW
was 0.24 ± 0.02. Genomic inflation for the three phenotypes also
confirmed this trend, with lambda for ICD-10 code M17: 1.0, DL-
binary: 1.01, and mJSW: 1.06. Deviations from expectation across
the genome are visualized in the qqplots inserts on Fig. 3. We
found 18 independent loci that reached genome-wide signifi-
cance in the mJSW model GWAS, including one that was also

significant in a previously reported GWAS for knee OA with 62,497
cases and 333,557 controls25 (Fig. 3). We annotated each of these
18 loci using the GWAS catalog, Human-mouse disease connec-
tion (HMDC) and Online Mendelian Inheritance of Man (OMIM)
databases (see “Annotation of genome-wide significant loci”). We
found one locus and six genome-wide significant loci with either
binary phenotype respectively (DL-binary and ICD-10 code M17),
though the mJSW and DL-binary model phenotypes had a genetic
correlation of −0.92 ± 0.25 (see “Heritability and genetic correla-
tion”). This suggests substantial improvements in power from
using a continuous, quantitative measure associated with knee OA
disease severity.

Polygenic risk scores for knee joint space are highly predictive
of knee OA
As our GWAS for the mJSW model identified many more loci of
genome-wide significance compared to DL-binary or ICD-10 code
M17, we wanted to assess if this translated to improved power to
predict knee OA in individuals outside of our DXA imaged sample.
We computed PRS using clumping and thresholding (selecting
variants below different p-value thresholds ranging from 1 to
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1 × 10−6) from the GWAS of the ICD-10 code M17, DL-binary and
mJSW phenotypes, and deployed these scores on 371,686
individuals in the population who were not included in the GWAS
(“Polygenic risk scoring and logistic regression”). We carried out
logistic regression with binary presence or absence of ICD-10 code
M17 diagnosed knee OA as the outcome, using z-scores
generated from each of the PRSs as the predictor variable, and
the first 20 PCs, age, sex, height, steroid medication use and past
knee trauma as covariates (see “Polygenic risk scoring and logistic
regression” and Table 3). After controlling for these variables and
performing multiple hypothesis testing correction at the level of
the total number of associations performed, the mJSW phenotype
PRS remained independently associated with knee OA diagnosis
at six of the seven total P value thresholds, while the DL-binary
PRS or the ICD-10 code M17 PRS were only significantly associated

with knee OA at fewer thresholds, again reflecting differences in
power between the various GWASs (Fig. 4a).

Quantitative phenotyping allows for novel epidemiological
associations
In addition to improving power in genetic analysis, we wanted to
examine if we could use the mJSW phenotype to improve
statistical power to detect an important epidemiological outcome
in the health record, fractures within the last 5 years. After
controlling for height, sex, age, and body fat percentage, our
results show that mJSW was significantly associated with fracture
in the last 5 years (P= 1.10 × 10−3) in logistic regression analysis,
but not with DL-binary (fractures: P= 0.79) or with ICD-10 code
M17 (P= 0.171) (Fig. 4b). While previous work on a much smaller
sample size of ~2000 individuals has shown that knee OA is
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associated with falls26, our results specifically implicate joint space
narrowing with an independent increased risk of fractures, a
known cause of death in individuals 65 and over27. These results
emerge only upon examining our quantitative phenotype mJSW
which captures an element of disease severity, revealing knee OA
as an important risk factor for potentially fatal complications from
fractures in older adults.

DISCUSSION
Here we report a deep-learning method to directly phenotype OA
cases and controls (the DL-binary model), as well as joint space
narrowing (mJSW model), from DXA scan-derived AP view knee
radiographs of the UKB. We compare this image-derived
phenotyping approach with case–control status of knee OA
already available in the ICD-10 record code M17 on the same set
of individuals, to determine if image-derived phenotyping
approaches have an effect on statistical power in GWAS.
We find that the case–control phenotyping using the DL-binary

classification method enables us to raise the case count almost
twofold and circumvents some issues with sourcing cases from
the EHR such as variation in specific definitions of OA or
differences in a clinician’s perception of the disease28. While
previous work has shown that the ICD-10 record can have issues
identifying individuals with disease for a variety of reasons, our
study carrying out image-based diagnosis at a large scale provides
evidence of the extent to which the record can be incomplete.
In addition, both case–control methods lack information about

disease severity, which may explain why they are underpowered
compared to the quantitative measurement mJSW in the genetic
and epidemiological analyses we investigate. The high genetic
correlation between the mJSW and DL-binary phenotypes (92%)
suggests that while the binary case–control phenotype of knee OA
is underpowered compared with the quantitative mJSW pheno-
type, the genetic relationships found between the two pheno-
types are consistent with one another.

While computer vision approaches to extract and analyze DXA
scan-derived phenotypes are not themselves novel16,17,29,30, this
work is amongst the first to use this approach on a disease for
which diagnosis is primarily radiographic, to demonstrate that
having a quantitative endophenotype that captures additional
information about variation in disease severity improves power for
genomic and epidemiological analysis. Although not based on the
imaging data, two novel phenotyping methods leveraging deep
learning to impute missing data in the UKB and to generate
disease liability scores from binary case–control data in the EHR
have shown significant boosts in statistical power for genomic
studies31,32. Broadly, these and other approaches suggest that
analysis of biobank data could benefit from quantitative refine-
ment of disease phenotypes using alternative approaches.
One potential limitation of our study is that knee joint space

narrowing is both causal and symptomatic in knee OA progres-
sion. As arthritis progresses, the joint space narrows due to the
breakdown of cartilage, causing a resulting increase in pain and
difficulty with movement. This narrowing of the joint space can
also cause further damage, due to increased contact pressure at
the affected joint. This makes it difficult to understand the root
cause of knee OA with respect to the mJSW endophenotype,
because joint space narrowing can both be a result of OA and a
contributing cause to the progression of the condition. While the
DL-binary method discovered approximately twofold more cases
than what is annotated in the ICD-10 record, it is still likely to be
an undercount due to our choice to use a particular instantiation
of the model to limit the false positive rate as much as possible
(Fig. 1e). Thus, despite improving the case–control ratio in the
dataset, there may still be additional cases undetected by either
method which could further improve statistical power in GWAS.
Third, all GWAS in this work were restricted to individuals with
European ancestry. Thus, the transferability of the specific findings
in this genetic analysis (i.e., loci discovered from mJSW GWAS, trait
heritability, and genetic correlation) across ancestries is not
warranted without follow-up analyses.

Fig. 4 Genetic and epidemiological analysis of image-derived phenotypes. a Results of performing logistic regression analysis using the
PRS generated from each GWAS to predict ICD-10 M17 diagnosis on a hold-out dataset of 371,686 UKB individuals, showing the regression
estimate obtained at each P value threshold (error bars represent one standard error of the mean), colored by whether the test was significant
after Bonferroni correction. b Boxplots showing the distribution of the mJSW endophenotype measurements in patients who experienced a
fracture in the past 5 years (n= 24,147). Center line, bounds of box, whiskers and points correspond to the median, first and third quartile,
lower and upper fence, and outliers. The mJSW phenotype PRS was significantly predictive of fractures in logistic regression analysis, asterisks
correspond to P value significance (logistic regression, P < 1.10 × 10−3).
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Taken together, our study provides a proof-of-concept for the
utility of quantitative phenotyping in biobank scale settings where
a direct measurement of disease severity for a complex disease
phenotype is possible. The results of this work suggest that this
concept extends not only to other musculoskeletal diseases in
which radiography is one of the primary methods for diagnosis
(for example, directly measuring spinal curvature as opposed to
scoliosis diagnosis), but to other analyses in which one can derive
a quantitative alternative to case–control disease phenotyping.

METHODS
UKB participants and dataset
All analyses were conducted with data from the UKB unless
otherwise stated. The UKB is a richly phenotyped, prospective,
population-based cohort that recruited 500,000 individuals aged
40–69 (mean 58) in the UK via mailers from 2006 to 20101. In total,
we analyzed data from 402,000 participants with genetic data of
self-identified white British ancestry who had not withdrawn
consent as of February 22, 2022. Of this genotyped cohort, 42,284
had available DXA images of either one or both knees. We
removed individuals that had outlier image resolutions, poor
quality DXA scans, or genotype missingness greater than 2.5%,
resulting in a quality-controlled subset of 29,257 individuals.
Relevant population characteristics are provided in Table 1. Access
was provided under application number 65439.

Dual-energy X-ray absorptiometry (DXA) imaging
The UKB has released DXA imaging data for a total of 50,000
participants as part of a bulk data field ID. The DXA images were
collected using a Lunar iDXA instrument1 (GE Healthcare) in
DICOM format. A series of eight images were taken for each
patient: two whole body images—one of the skeleton and one of
the adipose tissue, the lumbar spine, the lateral spine from L4 to
T4, each knee, and each hip. Dual-energy X-ray absorptiometry
(DXA) images were downloaded from the UKB bulk data. The bulk
download resulted in 42,284 zip files, each corresponding to a
specific identifier otherwise known as each subject’s EID. The
uncompressed directories corresponding to each imaged subject
contained several DXA images of the individual as described
above. For this analysis, only images of the right and left knees
from the AP view were used. It is important to note that all
subjects in this analysis were instructed to lay flat on the DXA
scanner machine during imaging, so that all resulting images are
non-weight bearing.

Phenotype and clinical data acquisition
The binary classification of patient disease phenotypes was
obtained from a combination of primary and secondary ICD-10
codes. ICD-10 codes (FID 41270) were truncated to the initial three
characters to increase sample sizes. Patients received a “one” if a
disease code appeared in their hospital records, and a “zero”
otherwise. Reports of a fracture within the last 5 years of any visit
(instance 0 to 3) was considered a case. Our classification of
fractures increases case counts while excluding any childhood
incidence. The completeness of the knee OA ICD-10 code (M17) in
the UKB may be subject to factors such as the quality of hospital
episode statistics (HES) data, the accuracy of disease coding, and
the representativeness of the UK Biobank cohort for knee OA33.
These factors and others limiting the completeness of the ICD-10
record may impact the accuracy of the recorded diagnosis for
knee OA used to validate the PRS generated from the DL-binary
and mJSW GWAS. In total, for M17 there were 1085 cases and
28,172 controls. Of the controls, 4843 (17.2%) individuals have no
ICD-10 diagnosis ever reported.

Computing infrastructure
We carried out all training using the Python programming
language (version 3.7.7) with the PyTorch34 and Fastai version
135 libraries on NVIDIA 1080-TI GPUs on the Maverick2 system and
NVIDIA Quadro RTX 5000 GPUs on the Frontera system of the
Texas Advanced Computing Center using the CUDA 11.1 toolkit.

DXA scan image quality control and standardization
DXA images in DICOM format were first organized by anatomy
following the manifest files located in each directory output by the
imaging machine. DXA scans were subject to further quality
control following the methods described in ref. 15. Following initial
data cleaning, AP view knee DXA scans were converted from
DICOM to JPG format using the pydicom library36. To prepare a
uniform set of images for segmentation, the numpy37 and opencv-
python38 libraries were used to pad images to a standard width
and height (800 × 1000 pixels), and outlier images that had
resolutions outside of this standardized range were removed from
all downstream analyses. Padded images were subject to further
image resizing during training of the U-net architecture23 for
segmentation (using a progressive resizing technique), but not
during training of the classification model.

Binary classification: DXA scan annotation procedure
The KL grade21-based phenotype (DL-binary) was defined taking
the following observations as input: presence or absence of
osteophytosis, visible sclerosis of bone, and narrowing of the inter-
bone joint space between the femur and tibia). Participating
surgeons were instructed to annotate images as 0 or 1 based on
whether or not each image qualified as KL grade 3 or greater,
meaning that based on the radiographic evidence of knee OA the
individual would be a candidate for joint replacement surgery. We
considered 0 to be a control (but not necessarily devoid of any
radiographic OA symptoms) and 1 to be a case (KL grade 3 or 4)
warranting joint replacement.
We obtained case–control assessments of 546 AP view knee

DXA scan images from three board-certified orthopedic surgeons.
DXA scan images were selected from the UKB with reference to
the ICD-10 code M17 to create an approximately balanced dataset
for training and validation. We used a consensus grading
approach; first, three pairs of physicians graded a third of the
total dataset (182 images for each pair). Second, all three
physicians then met together to review the labels produced from
the pairwise grading. The binary case–control diagnoses gener-
ated from the consensus grades output from this process were
used as ground truth diagnoses for training the DL-binary model.
436 images (80% of the data) were used for training and 110
images (20% of the data) were randomly sampled and reserved
for validation (not seen by the model during training).
To understand the inter-rater reliability among the three

surgeons, we computed the average across all three physicians
used to label the training data. Three sets of 182 images from this
dataset were used for clinician inter-rater comparative analysis.
We expressed the contingency tables produced from each pair as
a proportion out of 100, and the resulting confusion matrix
representing the inter-rater reliability among the three physicians
is an average across these three tables (Fig. 1c).

Binary classification: normalization and data augmentation
Prior to performing binary classification, images were scaled to
224 × 224 pixels and normalized using ImageNet statistics. The
ResNet-101 convolutional neural network (CNN) weights were
initialized using the Kaiming normal method22. While training,
multiple transformations were applied to the input images to
regularize the model. These included a padding process as
described above, as well as other transformations such as vertical
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flipping of the image, random rotation, zooming, warping, light,
and contrast change. This data augmentation was performed to
improve the model’s ability to generalize in its predictions relative
to variation in contrast and other image artifacts common to DXA
scanning39.

Binary classification: model selection
We compared the performance of six deep-learning architectures,
namely VGG-11, VGG-16, VGG-19, ResNet-34, ResNet-50, and
ResNet-101, to determine the most suitable model for classifying
knee OA cases and controls. All models were trained on the same
dataset of knee DXA scans using transfer learning and the same
image normalization methods. To ensure a fair comparison, the
learning rate (0.003), optimizer (Adam), and the number of epochs
trained (70) were kept consistent across all models (Fig. 5). The
performance of each model was assessed in terms of accuracy,
area under the receiver-operating characteristic curve (AUROC),
and area under the precision-recall curve (AUPRC) (Table 2).
Among the six models, the ResNet-101 (DL-binary) architecture
demonstrated the best performance, with an accuracy of 0.91 and
AUROC of 0.96. To understand the effect of class imbalance on our
model’s predictions (55% cases and 45% controls in the
validations set), we also evaluated the precision-recall curve and

AUPRC. The AUPRC was 0.96, highlighting the model’s ability to
effectively separate OA cases from controls (Fig. 6).

Binary classification: network architecture and model training
We constructed a ResNet-101 CNN22 for our binary DXA image
classifier, implementing transfer learning to reduce the amount of
training time and resources for our classification task, using a pre-
trained model obtained from training on the ImageNet40 (image-
net.org) dataset and transferring the weights from this model to
earlier layers of the network. We applied batch normalization and
ReLU after each layer of the CNN to reduce overfitting and provide
additional regularization using the Fastai version 135 and
PyTorch34 default parameters, and dropout was applied to the
fully connected portion of the network. The output of the model is
a binary classification for each DXA scan-derived image passed in,
a one-dimensional tensor containing values of 0 or 1 (control and
case status), produced from passing the final layer of the network
(the classification head) through the sigmoid and argmax
activation functions. The batch size for all models was 64. We
first plotted cross-entropy loss as a function of learning rate in
order to select the optimal hyperparameters and used the Adam
optimizer41. We trained the model for 42 epochs with discrimi-
native learning rates ranging from 1 × 10−3 to 1 × 10−6.

Fig. 5 Validation loss per epoch for benchmarking six deep-
learning architectures. Validation loss (y axis) versus number of
epochs (x axis) for six deep-learning algorithms (VGG-11, VGG-16,
VGG-19, ResNet-34, ResNet-50, and ResNet-101) during model
benchmarking. The plot demonstrates the performance of each
algorithm in terms of loss minimization, with the objective of
identifying the model with the lowest validation loss for the given
task of classifying knee OA cases and controls. The same training
(n= 436) and validation set (n= 110) were used for model
benchmarking as was used to train DL-binary.

Table 2. Performance metrics of the six deep-learning algorithms in model benchmarking.

Metrics ResNet-101 ResNet-50 ResNet-34 VGG-19 VGG-16 VGG-11

Accuracy 0.91 0.82 0.87 0.55 0.55 0.61

AUROC 0.96 0.90 0.95 0.59 0.62 0.64

AUPRC 0.96 0.89 0.93 0.49 0.54 0.64

The table presents the validation accuracy, area under the receiver-operating characteristic curve (AUROC), and area under the precision-recall curve (AUPRC)
for each algorithm (ResNet-101, ResNet-50, ResNet-34, VGG-19, VGG-16, and VGG-11) used, providing a comprehensive evaluation of their performance in
terms of classification accuracy, discrimination ability, and precision-recall trade-off, respectively.

Fig. 6 Precision–recall curve for DL-binary predictions on the
validation set. Precision–recall curve for the ResNet-101 binary
classifier. The curve illustrates the trade-off between precision and
recall at varying classification thresholds. The classifier achieved an
area under the precision-recall curve (AUPRC) of 0.96, highlighting
its ability to effectively separate OA cases from controls.
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Binary classification: Grad-CAM analysis for interpretation of
model predictions
To provide a visual interpretation of DL-binary’s predictions on our
DXA images, we employed the Gradient-weighted Class Activation
Mapping (Grad-CAM) technique. Grad-CAM is a visualization
technique that highlights the regions in the input image that
have contributed the most to the classifier’s final decision,
allowing for better understanding and interpretability of the
model’s predictions. The Grad-CAM method generates a heatmap,
overlayed on the original input image, indicating the areas that
the model considers important for predicting the presence or
absence of OA in the knee joint. The heatmap is generated by
computing the gradients of the target class score with respect to
the feature maps of the last convolutional layer in the ResNet-101
architecture. The gradients are then pooled using global average
pooling to obtain the weights for each feature map. These weights
are subsequently combined with the feature maps to produce a
coarse localization map, which is then upscaled to match the input
image size, resulting in the final heatmap. In this work, we used
Grad-CAM to visualize the regions in the knee DXAs that were
critical for the classifier’s decision-making process (Fig. 7). This
allowed us to gain insight into the model’s decision-making
process, and confirm that the model was focusing on relevant
anatomical features, such as medial compartment knee joint space
narrowing or presence of osteophytes.

Image segmentation: DXA scan annotation procedure
We collected human-generated annotations of each anatomical
structure present in 63 DXA scans of the knee (40 training, 23
validation). Annotations were produced at the pixel level for each
of the following segments of an AP knee DXA scan the: (1) femur,
(2) tibia, and (3) fibula. All annotations were reviewed by an
orthopedic surgeon prior to training.

Image segmentation: network architecture and model
training
We trained a U-net architecture23 with a 34-layer ResNet
encoder22 to perform semantic segmentation of the knee joint,
annotating the femur, tibia, and fibula coded as 1, 2, and 3,
respectively, at pixel-level resolution. We used a batch size of 4 for
the segmentation model. We used the same transfer learning
approach with the ImageNet dataset as described for the binary
classifier, as well as a progressive upsampling strategy during
training. First, we downsampled masks to half their size, trained
for 28 epochs, saved the model, then restarted the kernel and
trained the saved model on regular now upsampled mask. This
training procedure was used to efficiently utilize memory and
reduce the model’s time to convergence. As described previously,
we plotted cross-entropy loss as a function of learning rate in
order to select the optimal hyperparameters and used the Adam
optimizer41.

Image segmentation: measurement and quality control
After performing segmentation, we computed the minimum inter-
bone knee joint space distance in pixels (of either leg),
abbreviated as mJSW. Segmentation masks were processed using
software developed for this analysis, written in python using the
numpy37 and opencv-python38 libraries. Labeled polygons within
each segmentation mask were processed independently, con-
verted to an identity matrix of ones and zeros (ones being the
polygon processed, for example, the femur, tibia or fibula). From
this identity matrix, two matrices were produced from indexes
produced and along the x and y axes. These indexes were used in
the computation of basic features of the polygon such as
maximum width, and maximum height. Indices were saved from
this process and were later used to compute measurements of
joint space width between the femur and tibia.
A major issue in combining our analysis across input pixel ratios

was that these pixel ratios represented different resolution
scalings due to variable distance between the scanner and the
patient as a function of DXA scanner type and the size of
the patient. To control for this scaling issue and to standardize the
images, we chose to regress our mJSW phenotype measurements
across all image resolutions with height obtained from the UKB.
The estimates obtained from this regression were used to obtain a
scaling factor for each image resolution that were then used for
measurement normalization. We validated this regression and
normalization procedure by comparing measurements taken on
individuals who had DXA scans taken at two imaging assessments
at different resolutions.

Genetic QC
For all genome-wide association analyses, we filtered the
participants to Caucasian individuals (FID 22006) from the white,
British population (FID 21000) as determined by genetic PCA and
participant surveys. We removed individuals whose reported sex
(FID 31) did not match genetic sex (FID 22001), had evidence of
aneuploidy on the sex chromosomes (FID 222019), were outliers of
heterozygosity or genotype missingness rates as determined by
UKB quality control of sample processing and preparation of DNA
for genotyping (FID 22027), or had more than nine third-degree
relatives or any of unknown kinship (FID 220021). In total, 402,233
individuals remained. We further filtered to imaged participants
(FID 20158) with complete DXA measurements (FID 12254); 33,475
remained.
Imputed genetic data for 487,253 individuals was downloaded

from UKB for chromosomes 1 through 22 (FID 22828) then filtered
to the quality-controlled subset using PLINK242. All duplicate
single nucleotide polymorphisms (SNPs) were excluded (--rm-dup
“exclude-all”) and restricted to only biallelic sites (--snps-only “just-

Predicted OA case CAM of predicted OA case

CAM of predicted OA casePredicted OA case

Fig. 7 Grad-CAM interpretation of DL-binary predictions. Grad-
CAM heat mapping showing areas of highest activation for a control
and case prediction made on the knee DXA images. The regions of
the map with the darkest color (purple) represent areas that were
less informative in the prediction, while lighter colors (yellow)
indicate regions of the image that informed the ‘case’ or ‘control’
prediction the most. We find areas of highest activation are most
often on the medial side of the knee joint.

B.I. Flynn et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)   155 



acgt”) with a maximum of 2 alleles (--max-alleles 2), a minor allele
frequency of 0.1% (--maf 0.001), individual missingness rates no
more than 2.5% (FID 22005), and genotype missingness of no
more than 5% (--maxMissingPerSnp 0.05). In total, 14,846,570
SNPs remained in the imputed dataset. Non-imputed genetic data
did not contain duplicate or multiallelic SNPs but were filtered to
the quality-controlled subset; 703,993 SNPs remained.

GWAS
GWAS was carried out using PLINK2, with a minor allele frequency
of 0.001, a missingness per SNP of 5%, and a missingness per
individual of 2.5%. Covariates were the first 20 genetic principal
components provided by UKB (FID 22009), sex (FID 31), age (FID
21022), BMI (FID 21001) and standing height taken at the imaging
assessment, instance 2 (FID 50). The final population size for all
GWAS after both genetic and imaging QC was 29,257, and all
GWASs had the same number of SNPs: 12,129,706. SNPs in each
resulting GWAS were clumped using --clump with a significance
threshold of 5.0 × 10−8, a secondary significance threshold of
1.0 × 10−4 for clumped SNPs, an r2 threshold of 0.1, and a 250 kb
threshold of physical distance. SNPs were assigned to genes with
--clump-verbose --clump-range glist-hg19.

Annotation of genome-wide significant loci
We carried out a systematic analysis to connect each loci we
identified as genome-wide significant with existing literature. First,
we identified overlaps of our loci with other traits using the GWAS
catalog. We queried the GWAS catalog for any reported
associations within a 250 kb region upstream or downstream of
each of our loci. The traits that were associated with the most
number of these loci were anthropometric traits, namely, height
(100% of our independent loci overlapped a height-associated loci
in the GWAS catalog). This is to be expected as height has 12,000
genome-wide significant variants that cover about 30% of the
human genome with LD-based tagging. In addition to height, heel
bone mineral density (44% overlap), BMI-adjusted hip circumfer-
ence (44% overlap), and appendicular lean mass (44% overlap)
were among the traits associated with each of our loci (Table 3).
Second, for each locus, we annotated each clumped region with
protein-coding genes within 250 kb and queried the Human-
Mouse Disease Connection (HMDC) database (Table 4). Third, we
also carried out a similar analysis examining rare disease
associations for each gene using the Online Mendelian Inheritance
in Man (OMIM) database. Four (rs10500759, rs4978572, rs6504045,
and rs975889) out of seven loci (or 57%) that mapped only to a
single gene resulted in abnormal skeletal phenotypes when

Table 3. Traits associated with each genome-wide significant loci discovered via GWAS with the mJSW phenotype, as queried by the GWAS catalog.

Phenotype Associated SNPs Proportion of total
significant SNPs (%)

Height rs76207439, rs73566656, rs2236996, rs1351266, rs1346, rs34851490, rs7801187, rs10500759,
rs55928198, rs11592205, rs6940664, rs4978572, rs9493174, rs6504045, rs975889, rs11049562,
rs34195470, rs115710080

100

Lung function (FVC) rs73566656, rs2236996, rs34851490, rs7801187, rs10500759, rs975889, rs11049562, rs34195470,
rs1351266

50

Heel bone mineral
density

rs76207439, rs1346, rs7801187, rs10500759, rs975889, rs11049562, rs115710080, rs1351266 44

Appendicular lean
mass

rs2236996, rs1346, rs7801187, rs10500759, rs6504045, rs11049562, rs34195470, rs1351266 44

Hip circumference
adjusted for BMI

rs2236996, rs1351266, rs1346, rs7801187, rs10500759, rs6940664, rs11049562, rs115710080 44

Protein quantitative
trait loci (liver)

rs76207439, rs73566656, rs34851490, rs7801187, rs10500759, rs6504045, rs975889, rs34195470 44

The second column lists the SNPs that were associated with that particular trait, and the third column lists the proportion of the total SNPs discovered that
were associated.

Table 4. Phenotypes in mouse models as sourced from the HMDC database associated with novel loci that mapped to a single gene.

Gene Mouse phenotype Human disease

CREB5 Mortality, aging None

TEAD1 Adipose tissue cardiovascular system craniofacial embryo growth, size, body homeostasis,
metabolism mortality, aging muscle nervous system skeleton vision, eye

Sveinsson chorioretinal atrophy

UST Behavior, neurological mortality, aging None

CCDC91 None None

COL27A1 Cardiovascular system craniofacial embryo growth, size, body hematopoietic system homeostasis,
metabolism immune system limbs, digits, tail mortality, aging renal, urinary system reproductive
system respiratory system skeleton

None

TBX4 Cardiovascular system, cellular embryo growth, size, body homeostasis, metabolism limbs, digits, tail
mortality, aging skeleton

Arthropathy
ischiocoxopodopatellar
syndrome

MKX Limbs, digits, tail muscle skeleton None

In addition to associated mouse phenotypes, the third column of the table lists human diseases associated with each gene as obtained from OMIM.
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disrupted in mice, annotated in the HMDC database. One of these
genes, TBX4, is a known developmental gene associated with
hindlimb development and is also associated with a rare
autosomal dominant disease in humans that specifically impli-
cates the patella (annotated in OMIM). Individuals with this
disorder have patellae that are small and laterally displaced or
dislocated.

Heritability and genetic correlation
LD Score v1.0.1 was used to compute linkage disequilibrium
regression scores per chromosome with a window size of 1 cM24

with the non-imputed genetic data. The heritability of each
phenotype was then assessed using LD score regression24 with
the same covariates as the GWAS. We examined the pairwise
genetic correlation of the DL-binary and mJSW model phenotypes
using GCTA version 1.93.2 beta for Linux43. We created the genetic
relationship matrix for our quality-controlled subset with a minor
allele frequency of 0.001, and then ran GCTA, using the first 20
genetic principal components provided by UKB (FID 22009), sex,
age, BMI, and standing height as covariates.

Polygenic risk scoring and logistic regression
PRSs were computed with the IDP GWAS summary statistics in
PLINK (v1.9) using the clumping and thresholding method. GWAS
were clumped using an r2 threshold of 0.1 and a 250 kb threshold
of physical distance for clumping. Significance thresholds of 1, 0.1,
1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5, and 1 × 10−6 were used to
compute PRSs for all three phenotypes run in GWAS. We then
regressed ICD-10 code diagnosis of knee OA on the z-scores
generated from each PRS obtained for each phenotype in all
genotyped non-imaged individuals of white British ancestry (who
had also undergone genetic QC), n= 371,723. In our logistic
regressions, we controlled for age, sex, height, BMI, and the first 20
principal components as covariates for all phenotypes. We also
control for steroid medication usage that are commonly
prescribed to treat inflammation, reduce pain, swelling, and
stiffness in joints and other tissues (Table 5), and coded
participants that had been prescribed any of the above generic
corticosteroids, as a “1”, and “0” otherwise. In order to adjust for
past knee trauma, we examined whether individuals had evidence
for patella fracture (FID 20002, data coding: 1650) or soft tissue
inflammation including Tendonitis (FID 20002, data coding: 1619),
Synovitis (FID 20002, data coding: 1621) and bursitis of the knee
(FID 20002, data coding: 1624). In our model, we coded
participants that had any of the following in the EHR as a “1”,
and “0” otherwise.
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